中国水稻科学 ›› 2025, Vol. 39 ›› Issue (5): 665-678.DOI: 10.16819/j.1001-7216.2025.240904
刘钰婷1,#, 周星1,#, 何辰延1, 李秋萍1, 艾小凤1, 袁玉洁1, 刘睿1, 杨景文1, 刘婷婷1, 王丽1, 程红1, 黄蓉2, 李奥运2, 胡文2, 胡忠2, 任万军1,*(), 邓飞1,*(
)
收稿日期:
2024-09-09
修回日期:
2024-12-15
出版日期:
2025-09-10
发布日期:
2025-09-10
通讯作者:
*email: rwjun@126.com,作者简介:
第一联系人:#共同第一作者
基金资助:
LIU Yuting1,#, ZHOU Xing1,#, HE Chenyan1, LI Qiuping1, AI Xiaofeng1, YUAN Yujie1, LIU Rui1, YANG Jingwen1, LIU Tingting1, WANG Li1, CHENG Hong1, HUANG Rong2, LI Aoyun2, HU Wen2, HU Zhong2, REN Wanjun1,*(), DENG Fei1,*(
)
Received:
2024-09-09
Revised:
2024-12-15
Online:
2025-09-10
Published:
2025-09-10
About author:
First author contact:#These authors contributed equally to this work
摘要:
【目的】明确弱光胁迫下田间配置对茎鞘干物质积累转运特性的影响,为弱光稻区健康群体塑造技术的改良提供理论和实践依据。【方法】以宜香优2115为材料,于2021—2022年在四川省汉源县和温江区设置不同光照(自然光照和遮光50%)和田间配置(常规密植和减穴稳苗)试验,研究了不同光照条件下田间配置对水稻节间和叶鞘干物质积累转运特性的影响。【结果】1)除2022年温江生态点外,弱光胁迫导致成熟期水稻各节间和叶鞘干物量均不同程度降低,节间和叶鞘总干物量分别显著降低22.68%~30.12%和6.45%~15.64%,但显著增加了节间和叶鞘总干物质转运量、转运率和贡献率。2)与常规密植相比,减穴稳苗可有效增加不同光照条件下各时期节间(除2022年弱光胁迫下温江生态点外)与叶鞘总干物量,促进弱光胁迫下节间和叶鞘干物质的转运再利用,使温江和汉源生态点成熟期单穗重分别增加1.51%~6.03%和5.70%~10.37%。3)不同光照条件下,产量品质与干物质积累转运特性相关性差异明显。弱光胁迫下,节间干物质转运量、转运率和贡献率与产量正相关,与垩白粒率和垩白度极显著负相关。【结论】弱光胁迫下,水稻通过增强茎鞘,特别是节间干物质的转运再利用以维持穗部的物质供给,减穴稳苗则在提升抽穗前节间和叶鞘干物质积累的基础上,促进其抽穗后的转运以降低弱光胁迫对水稻产量和品质的不利影响。
刘钰婷, 周星, 何辰延, 李秋萍, 艾小凤, 袁玉洁, 刘睿, 杨景文, 刘婷婷, 王丽, 程红, 黄蓉, 李奥运, 胡文, 胡忠, 任万军, 邓飞. 不同光照条件下减穴稳苗配置对水稻茎鞘干物质积累转运特性的影响[J]. 中国水稻科学, 2025, 39(5): 665-678.
LIU Yuting, ZHOU Xing, HE Chenyan, LI Qiuping, AI Xiaofeng, YUAN Yujie, LIU Rui, YANG Jingwen, LIU Tingting, WANG Li, CHENG Hong, HUANG Rong, LI Aoyun, HU Wen, HU Zhong, REN Wanjun, DENG Fei. Effects of Reducing Hill Density While Maintaining Plant Population on Dry Matter Accumulation and Transport in Rice Stem and Sheath Under Different Light Conditions[J]. Chinese Journal OF Rice Science, 2025, 39(5): 665-678.
指标 Index | 温江 Wenjiang | 汉源 Hanyuan | |||
---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||
有机质Organic matter (g/kg) | 22.22 | 23.78 | 35.73 | 33.18 | |
全氮Total N content (g/kg) | 1.55 | 1.55 | 2.15 | 1.84 | |
全磷Total P content (g/kg) | 1.21 | 0.88 | 1.78 | 1.95 | |
全钾Total K content (g/kg) | 19.36 | 19.24 | 30.28 | 23.53 | |
碱解氮Available N (mg/kg) | 95.84 | 98.06 | 154.30 | 159.39 | |
速效磷Available P (mg/kg) | 59.08 | 55.05 | 231.40 | 235.05 | |
速效钾Available K (mg/kg) | 159.01 | 150.33 | 481.02 | 387.57 | |
日平均温度Daily mean temperature (℃) | 23.82 | 24.88 | 21.41 | 23.16 | |
降雨量Precipitation (mm) | 639.30 | 742.30 | 517.40 | 427.52 | |
总辐射Total radiation (MJ/m2) | 2207.05 | 1853.75 | 2778.72 | 3023.70 |
表1 两生态点试验田土壤理化性质和水稻季气象资料(2021—2022)
Table 1. Soil physicochemical properties and meteorological data during rice growth at two ecological sites(2021—2022)
指标 Index | 温江 Wenjiang | 汉源 Hanyuan | |||
---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||
有机质Organic matter (g/kg) | 22.22 | 23.78 | 35.73 | 33.18 | |
全氮Total N content (g/kg) | 1.55 | 1.55 | 2.15 | 1.84 | |
全磷Total P content (g/kg) | 1.21 | 0.88 | 1.78 | 1.95 | |
全钾Total K content (g/kg) | 19.36 | 19.24 | 30.28 | 23.53 | |
碱解氮Available N (mg/kg) | 95.84 | 98.06 | 154.30 | 159.39 | |
速效磷Available P (mg/kg) | 59.08 | 55.05 | 231.40 | 235.05 | |
速效钾Available K (mg/kg) | 159.01 | 150.33 | 481.02 | 387.57 | |
日平均温度Daily mean temperature (℃) | 23.82 | 24.88 | 21.41 | 23.16 | |
降雨量Precipitation (mm) | 639.30 | 742.30 | 517.40 | 427.52 | |
总辐射Total radiation (MJ/m2) | 2207.05 | 1853.75 | 2778.72 | 3023.70 |
图1 弱光胁迫下田间配置对水稻节间干物质量的影响 CK: 自然光照;SH: 遮光处理;CDP: 常规密植;RHMPP: 减穴稳苗;HS: 抽穗期;MS: 成熟期;不同大写字母表示全部节间(叶鞘)各处理间在5%水平下差异显著;不同小写字母表示各节间(叶鞘)处理间在5%水平下差异显著。下同。
Fig. 1. Effects of different field configurations on internode dry matter weight of rice under shading stress CK, Natural light; SH, Shade treatment; CDP, Conventional dense planting; RHMPP, Reducing hill density while maintaining plant population ; HS, Heading stage; MS, Mature stage; Different uppercase letters indicate significant difference among treatments for all internodes (leaf sheaths) as a whole at the 5% level; different lowercase letters indicate significant difference among treatments for individual internode (leaf sheath) at the 5% level. The same below.
图3 弱光胁迫下田间配置对水稻穗干物质量的影响 不同的小写字母表示各处理间在5%水平下差异显著。
Fig. 3. Effects of different field configurations on dry matter weight of panicle under shading stress Different lowercase letters indicate significant differences between treatments at the 5% level.
光照处理 Light treatment | 田间配置 Field configuration | 总转运量 Total transshipment (mg/internode) | 总转运率 Total transport rate (%) | 总贡献率 Total contribution rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | |||||
2021 | ||||||||||
对照CK | 常规密植CDP | 37.83 b | 149.67 c | 1.77 b | 9.05 c | 0.69 b | 3.27 c | |||
减穴稳苗RHMPP | 150.00 b | 132.67 c | 7.37 b | 6.85 c | 2.58 b | 2.68 c | ||||
遮光SH | 常规密植CDP | 571.33 a | 490.50 b | 29.53 a | 29.78 b | 12.53 a | 14.31 b | |||
减穴稳苗RHMPP | 588.33 a | 670.67 a | 29.18 a | 34.93 a | 12.56 a | 17.74 a | ||||
F值 F-value | 光照处理Light treatment(L) | 36.97** | 220.41** | 39.64** | 283.72** | 42.32** | 339.89** | |||
田间配置Field configuration(F) | 0.65 | 7.60* | 0.44 | 1.04 | 0.33 | 4.02 | ||||
光照处理×田间配置L×F | 0.36 | 11.09** | 0.57 | 6.45* | 0.31 | 8.10* | ||||
2022 | ||||||||||
对照CK | 常规密植CDP | 311.33 a | 127.17 b | 17.28 a | 7.43 b | 6.16 ab | 1.90 c | |||
减穴稳苗RHMPP | 360.85 a | −54.67 c | 19.00 a | −3.15 c | 6.73 a | −0.77 d | ||||
遮光SH | 常规密植CDP | 26.73 c | 486.17 a | 1.46 c | 28.43 a | 0.63 c | 8.53 a | |||
减穴稳苗RHMPP | 229.98 b | 457.17 a | 12.11 b | 26.35 a | 5.25 b | 7.31 b | ||||
F值 F-value | 光照处理Light treatment (L) | 121.80** | 522.42** | 129.86** | 570.99** | 65.39** | 712.59** | |||
田间配置Field configuration (F) | 45.08** | 30.62** | 38.54** | 35.84** | 35.95** | 49.94** | ||||
光照处理×田间配置L×F | 16.68** | 16.09** | 20.05** | 16.17** | 21.94** | 6.83* |
表2 弱光胁迫下田间配置对水稻节间干物质转运特性的影响
Table 2. Effects of field configuration on rice internode dry matter transport under low light stress
光照处理 Light treatment | 田间配置 Field configuration | 总转运量 Total transshipment (mg/internode) | 总转运率 Total transport rate (%) | 总贡献率 Total contribution rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | |||||
2021 | ||||||||||
对照CK | 常规密植CDP | 37.83 b | 149.67 c | 1.77 b | 9.05 c | 0.69 b | 3.27 c | |||
减穴稳苗RHMPP | 150.00 b | 132.67 c | 7.37 b | 6.85 c | 2.58 b | 2.68 c | ||||
遮光SH | 常规密植CDP | 571.33 a | 490.50 b | 29.53 a | 29.78 b | 12.53 a | 14.31 b | |||
减穴稳苗RHMPP | 588.33 a | 670.67 a | 29.18 a | 34.93 a | 12.56 a | 17.74 a | ||||
F值 F-value | 光照处理Light treatment(L) | 36.97** | 220.41** | 39.64** | 283.72** | 42.32** | 339.89** | |||
田间配置Field configuration(F) | 0.65 | 7.60* | 0.44 | 1.04 | 0.33 | 4.02 | ||||
光照处理×田间配置L×F | 0.36 | 11.09** | 0.57 | 6.45* | 0.31 | 8.10* | ||||
2022 | ||||||||||
对照CK | 常规密植CDP | 311.33 a | 127.17 b | 17.28 a | 7.43 b | 6.16 ab | 1.90 c | |||
减穴稳苗RHMPP | 360.85 a | −54.67 c | 19.00 a | −3.15 c | 6.73 a | −0.77 d | ||||
遮光SH | 常规密植CDP | 26.73 c | 486.17 a | 1.46 c | 28.43 a | 0.63 c | 8.53 a | |||
减穴稳苗RHMPP | 229.98 b | 457.17 a | 12.11 b | 26.35 a | 5.25 b | 7.31 b | ||||
F值 F-value | 光照处理Light treatment (L) | 121.80** | 522.42** | 129.86** | 570.99** | 65.39** | 712.59** | |||
田间配置Field configuration (F) | 45.08** | 30.62** | 38.54** | 35.84** | 35.95** | 49.94** | ||||
光照处理×田间配置L×F | 16.68** | 16.09** | 20.05** | 16.17** | 21.94** | 6.83* |
光照处理 Light treatment | 田间配置 Field configuration | 总转运量 Total transportation (mg/sheath) | 总转运率 Total transport rate(%) | 总贡献率 Total contribution rate(%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | |||||
2021 | ||||||||||
对照CK | 常规密植CDP | 388.17 a | 519.67 c | 18.33 a | 29.67 c | 6.95 a | 11.39 c | |||
减穴稳苗RHMPP | 427.17 a | 566.83 bc | 19.53 a | 28.77 c | 7.34 a | 11.44 c | ||||
遮光SH | 常规密植CDP | 573.83 a | 599.17 b | 27.04 a | 34.21 b | 12.56 a | 17.50 b | |||
减穴稳苗RHMPP | 556.00 a | 786.00 a | 25.55 a | 39.92 a | 11.87 a | 20.78 a | ||||
F值 F-value | 光照处理Light treatment (L) | 3.91 | 61.85** | 5.05 | 97.06** | 9.65* | 434.63** | |||
田间配置Field configuration (F) | 0.02 | 37.97** | 0.00 | 9.14* | 0.01 | 20.19** | ||||
光照处理×田间配置L×F | 0.13 | 13.53** | 0.17 | 17.20** | 0.11 | 18.96** | ||||
2022 | ||||||||||
对照CK | 常规密植CDP | 577.82 b | 361.33 c | 26.44 a | 17.84 c | 11.42 a | 5.38 b | |||
减穴稳苗RHMPP | 643.42 a | 361.33 c | 27.38 a | 17.02 c | 11.99 a | 5.09 b | ||||
遮光SH | 常规密植CDP | 468.88 c | 525.00 b | 21.46 b | 25.93 b | 11.11 a | 9.21 a | |||
减穴稳苗RHMPP | 499.55 c | 627.17 a | 21.26 b | 29.55 a | 11.41 a | 10.03 a | ||||
F值 F-value | 光照处理Light treatment (L) | 58.14** | 143.35** | 69.90** | 205.24** | 1.78 | 302.52** | |||
田间配置Field configuration (F) | 8.43* | 8.11* | 0.31 | 3.79 | 1.69 | 1.08 | ||||
光照处理×田间配置L×F | 1.11 | 8.11* | 0.73 | 9.53* | 0.18 | 4.79 |
表3 弱光胁迫下田间配置对水稻叶鞘干物质转运特性的影响
Table 3. Effects of field configuration on rice leaf sheath dry matter transport under low light stress
光照处理 Light treatment | 田间配置 Field configuration | 总转运量 Total transportation (mg/sheath) | 总转运率 Total transport rate(%) | 总贡献率 Total contribution rate(%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | 温江 Wenjiang | 汉源 Hanyuan | |||||
2021 | ||||||||||
对照CK | 常规密植CDP | 388.17 a | 519.67 c | 18.33 a | 29.67 c | 6.95 a | 11.39 c | |||
减穴稳苗RHMPP | 427.17 a | 566.83 bc | 19.53 a | 28.77 c | 7.34 a | 11.44 c | ||||
遮光SH | 常规密植CDP | 573.83 a | 599.17 b | 27.04 a | 34.21 b | 12.56 a | 17.50 b | |||
减穴稳苗RHMPP | 556.00 a | 786.00 a | 25.55 a | 39.92 a | 11.87 a | 20.78 a | ||||
F值 F-value | 光照处理Light treatment (L) | 3.91 | 61.85** | 5.05 | 97.06** | 9.65* | 434.63** | |||
田间配置Field configuration (F) | 0.02 | 37.97** | 0.00 | 9.14* | 0.01 | 20.19** | ||||
光照处理×田间配置L×F | 0.13 | 13.53** | 0.17 | 17.20** | 0.11 | 18.96** | ||||
2022 | ||||||||||
对照CK | 常规密植CDP | 577.82 b | 361.33 c | 26.44 a | 17.84 c | 11.42 a | 5.38 b | |||
减穴稳苗RHMPP | 643.42 a | 361.33 c | 27.38 a | 17.02 c | 11.99 a | 5.09 b | ||||
遮光SH | 常规密植CDP | 468.88 c | 525.00 b | 21.46 b | 25.93 b | 11.11 a | 9.21 a | |||
减穴稳苗RHMPP | 499.55 c | 627.17 a | 21.26 b | 29.55 a | 11.41 a | 10.03 a | ||||
F值 F-value | 光照处理Light treatment (L) | 58.14** | 143.35** | 69.90** | 205.24** | 1.78 | 302.52** | |||
田间配置Field configuration (F) | 8.43* | 8.11* | 0.31 | 3.79 | 1.69 | 1.08 | ||||
光照处理×田间配置L×F | 1.11 | 8.11* | 0.73 | 9.53* | 0.18 | 4.79 |
光照处理 Light treatment | 指标 Index | 有效穗数 Panicle number (×104 /hm2) | 每穗颖花数 Spikelets per panicle | 结实率 Seed-setting rate(%) | 千粒重 1000-grain weight(g) | 产量 Grain yield (t/hm2) |
---|---|---|---|---|---|---|
对照处理 CK | 抽穗期节间干物质量 Internode dry matter weight at heading stage | −0.56** | −0.18 | −0.46* | 0.59** | −0.60** |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | −0.87** | 0.28 | −0.44* | 0.51* | −0.58** | |
成熟期节间干物质量 Internode dry matter weight at maturity | −0.10 | −0.02 | −0.08 | 0.40 | −0.03 | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | −0.73** | 0.42* | −0.32 | 0.54** | −0.30 | |
节间干物质转运量 Internode dry matter remobilization amount | −0.37 | −0.14 | −0.31 | 0.06 | −0.50* | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | −0.11 | −0.25 | −0.13 | −0.10 | −0.36 | |
节间干物质转运率 Internode stored dry matter remobilization rate | −0.33 | −0.15 | −0.29 | 0.02 | −0.47* | |
叶鞘干物质转运率 Sheath stored dry matter remobilization rate | 0.22 | −0.36 | 0.04 | −0.29 | −0.14 | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | −0.34 | −0.15 | −0.30 | 0.03 | −0.49* | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | 0.03 | −0.39 | −0.14 | −0.16 | −0.35 | |
遮光处理 SH | 抽穗期节间干物质量 Internode dry matter weight at heading stage | −0.62** | −0.49* | −0.41* | 0.69** | −0.63** |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | −0.89** | 0.11 | −0.49* | 0.67** | −0.57** | |
成熟期节间干物质量 Internode dry matter weight at maturity | −0.84** | −0.05 | −0.72** | 0.64** | −0.77** | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | −0.91** | 0.19 | −0.67** | 0.68** | −0.61** | |
节间干物质转运量 Internode dry matter remobilization amount | 0.48* | −0.24 | 0.50* | −0.24 | 0.41* | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | 0.51* | −0.24 | 0.63** | −0.39 | 0.39 | |
节间干物质转运率 Internode stored dry matter remobilization rate | 0.61** | −0.16 | 0.58** | −0.37 | 0.54** | |
叶鞘干物质转运率 Sheath stored dry matter remobilization rate | 0.75** | −0.26 | 0.70** | −0.57** | 0.51* | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | 0.55** | −0.47* | 0.45* | −0.26 | 0.28 | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | 0.51* | −0.59** | 0.37 | −0.29 | 0.07 |
表4 水稻茎鞘干物质积累转运特性与产量的相关性
Table 4. Correlation coefficients between dry matter accumulation and dry matter transport of rice stem sheath and yield
光照处理 Light treatment | 指标 Index | 有效穗数 Panicle number (×104 /hm2) | 每穗颖花数 Spikelets per panicle | 结实率 Seed-setting rate(%) | 千粒重 1000-grain weight(g) | 产量 Grain yield (t/hm2) |
---|---|---|---|---|---|---|
对照处理 CK | 抽穗期节间干物质量 Internode dry matter weight at heading stage | −0.56** | −0.18 | −0.46* | 0.59** | −0.60** |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | −0.87** | 0.28 | −0.44* | 0.51* | −0.58** | |
成熟期节间干物质量 Internode dry matter weight at maturity | −0.10 | −0.02 | −0.08 | 0.40 | −0.03 | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | −0.73** | 0.42* | −0.32 | 0.54** | −0.30 | |
节间干物质转运量 Internode dry matter remobilization amount | −0.37 | −0.14 | −0.31 | 0.06 | −0.50* | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | −0.11 | −0.25 | −0.13 | −0.10 | −0.36 | |
节间干物质转运率 Internode stored dry matter remobilization rate | −0.33 | −0.15 | −0.29 | 0.02 | −0.47* | |
叶鞘干物质转运率 Sheath stored dry matter remobilization rate | 0.22 | −0.36 | 0.04 | −0.29 | −0.14 | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | −0.34 | −0.15 | −0.30 | 0.03 | −0.49* | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | 0.03 | −0.39 | −0.14 | −0.16 | −0.35 | |
遮光处理 SH | 抽穗期节间干物质量 Internode dry matter weight at heading stage | −0.62** | −0.49* | −0.41* | 0.69** | −0.63** |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | −0.89** | 0.11 | −0.49* | 0.67** | −0.57** | |
成熟期节间干物质量 Internode dry matter weight at maturity | −0.84** | −0.05 | −0.72** | 0.64** | −0.77** | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | −0.91** | 0.19 | −0.67** | 0.68** | −0.61** | |
节间干物质转运量 Internode dry matter remobilization amount | 0.48* | −0.24 | 0.50* | −0.24 | 0.41* | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | 0.51* | −0.24 | 0.63** | −0.39 | 0.39 | |
节间干物质转运率 Internode stored dry matter remobilization rate | 0.61** | −0.16 | 0.58** | −0.37 | 0.54** | |
叶鞘干物质转运率 Sheath stored dry matter remobilization rate | 0.75** | −0.26 | 0.70** | −0.57** | 0.51* | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | 0.55** | −0.47* | 0.45* | −0.26 | 0.28 | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | 0.51* | −0.59** | 0.37 | −0.29 | 0.07 |
光照处理 Light treatment | 指标 Index | 精米率 Milled rice rate(%) | 整精米率 Head rice rate (%) | 垩白粒率 Chalky rice rate(%) | 垩白度 Chalkiness degree(%) |
---|---|---|---|---|---|
对照处理 CK | 抽穗期节间干物质量 Internode dry matter weight at heading stage | 0.27 | 0.20 | −0.20 | −0.25 |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | −0.26 | −0.01 | 0.40 | 0.43* | |
成熟期节间干物质量 Internode dry matter weight at maturity | 0.68** | 0.76** | −0.76** | −0.76** | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | 0.01 | 0.46* | −0.04 | 0.05 | |
节间干物质转运量 Internode dry matter remobilization amount | −0.55** | −0.71** | 0.71** | 0.66** | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | −0.37 | −0.70** | 0.60** | 0.53** | |
节间干物质转运率 Internode stored dry matter remobilization rate | −0.58** | −0.74** | 0.73** | 0.68** | |
叶鞘干物质转运率 Remobilization rate of sheath stored dry matter | −0.28 | −0.72** | 0.46* | 0.36 | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | −0.57** | −0.78** | 0.74** | 0.68** | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | −0.32 | −0.79** | 0.56** | 0.46* | |
遮光处理 SH | 抽穗期节间干物质量 Internode dry matter weight at heading stage | 0.68** | 0.62** | −0.38 | −0.68** |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | 0.05 | 0.22 | 0.20 | −0.04 | |
成熟期节间干物质量 Internode dry matter weight at maturity | 0.05 | −0.11 | 0.56** | 0.23 | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | −0.09 | 0.13 | 0.30 | 0.09 | |
节间干物质转运量 Internode dry matter remobilization amount | 0.36 | 0.48* | −0.80** | −0.64** | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | 0.28 | 0.09 | −0.32 | −0.26 | |
节间干物质转运率 Internode stored dry matter remobilization rate | 0.25 | 0.38 | −0.76** | −0.54** | |
叶鞘干物质转运率 Sheath stored dry matter remobilization rate | 0.21 | −0.06 | −0.30 | −0.17 | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | 0.46* | 0.28 | −0.64** | −0.57** | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | 0.40 | −0.20 | −0.08 | −0.16 |
表5 水稻茎鞘干物质积累转运特性与品质的相关性
Table 5. Correlation coefficient between dry matter accumulation and dry matter transport of rice stem and sheath and quality
光照处理 Light treatment | 指标 Index | 精米率 Milled rice rate(%) | 整精米率 Head rice rate (%) | 垩白粒率 Chalky rice rate(%) | 垩白度 Chalkiness degree(%) |
---|---|---|---|---|---|
对照处理 CK | 抽穗期节间干物质量 Internode dry matter weight at heading stage | 0.27 | 0.20 | −0.20 | −0.25 |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | −0.26 | −0.01 | 0.40 | 0.43* | |
成熟期节间干物质量 Internode dry matter weight at maturity | 0.68** | 0.76** | −0.76** | −0.76** | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | 0.01 | 0.46* | −0.04 | 0.05 | |
节间干物质转运量 Internode dry matter remobilization amount | −0.55** | −0.71** | 0.71** | 0.66** | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | −0.37 | −0.70** | 0.60** | 0.53** | |
节间干物质转运率 Internode stored dry matter remobilization rate | −0.58** | −0.74** | 0.73** | 0.68** | |
叶鞘干物质转运率 Remobilization rate of sheath stored dry matter | −0.28 | −0.72** | 0.46* | 0.36 | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | −0.57** | −0.78** | 0.74** | 0.68** | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | −0.32 | −0.79** | 0.56** | 0.46* | |
遮光处理 SH | 抽穗期节间干物质量 Internode dry matter weight at heading stage | 0.68** | 0.62** | −0.38 | −0.68** |
抽穗期叶鞘干物质量 Sheath dry matter weight at heading stage | 0.05 | 0.22 | 0.20 | −0.04 | |
成熟期节间干物质量 Internode dry matter weight at maturity | 0.05 | −0.11 | 0.56** | 0.23 | |
成熟期叶鞘干物质量 Sheath dry matter weight at maturity | −0.09 | 0.13 | 0.30 | 0.09 | |
节间干物质转运量 Internode dry matter remobilization amount | 0.36 | 0.48* | −0.80** | −0.64** | |
叶鞘干物质转运量 Sheath dry matter remobilization amount | 0.28 | 0.09 | −0.32 | −0.26 | |
节间干物质转运率 Internode stored dry matter remobilization rate | 0.25 | 0.38 | −0.76** | −0.54** | |
叶鞘干物质转运率 Sheath stored dry matter remobilization rate | 0.21 | −0.06 | −0.30 | −0.17 | |
节间干物质贡献率 Contribution rate of internode remobilized dry matter | 0.46* | 0.28 | −0.64** | −0.57** | |
叶鞘干物质贡献率 Contribution rate of sheath remobilized dry matter | 0.40 | −0.20 | −0.08 | −0.16 |
[1] | 周星, 李博, 朱莜芸, 李秋萍, 何辰延, 袁玉洁, 黄小凡, 何宇欣, 王丽, 程红, 任万军, 邓飞. 齐穗后弱光胁迫对杂交籼稻节间非结构性碳水化合物积累转运的影响[J]. 中国生态农业学报(中英文), 2022, 30(10): 1610-1619. |
Zhou X, Li B, Zhu Y Y, Li Q P, He C Y, Yuan Y J, Huang X F, He Y X, Wang L, Cheng H, Ren W J, Deng F. Effects of shading stress after heading on the accumulation and remobilization characteristics of non-structural carbohydrates in internodes of indica hybrid rice[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1610-1619. (in Chinese with English abstract) | |
[2] | 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报, 2018, 44(4): 554-568. |
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice[J]. Acta Agronomica Sinica, 2018, 44(4): 554-568. (in Chinese with English abstract) | |
[3] | 王振洋, 王冀川, 袁杰, 王奉斌. 不同肥密措施对南疆水稻抗倒伏及干物质生产特性和产量的影响[J]. 中国稻米, 2024, 30(1): 101-107. |
Wang Z Y, Wang J C, Yuan J, Wang F B. Effects of nitrogen application rate and planting density on lodging-resistance, dry matter production and yield of rice in southern Xinjiang[J]. China Rice, 2024, 30(1): 101-107. (in Chinese with English abstract) | |
[4] | Zhang J, Zhang Y Y, Song N Y, Chen Q L, Sun H Z, Peng T, Huang S, Zhao Q Z. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application[J]. Journal of Integrative Agriculture, 2021, 20(6): 1465-1473. |
[5] | Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice[J]. Field Crops Research, 2011, 123(2): 170-182. |
[6] | 孙琪, 耿艳秋, 金峰, 刘丽新, 郑浣彤, 郭丽颖, 邵玺文. 播期对直播水稻产量、花后各器官干物质和氮素积累及转运的影响[J]. 作物杂志, 2020(5): 119-126. |
Sun Q, Geng Y Q, Jin F, Liu L X, Zheng H T, Guo L Y, Shao X W. Effects of sowing dates on yield, dry matter and nitrogen accumulation and translocationin organs after anthesis of direct seeding rice[J]. Crops, 2020(5): 119-126. (in Chinese with English abstract) | |
[7] | Deng F, Wang L, Mei X F, Li S X, Pu S L, Ren W J. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice[J]. Crop Science, 2016, 56(6): 3272-3285. |
[8] | 李冲, 王学春, 杨国涛, 陈虹, 赵祥, 王汝丹, 黄苗, 彭友林, 陈永军, 胡运高. 杂交水稻产量及稻米品质对弱光胁迫的响应[J]. 应用与环境生物学报, 2022, 28(6): 1415-1421. |
Li C, Wang X C, Yang G T, Chen H, Zhao X, Wang R D, Huang M, Peng Y L, Chen Y J, Hu Y G. Response of the grain yield and quality of hybrid rice to weak light stress[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(6): 1415-1421. (in Chinese with English abstract) | |
[9] | Li Y Z, Liang L X, Fu X M, Gao Z F, Liu H C, Tan J T, Potcho M P, Pan S G, Tian H, Duan M Y, Tang X R, Mo Z W. Light and water treatment during the early grain filling stage regulates yield and aroma formation in aromatic rice[J]. Scientific Reports, 2020, 10(1): 14830. |
[10] | 任万军, 杨文钰, 樊高琼, 朱雪梅, 马周华, 徐精文. 始穗后弱光对水稻干物质积累与产量的影响[J]. 四川农业大学学报, 2003, 21(4): 292-296. |
Ren W J, Yang W Y, Fan G Q, Zhu X M, Ma Z H, Xu J W. Effect of low light on dry matter accumulation and yield of rice[J]. Journal of Sichuan Agricultural University, 2003, 21(4): 292-296. (in Chinese with English abstract) | |
[11] | Wang L, Deng F, Ren W J. Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period[J]. Field Crops Research, 2015, 180: 54-62. |
[12] | Deng F, Li Q P, Chen H, Zeng Y L, Li B, Zhong X Y, Wang L, Ren W J. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage[J]. Carbohydrate Polymers, 2021, 252: 117212. |
[13] | 邓飞, 王丽, 姚雄, 王建军, 任万军, 杨文钰. 不同生育阶段遮阴对水稻籽粒充实和产量的影响[J]. 四川农业大学学报, 2009, 27(3): 265-269. |
Deng F, Wang L, Yao X, Wang J J, Ren W J, Yang W Y. Effects of different-growing-stage shading on rice grain-filling and yield[J]. Journal of Sichuan Agricultural University, 2009, 27(3): 265-269. (in Chinese with English abstract) | |
[14] | 朱莜芸, 曾玉玲, 李博, 袁玉洁, 周星, 李秋萍, 何辰延, 陈勇, 王丽, 程红, 周伟, 陶有凤, 雷小龙, 任万军, 邓飞. 花后弱光胁迫对成都平原籼稻米饭食味品质的影响[J]. 中国农业科学, 2023, 56(3): 430-440. |
Zhu Y Y, Ceng Y L, Li B, Yuan Y J, Zhou X, Li Q P, He C Y, Chen Y, Wang L, Cheng H, Zhou W, Tao Y F, Lei X L, Ren W J, Deng F. Effect of post-anthesis shading stress on eating quality of indica rice in Chengdu Plain[J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440. (in Chinese with English abstract) | |
[15] | 梁成刚, 汪燕, 何加林, 刘佳, 许光利, 刘晓亮, 李天. 栽培技术对水稻单位面积产量的权重研究[J]. 中国农学通报, 2013, 29(6): 142-147. |
Liang C G, Wang Y, He J L, Liu J, Xu G L, Liu X L, Li T. Research on the weight of cultivation techniques to rice yield per unit area[J]. Chinese Agricultural Science Bulletin, 2013, 29(6): 142-147. (in Chinese with English abstract) | |
[16] | Song S K, He A B, Zhao T C, Yin Q, Mu Y X, Wang Y D, Liu H Y, Nie L X, Peng S B. Effects of shading at different growth stages with various shading intensities on the grain yield and anthocyanin content of colored rice (Oryza sativa L.)[J]. Field Crops Research, 2022, 283: 108555. |
[17] | Wei H H, Ge J L, Zhang X B, Zhu W, Deng F, Ren W J, Chen Y L, Meng T Y, Dai Q G. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. Journal of Integrative Agriculture, 2023, 22(7): 2041-2053. |
[18] | Xie W J, Li Y H, Li Y Z, Ma L, Ashraf U, Tang X R, Pan S G, Tian H, Mo Z W. Application of γ-aminobutyric acid under low light conditions: Effects on yield, aroma, element status, and physiological attributes of fragrant rice[J]. Ecotoxicology and Environmental Safety, 2021, 213: 111941. |
[19] | 陶有凤, 蒲石林, 周伟, 邓飞, 钟晓媛, 秦琴, 任万军. 西南弱光地区机插杂交籼稻“减穴稳苗”栽培的群体冠层质量特征[J]. 中国农业科学, 2021, 54(23): 4969-4983. |
Tao Y F, Pu S L, Zhou W, Deng F, Zhong X Y, Qin Q, Ren W J. Canopy population quality characteristics of mechanical transplanting hybrid indica rice with “reducing hills and stabilizing basic-seedlings” in low-light region of southwest china[J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983. (in Chinese with English abstract) | |
[20] | 蒲石林, 邓飞, 胡慧, 钟晓媛, 王丽, 李武, 李书先, 廖爽, 任万军. 杂交稻不同机插穴距及苗数配置对干物质生产与产量的影响[J]. 浙江大学学报: 农业与生命科学版, 2018, 44(1): 21-30. |
Pu S L, Deng F, Hu H, Zhong X Y, Wang L, Li W, Li S X, Liao S, Ren W J. Effects of different hill spacings and seedling numbers per hill on dry matter production and yield of machine-transplanting hybrid rice[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2018, 44(1): 21-30. (in Chinese with English abstract) | |
[21] | 李博, 袁玉洁, 何辰延, 周星, 李秋萍, 朱莜芸, 何宇欣, 黄小凡, 艾小凤, 陈勇, 周伟, 程红, 王丽, 肖洪, 任万军, 邓飞. “减穴稳苗”田间配置对西南稻区水稻冠层结构和光能分布的影响[J]. 四川农业大学学报, 2023, 41(2): 266-274. |
Li B, Yuan Y J, He C Y, Zhou X, Li Q P, Zhu Y Y, He Y X, Huang X F, Ai X F, Chen Y, Zhou W, Cheng H, Wang L, Xiao H, Ren W J, Deng F. Effects of field configuration of ′increasing the number of seedlings per hill with reduced number of hills′ on rice canopy structure and light energy distribution characteristics of indica hybrid rice in the southwest china[J]. Journal of Sichuan Agricultural University, 2023, 41(2): 266-274. (in Chinese with English abstract) | |
[22] | 郭保卫, 朱聪聪, 朱大伟, 张洪程, 江峰, 葛梦婕. 钵苗机插密度对不同类型水稻齐穗期株型及冠层微环境的影响[J]. 生态学杂志, 2015, 34(1): 9-17. |
Guo B W, Zhu C C, Zhu D W, Zhang H C, Jiang F, Ge M J. Effects of planting density on plant form and micrometeorology in different types of rice with potted seedlings by mechanical-transplanting method[J]. Chinese Journal of Ecology, 2015, 34(1): 9-17. (in Chinese with English abstract) | |
[23] | Deng F, Li B, Yuan Y J, He C Y, Zhou X, Li Q P, Zhu Y Y, Huang X F, He Y X, Ai X F, Tao Y F, Zhou W, Wang L, Cheng H, Chen Y, Wang M T, Ren W J. Increasing the number of seedlings per hill with reduced number of hills improves rice grain quality by optimizing canopy structure and light utilization under shading stress[J]. Field Crops Research, 2022, 287: 108668. |
[24] | 潘胜才, 陈余波, 简叙, 卢沙沙, 秦建权. 光照、氮素对杂交水稻干物质积累、分配和产量形成的影响[J]. 作物研究, 2024, 38(1): 1-9. |
Pan S C, Chen Y B, Jian X, Lu S S, Qin J Q. Effects of photo and nitrogen on yield, yield composition, dry matter accumulation and distribution of hybrid rice[J]. Crop Research, 2024, 38(1): 1-9. (in Chinese with English abstract) | |
[25] | 周驰燕, 李国辉, 许轲, 郭保卫, 戴其根, 霍中洋, 魏海燕, 张洪程. 水稻茎鞘非结构性碳水化合物转运机理及栽培调控研究进展[J]. 生命科学, 2021, 33(1): 111-120. |
Zhou C Y, Li G H, Xu K, Guo B W, Dai Q G, Huo Z Y, Wei H Y, Zhang H C. Advances in translocation mechanism and cultivation regulation of nonstructural carbohydrate in rice stem and sheath[J]. Chinese Bulletin of Life Sciences, 2021, 33(1): 111-120. (in Chinese with English abstract) | |
[26] | 魏凤桐, 陶洪斌, 王璞. 旱稻297非结构性碳水化合物的生产与产量构成因子的关系[J]. 作物学报, 2010, 36(12): 2135-2142. |
Wei F T, Tao H B, Wang P. Relationship of non-structure carbohydrate production and yield components of aerobic rice,handao 297[J]. Acta Agronomica Sinica, 2010, 36(12): 2135-2142. (in Chinese with English abstract) | |
[27] | 蒋钰东, 罗俊涛, 何茹薇, 杨扬, 何兴材, 付均, 郑军, 曾正明. 杂交稻德优系列品种齐穗后干物质积累、转运与产量和品质的关系[J]. 农业科技通讯, 2023(11): 52-55. |
Jiang Y D, Luo J T, He R W, Yang Y, He X C, Fu J, Zheng J, Ceng Z M. Relationship between dry matter accumulation and translocation and yield and quality of hybrid rice deyou series varieties after spike flushes[J]. Bulletin of Agricultural Science and Technology, 2023(11): 52-55. (in Chinese with English abstract) | |
[28] | 王振昌, 郭相平, 杨静晗, 陈盛, 黄双双, 王甫, 邱让建, 刘春伟, 操信春, 朱建彬, 高雅娴. 旱涝交替胁迫对水稻干物质生产分配及倒伏性状的影响[J]. 农业工程学报, 2016, 32(24): 114-123. |
Wang Z C, Guo X P, Yang J H, Chen S, Huang S S, Wang F, Qiu R J, Liu C W, Cao X C, Zhu J B, Gao Y X. Effect of alternate flooding and drought stress on biomass production, distribution and lodging characteristic of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 114-123. (in Chinese with English abstract) | |
[29] | 侯红燕, 董晓亮, 周红, 张茂林, 魏立兴, 朱德峰. 滨海盐碱地不同氮肥用量对水稻干物质转运及稻米品质的影响[J]. 中国稻米, 2021, 27(1): 27-31. |
Hou H Y, Dong X L, Zhou H, Zhang M L, Wei L X, Zhu D F. Effects of different nitrogen application rates on dry matter transport characteristics and quality of rice in coastal saline alkali land[J]. China Rice, 2021, 27(1): 27-31. (in Chinese with English abstract) | |
[30] | 谢裕林, 于雅洁, 董明辉, 张文地, 江贻. 茎鞘非结构性碳水化合物积累运转与稻米品质对播期和行距配置的响应[J]. 江苏农业科学, 2022, 50(8): 93-100. |
Xie Y L, Yu Y J, Dong M H, Zhang W D, Jiang Y. Response of non-structural carbohydrates accumulation operation and rice quality to sowing date and row spacing configuration[J]. Jiangsu Agricultural Sciences, 2022, 50(8): 93-100. (in Chinese with English abstract) | |
[31] | Deng F, Wang L, Pu S L, Mei X F, Li S X, Li Q P, Ren W J. Shading stress increases chalkiness by postponing caryopsis development and disturbing starch characteristics of rice grains[J]. Agricultural and Forest Meteorology, 2018, 263: 49-58. |
[32] | Liu K, Yang R, Lu J, Wang X Y, Lu B L, Tian X H, Zhang Y B. Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage[J]. Agronomy Journal, 2019, 111(4): 1788-1798. |
[33] | 李刘龙, 库旭灿, 李赟, 王小燕. 花后弱光对江汉平原稻茬小麦的产量及碳、氮分配效应的影响[J]. 麦类作物学报, 2020, 40(11): 1364-1374. |
Li L L, Ku X C, Li Y, Wang X Y. Effect of shading after anthesis on yield and distribution of carbon and nitrogen of rice stubble wheat in Jianghan Plain[J]. Journal of Triticeae Crops, 2020, 40(11): 1364-1374. (in Chinese with English abstract) | |
[34] | 王志敏, 王树安, 苏宝林. 小麦穗粒数的调节: Ⅱ.开花前遮光对穗碳水化合物代谢和内源激素水平的影响[J]. 华北农学报, 1997(4): 43-48. |
Wang Z M, Wang S A, Su B L. Regulation of grain number in wheat spikes:Ⅱ. Effects of pre-flowering shading on spike carbohydrate metabolism and endogenous hormone levels[J]. Acta Agriculturae Boreali-Sinica, 1997(4): 43-48. (in Chinese with English abstract) | |
[35] | Li H W, Cai J, Jiang D, Liu F L, Dai T, Cao W. Carbohydrates accumulation and remobilization in wheat plants as influenced by combined waterlogging and shading stress during grain filling[J]. Journal of Agronomy and Crop Science, 2013, 199(1): 38-48. |
[36] | 杨军, 章毅之, 张方亮, 段里成, 邹琳, 王尚明, 李迎春, 田俊, 刘丹, 张清霞, 吴风雨. 灌浆期高温对早稻光合性能和产量品质的影响[J]. 中国生态农业学报: 中英文, 2025, 33(1): 80-94. |
Yang J, Zhang Y Z, Zhang F L, Duan L C, Zou L, Wang S M, Li Y C, Tian J, Liu D, Zhang Q X, Wu F Y. Effects of high-temperature during the grain-filling stage on photosynthetic performance, yield and quality of early rice[J]. Chinese Journal of Eco-Agriculture, 2025, 33(1): 80-94. (in Chinese with English abstract) | |
[37] | 孟祥凤, 杨蕾, 韩缤莹, 吴晨悦, 帅鑫阳, 顾洋帆, 徐一凡, 周蓉, 曹云英. 种植方式对水稻产量及品质的影响[J]. 耕作与栽培, 2024, 44(1): 1-6. |
Meng X F, Yang L, Han B Y, Wu C Y, Shuai X Y, Gu Y F, Xu Y F, Zhou R, Cao Y Y. Effects of planting methods on rice yield and quality[J]. Tillage and Cultivation, 2024, 44(1): 1-6. (in Chinese with English abstract) | |
[38] | 杨志远, 孙永健, 徐徽, 秦俭, 贾现文, 马均. 不同栽培方式对免耕水稻茎鞘物质积累转运与抗倒伏能力的影响[J]. 中国水稻科学, 2013, 27(5): 511-519. |
Yang Z Y, Sun Y J, Xu H, Qin J, Jia X W, Ma J. Effects of different cultivation methods on accumulation and transformation of assimilation products and lodging resistance of stem-sheaths of no-tillage rice[J]. Chinese Journal of Rice Science, 2013, 27(5): 511-519. (in Chinese with English abstract) | |
[39] | 卢建祥, 高倩文, 高志强, 阳会兵, 文双雅, 石楠, 胡文瑞, 金宇豪, 陈龙, 刘芸, 曹正邓渊. 增密减肥处理对籼型杂交稻产量及生长发育的影响[J]. 作物学报, 2024, 50(10): 2586-2598. |
Lu J X, Gao Q W, Gao Z Q, Yang H B, Wen S Y, Shi N, Hu W R, Jin Y H, Chen L, Liu Y, Cao Z D Y. Effect of high-density planting and fertilizer reduction on yield and growth and development of indica hybrid rice[J]. Acta Agronomica Sinica, 2024, 50(10): 2586-2598. (in Chinese with English abstract) | |
[40] | 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770. |
Wang L, Wu Y H, Qin Y H, Dan Y B, Chen H, Hao X S, Tian X H. Effects of rice straw mulching combined with green manureretention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice[J]. Acta Agronomica Sinica, 2024, 50(3): 756-770. (in Chinese with English abstract) | |
[41] | 姚雄, 唐永群, 文明, 甘兴友, 刘代杰, 杨光荣, 张现伟, 李经勇. 重庆地区水稻高产栽培的适宜田间配置方式研究[J]. 西南农业学报, 2013, 26(4): 1367-1371. |
Yao X, Tang Y Q, Wen M, Gan X Y, Liu D J, Yang G R, Zhang X W, Li J Y. Study on suitable field collocation patterns of rice high yield cultivation in Chongqing area[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4): 1367-1371. (in Chinese with English abstract) | |
[42] | Xiao Z W, Zhang R C, Cao F B, Liu L S, Chen J N, Huang M. Effects of decreasing hill number per unit area combined with increasing seedling number per hill on grain quality in hybrid rice[J]. Agronomy, 2024, 14(6): 1172. |
[43] | 苏庆旺, 苍柏峰, 白晨阳, 李韫哲, 宋泽, 李俊材, 吴美康, 魏晓双, 崔菁菁, 武志海. 施硅量对旱作水稻产量和干物质积累的影响[J]. 中国水稻科学, 2022, 36(1): 87-95. |
Su Q W, Cang B F, Bai C Y, Li Y Z, Song Z, Li J C, Wu M K, Wei X S, Cui J J, Wu Z H. Effect of silicon application rate on yield and dry matter accumulation of rice under dry cultivation[J]. Chinese Journal of Rice Science, 2022, 36(1): 87-95. (in Chinese with English abstract) | |
[44] | 任维晨, 常庆霞, 张亚军, 朱宽宇, 王志琴, 杨建昌. 不同氮利用率粳稻品种的碳氮积累与转运特征及其生理机制[J]. 中国水稻科学, 2022, 36(6): 586-600. |
Ren W C, Chang Q X, Zhang Y J, Zhu K Y, Wang Z Q, Yang J C. Characteristics and physiological mechanism of carbon and nitrogen accumulation and translocation of japonica rice varieties differing in nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2022, 36(6): 586-600. (in Chinese with English abstract) | |
[45] | Kim J, Shon J, Lee C K, Yang W, Yoon Y, Yang W H, Kim Y G, Lee B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature[J]. Field Crops Research, 2011, 122(3): 207-213. |
[46] | Wakabayashi Y, Morita R, Yamagishi J, Aoki N. Varietal difference in dynamics of non-structural carbohydrates in nodal segments of stem in two varieties of rice (Oryza sativa L.) at pre- and post-heading stages[J]. Plant Production Science, 2022, 25(1): 30-42. |
[1] | 郝雯倩, 蔡兴菁, 杨海东, 吴宇阳, 滕轩, 薛超, 龚志云. 不同类型组蛋白修饰在水稻响应非生物胁迫中的研究进展[J]. 中国水稻科学, 2025, 39(5): 575-685. |
[2] | 王镜博, 苏畅, 冯晶, 姜思旭, 徐海, 崔志波, 赵明辉. 水稻OsAlR1基因耐铝性功能研究[J]. 中国水稻科学, 2025, 39(5): 615-623. |
[3] | 韶也, 胡远艺, 彭彦, 毛毕刚, 刘慧敏, 唐婵娟, 雷斌, 唐丽, 余丽霞, 李文建, 罗武中, 罗治斌, 袁远涛, 李曜魁, 张丹, 周利斌, 柏连阳, 唐文帮, 赵炳然. 基于M1TDS靶向筛选技术的重离子束诱变定向改良杂交水稻卓两优1126性状的研究[J]. 中国水稻科学, 2025, 39(5): 624-634. |
[4] | 徐群, 王珊, 袁筱萍, 金石桥, 晋芳, 郝万军, 吴小碧, 冯跃, 余汉勇, 孙燕飞, 杨窑龙, 魏兴华. 用于水稻品种真实性验证的SNP位点评价[J]. 中国水稻科学, 2025, 39(5): 635-642. |
[5] | 张海鹏, 李莞意, 廖福兴, 马美子, 张洪程, 杨艳菊. 纳米钼对水稻根系形态生理和硝态氮吸收的影响[J]. 中国水稻科学, 2025, 39(5): 650-664. |
[6] | 杨行洲, 崔苗苗, 魏利辉, 顾爱国, 李东霞, 乐秀虎, 冯辉. 外源miR3979处理水稻对拟禾本科根结线虫趋性、侵染和发育的影响[J]. 中国水稻科学, 2025, 39(5): 703-710. |
[7] | 朱鹏, 凌溪铁, 王金彦, 张保龙, 杨郁文, 许轲, 裘实. 机直播条件下不同控草方式对抗除草剂水稻产量和品质差异性研究[J]. 中国水稻科学, 2025, 39(4): 501-515. |
[8] | 董立强, 张义凯, 杨铁鑫, 冯莹莹, 马亮, 梁潇, 张玉屏, 李跃东. 北方粳稻密苗机插育秧对秧苗素质及取秧特性的影响[J]. 中国水稻科学, 2025, 39(4): 516-528. |
[9] | 周洋, 叶凡, 刘立军. 典型促生微生物提高盐胁迫水稻抗性的研究进展[J]. 中国水稻科学, 2025, 39(4): 529-542. |
[10] | 朱建平, 李霞, 李文奇, 许扬, 王芳权, 陶亚军, 蒋彦婕, 陈智慧, 范方军, 杨杰. 水稻粉质胚乳突变体we1的表型分析与基因定位[J]. 中国水稻科学, 2025, 39(4): 543-551. |
[11] | 黄福灯, 吴春艳, 郝媛媛, 韩一飞, 张小斌, 孙会锋, 潘刚. 不同氮肥水平下水稻倒二叶叶鞘的转录组分析[J]. 中国水稻科学, 2025, 39(4): 563-574. |
[12] | 卢椰子, 邱结华, 蒋楠, 寇艳君, 时焕斌. 稻瘟病菌效应子研究进展[J]. 中国水稻科学, 2025, 39(3): 287-294. |
[13] | 王超瑞, 周宇琨, 温雅, 张瑛, 法晓彤, 肖治林, 张耗. 秸秆还田方式对稻田土壤特性和温室气体排放的影响及其水肥互作调控[J]. 中国水稻科学, 2025, 39(3): 295-305. |
[14] | 王雅宣, 王新峰, 杨后红, 刘芳, 肖晶, 蔡玉彪, 魏琪, 傅强, 万品俊. 稻飞虱适应水稻抗性机制的研究进展[J]. 中国水稻科学, 2025, 39(3): 306-321. |
[15] | 黄涛, 魏兆根, 陈玘, 程泽, 刘欣, 王广达, 胡珂鸣, 谢文亚, 陈宗祥, 冯志明, 左示敏. 水稻类病斑突变体lm52的基因克隆及其广谱抗病性分析[J]. 中国水稻科学, 2025, 39(3): 322-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||