
中国水稻科学 ›› 2025, Vol. 39 ›› Issue (6): 744-750.DOI: 10.16819/j.1001-7216.2025.250316
收稿日期:2025-03-24
修回日期:2025-09-19
出版日期:2025-11-10
发布日期:2025-11-19
通讯作者:
* email:ezhiguo@caas.cn
基金资助:
WANG Juan, WU Lijuan, HONG Haibo, YAO Zhiwen, WANG Lei, E Zhiguo*(
)
Received:2025-03-24
Revised:2025-09-19
Online:2025-11-10
Published:2025-11-19
Contact:
* email:ezhiguo@caas.cn
摘要:
泛素化是一种重要的蛋白质翻译后修饰,承担了真核生物中蛋白质降解任务的80%~85%,并影响蛋白的活性、定位和功能,从而广泛参与各种生命活动的调控。泛素结合酶E2是泛素化级联反应中的第二个酶,不仅作为泛素载体,还决定着泛素链的连接方式和长度。水稻中预测存在48个E2基因,所编码蛋白均含有一个高度保守的泛素结合(UBC)结构域。该结构域通过硫酯键与泛素分子结合,同时与泛素连接酶E3形成特异性互作界面,确保泛素转移的精确性。研究表明E2广泛参与调控水稻生长发育与生物/非生物胁迫应答。
王娟, 吴丽娟, 洪海波, 姚志文, 王磊, 鄂志国. 水稻泛素结合酶E2的生物学功能研究进展[J]. 中国水稻科学, 2025, 39(6): 744-750.
WANG Juan, WU Lijuan, HONG Haibo, YAO Zhiwen, WANG Lei, E Zhiguo. Research Progress on Biological Functions of Ubiquitin-conjugating Enzymes in Rice[J]. Chinese Journal OF Rice Science, 2025, 39(6): 744-750.
| 基因名称 Gene name | 别名 Gene alias | 基因号 Gene ID | 染色体 Chromosome | 生物学功能 Biological function | 参考文献 Reference |
| OsUBC1 | OsSCE1 | Os10g0536000 | 10 | 影响粒重和结实率,负调控耐旱性 Negatively regulates grain weight, seed-setting rate, and drought tolerance | [ |
| OsUBC2 | OsSCE1a; OsSCE2 | Os03g0123100 | 3 | 负调控氮素利用率和光合效率,延长抽穗期 Negatively regulates nitrogen use efficiency and photosynthetic efficiency, and delays heading date | [ |
| OsUBC3 | OsSCE3 | Os04g0580400 | 4 | 正调控耐旱性 Positively regulates drought tolerance | [ |
| OsUBC7 | qMT7-3 | Os07g0166800 | 7 | 正调控籼稻幼苗的耐寒性 Positively regulates cold tolerance in indica rice seedlings | [ |
| OsUBC9 | OsRad6 | Os03g0791800 | 3 | 与SCF泛素连接酶亚基OsSGT1互作 Interacts with the SCF ubiquitin ligase subunit OsSGT1 | [ |
| OsUBC11 | Os01g0839700 | 1 | 负调控根系、节间和穗发育 Negatively regulates root, internode, and panicle development | [ | |
| OsUBC12 | Os05g0460200 | 5 | 增强粳稻的低温下发芽能力 Enhances germination ability under low temperature conditions in japonica rice | [ | |
| OsUBC13 | Os02g0120600 | 2 | 与OsPUB9互作使其稳定 Interacts with and stabilizes OsPUB9 | [ | |
| OsUBC14 | OsUBC5a | Os01g0658400 | 1 | 负调控细胞死亡和免疫反应 Negatively regulates cell death and immune responses | [ |
| OsUBC16 | Os04g0667800 | 4 | 负调控水稻籽粒大小和重量 Negatively regulates grain size and weight in rice | [ | |
| OsUBC18 | Os09g0293400 | 9 | 与OsUBR7配对催化组蛋白H2B单泛素化 Pairs with OsUBR7 to catalyze histone H2B monoubiquitination | [ | |
| OsUBC24 | Os07g0577400 | 7 | 调节水稻胚发生和类黄酮生物合成 Regulates rice embryogenesis and flavonoid biosynthesis | [ | |
| OsUBC26 | Os12g0636800 | 12 | 正调控稻瘟病抗性 Positively regulates resistance to rice blast | [ | |
| OsUBC30 | OsUEV1B | Os12g0605400 | 12 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC35 | LTN1; OsPHO2 | Os05g0557700 | 5 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC45 | SMG3 | Os03g0308000 | 3 | 调控穗和籽粒发育 Regulates panicle and grain development | [ |
| OsUBC47 | OsUBC13 | Os01g0673600 | 1 | 负调控稻瘟病和白叶枯病抗性 Negatively regulates resistance to rice blast and bacterial blight | [ |
表1 水稻中已鉴定OsUBC基因的生物学功能
Table 1. Overview of biological functions of OsUBC genes in rice
| 基因名称 Gene name | 别名 Gene alias | 基因号 Gene ID | 染色体 Chromosome | 生物学功能 Biological function | 参考文献 Reference |
| OsUBC1 | OsSCE1 | Os10g0536000 | 10 | 影响粒重和结实率,负调控耐旱性 Negatively regulates grain weight, seed-setting rate, and drought tolerance | [ |
| OsUBC2 | OsSCE1a; OsSCE2 | Os03g0123100 | 3 | 负调控氮素利用率和光合效率,延长抽穗期 Negatively regulates nitrogen use efficiency and photosynthetic efficiency, and delays heading date | [ |
| OsUBC3 | OsSCE3 | Os04g0580400 | 4 | 正调控耐旱性 Positively regulates drought tolerance | [ |
| OsUBC7 | qMT7-3 | Os07g0166800 | 7 | 正调控籼稻幼苗的耐寒性 Positively regulates cold tolerance in indica rice seedlings | [ |
| OsUBC9 | OsRad6 | Os03g0791800 | 3 | 与SCF泛素连接酶亚基OsSGT1互作 Interacts with the SCF ubiquitin ligase subunit OsSGT1 | [ |
| OsUBC11 | Os01g0839700 | 1 | 负调控根系、节间和穗发育 Negatively regulates root, internode, and panicle development | [ | |
| OsUBC12 | Os05g0460200 | 5 | 增强粳稻的低温下发芽能力 Enhances germination ability under low temperature conditions in japonica rice | [ | |
| OsUBC13 | Os02g0120600 | 2 | 与OsPUB9互作使其稳定 Interacts with and stabilizes OsPUB9 | [ | |
| OsUBC14 | OsUBC5a | Os01g0658400 | 1 | 负调控细胞死亡和免疫反应 Negatively regulates cell death and immune responses | [ |
| OsUBC16 | Os04g0667800 | 4 | 负调控水稻籽粒大小和重量 Negatively regulates grain size and weight in rice | [ | |
| OsUBC18 | Os09g0293400 | 9 | 与OsUBR7配对催化组蛋白H2B单泛素化 Pairs with OsUBR7 to catalyze histone H2B monoubiquitination | [ | |
| OsUBC24 | Os07g0577400 | 7 | 调节水稻胚发生和类黄酮生物合成 Regulates rice embryogenesis and flavonoid biosynthesis | [ | |
| OsUBC26 | Os12g0636800 | 12 | 正调控稻瘟病抗性 Positively regulates resistance to rice blast | [ | |
| OsUBC30 | OsUEV1B | Os12g0605400 | 12 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC35 | LTN1; OsPHO2 | Os05g0557700 | 5 | 调节磷酸盐稳态 Regulates phosphate homeostasis | [ |
| OsUBC45 | SMG3 | Os03g0308000 | 3 | 调控穗和籽粒发育 Regulates panicle and grain development | [ |
| OsUBC47 | OsUBC13 | Os01g0673600 | 1 | 负调控稻瘟病和白叶枯病抗性 Negatively regulates resistance to rice blast and bacterial blight | [ |
| [1] | Wang J, Jiang J, Oard J H. Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.)[J]. Plant Science, 2000, 156(2): 201-211. |
| [2] | Morreale F E, Walden H. Types of ubiquitin ligases[J]. Cell, 2016, 165(1): 248-248.e1. |
| [3] | Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: Styles, structures and functions[J]. Molecular Biomedicine, 2021, 2(1): 23. |
| [4] | Mevissen T E T, Hospenthal M K, Geurink P P, Elliott P R, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund S M V, Ovaa H, Komander D. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis[J]. Cell, 2013, 154(1): 169-184. |
| [5] | Zhang Y, Li T, Wang L, Zhao H. Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments[J]. PLoS One, 2015, 10(4): e0122621. |
| [6] | Bae H, Kim W T. Classification and interaction modes of 40 rice E 2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases[J]. Biochemical and Biophysical Research Communications, 2014, 444(4): 575-580. |
| [7] | Zang Y, Wang Q, Xue C, Li M, Wen R, Xiao W. Rice UBC13 a candidate housekeeping gene, is required for K63-linked polyubiquitination and tolerance to DNA damage[J]. Rice, 2012, 5(1): 24. |
| [8] | Wang Q, Zang Y, Zhou X, Xiao W. Characterization of four rice UEV1 genes required for Lys63-linked polyubiquitination and distinct functions[J]. BMC Plant Biology, 2017, 17(1): 126. |
| [9] | Wang F, Deng M, Chen J, He Q, Jia X, Guo H, Xu J, Liu Y, Zhang S, Shou H, Mao C. CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice[J]. Plant Physiology, 2020, 183(1): 250-262. |
| [10] | Wang R, You X, Zhang C, Fang H, Wang M, Zhang F, Kang H, Xu X, Liu Z, Wang J, Zhao Q, Wang X, Hao Z, He F, Tao H, Wang D, Wang J, Fang L, Qin M, Zhao T, Zhang P, Xing H, Xiao Y, Liu W, Xie Q, Wang G L, Ning Y. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome[J]. Genome Biology, 2022, 23(1): 154. |
| [11] | Liu H, Liu S, Yu H, Huang X, Wang Y, Jiang L, Meng X, Liu G, Chen M, Jing Y, Yu F, Wang B, Li J. An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro[J]. Molecular Plant, 2022, 15(8): 1285-1299. |
| [12] | Swatek K N, Komander D. Ubiquitin modifications[J]. Cell Research, 2016, 26(4): 399-422. |
| [13] | Han Y, Zhang C, Sha H, Wang X, Yu Y, Liu J, Zhao G, Wang J, Qiu G, Xu X, Fang J. Ubiquitin-conjugating enzyme OsUBC11 affects the development of roots via auxin pathway[J]. Rice, 2023, 16(1): 9. |
| [14] | Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J, Bu Q, Fang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination[J]. Nature Communications, 2024, 15(1): 2211 |
| [15] | Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice[J]. The Plant Cell, 2023, 35(3): 1076-1091. |
| [16] | Zheng Y, Zhang S, Luo Y, Li F, Tan J, Wang B, Zhao Z, Lin H, Zhang T, Liu J, Liu X, Guo J, Xie X, Chen L, Liu Y G, Chu Z. Rice OsUBR7 modulates plant height by regulating histone H2B monoubiquitination and cell proliferation[J]. Plant Communications, 2022, 3(6): 100412. |
| [17] | Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice[J]. The Plant Journal, 2021, 106(3): 706-719. |
| [18] | Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation pesponses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115. |
| [19] | Cao Y, Yan Y, Zhang F, Wang H D, Gu M, Wu X N, Sun S B, Xu G H. Fine characterization of OsPHO2 knockout mutants reveals its key role in Pi utilization in rice[J]. Journal of Plant Physiology, 2014, 171(3-4): 340-348. |
| [20] | Hu B, Wang W, Deng K, Li H, Zhang Z, Zhang L, Chu C. MicroRNA399 is involved in multiple nutrient starvation responses in rice[J]. Frontiers in Plant Science, 2015, 6: 188. |
| [21] | Yamamoto T, Mori Y, Ishibashi T, Uchiyama Y, Sakaguchi N, Furukawa T, Hashimoto J, Kimura S, Sakaguchi K. Characterization of Rad 6 from a higher plant, rice (Oryza sativa L.) and its interaction with Sgt1, a subunit of the SCF ubiquitin ligase complex[J]. Biochemical and Biophysical Research Communications, 2004, 314(2): 434-439. |
| [22] | Zang G, Zou H, Zhang Y, Xiang Z, Huang J, Luo L, Wang C, Lei K, Li X, Song D, Din A U, Wang G. The de-etiolated 1 homolog of Arabidopsis modulates the ABA signaling pathway and ABA biosynthesis in rice[J]. Plant Physiology, 2016, 171(2): 1259-1276. |
| [23] | Kim B, Lee Y, Nam J Y, Lee G, Seo J, Lee D, Cho Y H, Kwon S W, Koh H J. Mutations in OsDET1, OsCOP10, and OsDDB1 confer embryonic lethality and alter flavonoid accumulation in rice (Oryza sativa L.) seed[J]. Frontiers in Plant Science, 2022, 13: 952856. |
| [24] | Wei Z, Zhang Y, Yuan Y, Li L, Li T, Guan Y, Wang D, Gao Y, Gao Q, Ji J, Nguyen T, Liu X. Ubiquitin-conjugated enzyme OsUBC16 negatively regulates grain size and grain weight in rice[J]. Journal of Plant Biology, 2024, 67(5): 409-418. |
| [25] | Xie Y, Fan Z, Liang X, Teng K, Huang Z, Huang M, Zhao H, Xu K, Li J. OsPUB9 modulates leaf angle and grain size through the brassinosteroid signaling pathway in rice[J]. The Plant Journal, 2025, 121(3): e17230. |
| [26] | Ma J, Wang Y, Ma X, Meng L, Jing R, Wang F, Wang S, Cheng Z, Zhang X, Jiang L, Wang J, Wang J, Zhao Z, Guo X, Lin Q, Wu F, Zhu S, Wu C, Ren Y, Lei C, Zhai H, Wan J. Disruption of gene SPL35 encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice[J]. Plant Biotechnology Journal, 2019, 17(8): 1679-1693. |
| [27] | Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E. EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b[J]. The Plant Journal, 2002, 30(4): 447-455. |
| [28] | Liu J, Nie B, Yu B, Xu F, Zhang Q, Wang Y, Xu W. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a[J]. Plant Biotechnology Journal, 2023, 21(8): 1590-1610. |
| [29] | Filipe O, De Vleesschauwer D, Haeck A, Demeestere K, Höfte M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice[J]. Scientific Reports, 2018, 8(1): 3864. |
| [30] | Cao Y, Lu M, Chen J, Li W, Wang M, Chen F. Identification of Ossnrk1a-1 regulated genes associated with rice immunity and seed set[J]. Plants, 2024, 13(5): 596. |
| [31] | Liu X, Song L, Zhang H, Lin Y, Shen X, Guo J, Su M, Shi G, Wang Z, Lu G D. Rice ubiquitin-conjugating enzyme OsUBC26 is essential for immunity to the blast fungus Magnaporthe oryzae[J]. Molecular Plant Pathology, 2021, 22(12): 1613-1623. |
| [32] | Phan H, Schläppi M. The RAD6-like ubiquitin conjugase gene OsUBC7 has a positive role in the early cold stress tolerance response of rice[J]. Genes, 2025, 16(1): 66. |
| [33] | Pathak B, Maurya C, Faria M C, Alizada Z, Nandy S, Zhao S, Jamsheer K M, Srivastava V. Targeting TOR and SnRK1 genes in rice with CRISPR/Cas9[J]. Plants, 2022, 11(11): 1453. |
| [34] | Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: A vital player of SUMO pathway in plants[J]. Physiology and Molecular Biology of Plants, 2021, 27(10): 2421-2431. |
| [35] | Joo J, Choi D H, Lee Y H, Seo H S, Song S I. The rice SUMO conjugating enzymes OsSCE1 and OsSCE3 have opposing effects on drought stress[J]. Journal of Plant Physiology, 2019, 240 : 152993. |
| [36] | Nurdiani D, Widyajayantie D, Nugroho S. OsSCE1 encoding SUMO E2-conjugating enzyme involves in drought stress response of Oryza sativa[J]. Rice Science, 2018, 25(2): 73-81. |
| [37] | Nigam N, Singh A, Sahi C, Chandramouli A, Grover A. SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: Genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response[J]. Molecular Genetics and Genomics, 2008, 279(4): 371-383. |
| [38] | Yuan X, Luan Y, Liu D, Wang J, Peng J, Zhao J, Li L, Su J, Xiao Y, Li Y, Ma X, Zhu X, Tan L, Liu F, Sun H, Gu P, Xu R, Zhang P, Zhu Z, Sun C, Fu Y, Zhang K. The SUMO-conjugating enzyme OsSCE1a from wild rice regulates the functional stay-green trait in rice[J]. Plant Biotechnology Journal, 2025, 23(2): 615-631. |
| [1] | 陶士博, 许娜, 徐正进, 刘畅, 徐铨. 水稻发芽期耐冷基因Cold6的克隆[J]. 中国水稻科学, 2025, 39(6): 751-759. |
| [2] | 陈伟, 叶元妹, 赵剑华, 冯志明, 陈宗祥, 胡珂鸣, 左示敏. 利用CRISPR/Cas9技术改良南粳46抽穗期[J]. 中国水稻科学, 2025, 39(6): 760-770. |
| [3] | 侯桂花, 周立国, 雷建国, 陈虹, 聂元元. 水稻OsRDR5基因功能及作用机制初步解析[J]. 中国水稻科学, 2025, 39(6): 779-788. |
| [4] | 陆帅, 陶涛, 刘冉, 周文玉, 曹蕾, 杨青青, 张明秋, 任鑫哲, 杨芝笛, 徐福祥, 环海东, 龚远航, 张皓程, 金素奎, 蔡秀玲, 高继平, 冷语佳. 水稻长护颖小粒突变体lsg8的表型鉴定与基因克隆[J]. 中国水稻科学, 2025, 39(6): 813-824. |
| [5] | 邓欢, 刘亚培, 王春连, 郭威, 陈析丰, 纪志远. 水稻抗白叶枯病新基因Xa49(t)的定位分析[J]. 中国水稻科学, 2025, 39(6): 825-831. |
| [6] | 郝雯倩, 蔡兴菁, 杨海东, 吴宇阳, 滕轩, 薛超, 龚志云. 不同类型组蛋白修饰在水稻响应非生物胁迫中的研究进展[J]. 中国水稻科学, 2025, 39(5): 575-585. |
| [7] | 王镜博, 苏畅, 冯晶, 姜思旭, 徐海, 崔志波, 赵明辉. 水稻OsAlR1基因耐铝性功能研究[J]. 中国水稻科学, 2025, 39(5): 615-623. |
| [8] | 韶也, 胡远艺, 彭彦, 毛毕刚, 刘慧敏, 唐婵娟, 雷斌, 唐丽, 余丽霞, 李文建, 罗武中, 罗治斌, 袁远涛, 李曜魁, 张丹, 周利斌, 柏连阳, 唐文帮, 赵炳然. 基于M1TDS靶向筛选技术的重离子束诱变定向改良杂交水稻卓两优1126性状的研究[J]. 中国水稻科学, 2025, 39(5): 624-634. |
| [9] | 徐群, 王珊, 袁筱萍, 金石桥, 晋芳, 郝万军, 吴小碧, 冯跃, 余汉勇, 孙燕飞, 杨窑龙, 魏兴华. 用于水稻品种真实性验证的SNP位点评价[J]. 中国水稻科学, 2025, 39(5): 635-642. |
| [10] | 张海鹏, 李莞意, 廖福兴, 马美子, 张洪程, 杨艳菊. 纳米钼对水稻根系形态生理和硝态氮吸收的影响[J]. 中国水稻科学, 2025, 39(5): 650-664. |
| [11] | 刘钰婷, 周星, 何辰延, 李秋萍, 艾小凤, 袁玉洁, 刘睿, 杨景文, 刘婷婷, 王丽, 程红, 黄蓉, 李奥运, 胡文, 胡忠, 任万军, 邓飞. 不同光照条件下减穴稳苗配置对水稻茎鞘干物质积累转运特性的影响[J]. 中国水稻科学, 2025, 39(5): 665-678. |
| [12] | 杨行洲, 崔苗苗, 魏利辉, 顾爱国, 李东霞, 乐秀虎, 冯辉. 外源miR3979处理水稻对拟禾本科根结线虫趋性、侵染和发育的影响[J]. 中国水稻科学, 2025, 39(5): 703-710. |
| [13] | 朱鹏, 凌溪铁, 王金彦, 张保龙, 杨郁文, 许轲, 裘实. 机直播条件下不同控草方式对抗除草剂水稻产量和品质差异性研究[J]. 中国水稻科学, 2025, 39(4): 501-515. |
| [14] | 董立强, 张义凯, 杨铁鑫, 冯莹莹, 马亮, 梁潇, 张玉屏, 李跃东. 北方粳稻密苗机插育秧对秧苗素质及取秧特性的影响[J]. 中国水稻科学, 2025, 39(4): 516-528. |
| [15] | 周洋, 叶凡, 刘立军. 典型促生微生物提高盐胁迫水稻抗性的研究进展[J]. 中国水稻科学, 2025, 39(4): 529-542. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||