中国水稻科学 ›› 2025, Vol. 39 ›› Issue (3): 287-294.DOI: 10.16819/j.1001-7216.2025.240611
• 综述与专论 • 下一篇
收稿日期:
2024-06-19
修回日期:
2024-07-26
出版日期:
2025-05-10
发布日期:
2025-05-21
通讯作者:
*email: shihuanbin@caas.cn基金资助:
LU Yezi, QIU Jiehua, JIANG Nan, KOU Yanjun, SHI Huanbin*()
Received:
2024-06-19
Revised:
2024-07-26
Online:
2025-05-10
Published:
2025-05-21
Contact:
*email: shihuanbin@caas.cn
摘要:
稻瘟病菌引起的稻瘟病是危害最严重的水稻病害之一。在侵染过程中,稻瘟病菌向水稻细胞释放大量效应子,改变水稻的生理状态和代谢,并抑制其免疫反应以促进侵染。深入了解稻瘟病菌效应子的特性及其与水稻之间的作用机制,可为稻瘟病的防治提供重要参考。本文综述了稻瘟病菌效应子分泌进入细胞的机制、效应子对稻瘟病抗性的复杂调控机制,以及效应子的分类等方面的研究进展。同时,讨论了当前稻瘟病菌效应子研究中存在的问题,并对未来的研究方向进行了展望,以期为稻瘟病的防治提供理论依据。
卢椰子, 邱结华, 蒋楠, 寇艳君, 时焕斌. 稻瘟病菌效应子研究进展[J]. 中国水稻科学, 2025, 39(3): 287-294.
LU Yezi, QIU Jiehua, JIANG Nan, KOU Yanjun, SHI Huanbin. Research Progress in Effectors of Magnaporthe oryzae[J]. Chinese Journal OF Rice Science, 2025, 39(3): 287-294.
无毒基因 Avirulence gene | 对应R基因 Corresponding R gene | 蛋白结构域 Protein domain | 编码分泌蛋白 Encoding secretory proteins | 参考文献 Reference |
---|---|---|---|---|
Avr-CO39 | CO39 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pita | Ptr | 含金属蛋白酶结构域,作用于宿主细胞质Harbors a metalloprotease domain acting on the host cell cytoplasm | 是Yes | [ |
ACE1 | Pi-33 | 编码一个非核糖体多聚乙酰合酶 Encodes a nonribosomal polyketide synthase | 否 No | [ |
Avr-Pia | Pia | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pii | Pii | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pik | Pik | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pikm | Pikm | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pikp | Pikp | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
AvrPik-D | Pik-h | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Piz-t | Piz-t | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pi9 | Pi9 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pib | Pib | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pita1 | Pita1 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pi54 | Pi54 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
表1 己克隆的稻瘟病菌无毒基因
Table 1. Cloned avirulence genes of Magnaporthe oryzae
无毒基因 Avirulence gene | 对应R基因 Corresponding R gene | 蛋白结构域 Protein domain | 编码分泌蛋白 Encoding secretory proteins | 参考文献 Reference |
---|---|---|---|---|
Avr-CO39 | CO39 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pita | Ptr | 含金属蛋白酶结构域,作用于宿主细胞质Harbors a metalloprotease domain acting on the host cell cytoplasm | 是Yes | [ |
ACE1 | Pi-33 | 编码一个非核糖体多聚乙酰合酶 Encodes a nonribosomal polyketide synthase | 否 No | [ |
Avr-Pia | Pia | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pii | Pii | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pik | Pik | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pikm | Pikm | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pikp | Pikp | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
AvrPik-D | Pik-h | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Piz-t | Piz-t | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pi9 | Pi9 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pib | Pib | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pita1 | Pita1 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
Avr-Pi54 | Pi54 | 未鉴定出已知结构域 No known domains detected | 是Yes | [ |
效应子类型 Types of effector | 效应子 Effector | 对应的水稻靶标蛋白 Corresponding rice target protein | 作用方式 Mechanism of action | 参考文献 Reference |
---|---|---|---|---|
胞质效应子 Cytoplasmic effectors | Avr-Pita | Ptr | 水稻抗性蛋白Ptr以等位基因特异性方式检测到AVR-Pita,它的不同等位基因赋予水稻特异的Pi-ta或Pi-ta2稻瘟病抗性 | [ |
OsCOX11 | Avr-Pita干扰细胞色素c氧化酶组装的关键蛋白OsCOX11,降低ROS水平,进而降低水稻抗性 | [ | ||
AvrPiz-t | Piz-t | AvrPiz-t被R蛋白Piz-t间接识别,启动Piz-t基因介导的抗病反应 | [ | |
APIP4 | AvrPiz-t与APIP4相互作用,抑制其胰蛋白酶抑制剂功能,调控水稻对稻瘟病的基础抗性 | [ | ||
APIP5 | AvrPiz-t作用于水稻蛋白APIP5,调节水稻细胞死亡和免疫 | [ | ||
APIP6 | AvrPiz-t作用于RING E3泛素连接酶APIP6,减弱水稻的基础抗性 | [ | ||
APIP10 | AvrPiz-t促使E3连接酶APIP10降解,减弱基础抗性,同时增强Piz-t介导的抗性 | [ | ||
APIP12 | AvrPiz-t影响核孔蛋白APIP12,调控水稻对稻瘟病的基础抗性 | [ | ||
OsAKT1 | AvrPiz-t针对钾通道蛋白OsAKT1,影响钾的流动并降低植物的基础抗性 | [ | ||
AvrPi9 | Pi9 | AvrPi9被Pi9识别后,激活Pi9介导的抗性 | [ | |
PICI1 | AvrPi9靶向去泛素化酶PICI1使其降解,从而减弱水稻的基础抗性 | [ | ||
OsRGLG5 | AvrPi9降低E3泛素连接酶OsRGLG5的稳定性,从而减弱水稻的基础抗性 | [ | ||
ANIP1-OsWRKY62 | AvrPi9与ANIP1-OsWRKY62互作,调控水稻的基础抗性及Pi9介导的抗性 | [ | ||
Avr-Pii | Pii | Avr-Pii被R蛋白Pii识别后,能激发Pii介导的抗病反应 | [ | |
NADP-ME2 | Avr-Pii作用于NADP-丙酮酸脱氢酶NADP-ME,减少ROS迸发,进而降低基础抗性 | [ | ||
OsExo70 | 进而调控基础抗性 | |||
MoHTR1-3 | - | 核效应蛋白MoHTR1-3通过降低防御相关基因的表达,抑制宿主的免疫反应 | [ | |
MoIug4 | OsAHL1 | MoIug4通过干扰转录激活因子OsAHL1,减少乙烯信号通路中关键成员OsEIN2和防御相关基因的表达 | [ | |
Bas170 | - | Bas170不仅能在BIC的动态囊状膜效应区MEC的点状结构积累,还能进入水稻细胞核,但是其具体功能目前并不清楚 | [ | |
MoCDIP4 | OsDjA9 | MoCDIP4与线粒体相关的OsDjA9结合,干扰OsDRP1E的功能,导致线粒体缩短,降低水稻抗性 | [ | |
Bas1 | - | 在稻瘟病菌中过表达 BAS1可促进稻瘟病菌在植物中的生长、产孢,增强其毒力 | [ | |
Bas2 | - | Bas2是一种小的富含Cys的分泌蛋白,主要定位于BIC位点 | [ | |
Bas3 | - | Bas3可能在侵染菌丝穿透水稻细胞壁的过程中发挥一定的作用 | [ | |
Bas83 | - | Bas83可能参与募集水稻质膜以帮助BIC效应子进入水稻细胞 | [ | |
Iug9 | - | 在水稻中表达Iug6和Iug9导致水稻防御相关基因表达受到抑制 | [ | |
Pwl1 | Pwl1是Pwl2的同源基因,调控稻瘟病菌寄主专化性,阻止其侵染弯叶画眉草 | [ | ||
Pwl2 | Pwl2是稻瘟病菌寄主决定因子,调控其寄主专化性,可被大麦NLR免疫受体MLA3识别 | [ | ||
Pwl3 | 不参与寄主专化性调控 | |||
Pwl4 | - | 不参与寄主专化性调控 | ||
MoNLE1 | OsPUX8B.2 | MoNLE1是通过特异性干扰OsPUX8B.2来抑制水稻免疫的核毒力因子 | [ | |
MoErs1 | OsRD21 | MoErs1通过抑制水稻半胱氨酸蛋白酶OsRD21来参与水稻免疫,破坏MoErs1-OsRD21互作能够有效地控制稻瘟病 | [ | |
质外体效应子 Apoplastic effectors | MoSlp1 | - | MoSlp1与几丁质结合蛋白OsCEBiP竞争性结合几丁质寡糖,干扰几丁质触发的免疫反应 | [ |
MoAa91 | - | MoAa91与OsCEBiP竞争性结合几丁质,削弱几丁质触发的免疫反应 | [ | |
MoChia1 | OsTPR1 | 水稻中的三肽重复蛋白OsTPR1通过与几丁质酶MoChia1进行竞争性结合,导致游离几丁质积累,进而引发植物免疫反应 | [ | |
MoCel12A/12B | - | 糖苷水解酶家族GH12中的内切酶MoCel12A/12B破坏植物细胞壁来释放损伤相关分子模式,进而激活植物免疫反应 | [ | |
MoCel10A | OsRMC | 受体激酶OsRMC抑制木聚糖酶MoCel10A对水稻木聚糖的降解,进而干扰稻瘟病菌的侵染 | [ | |
MoEbg1 | - | Ebg1蛋白抑制β-1,3-葡聚糖激发的免疫反应 | [ | |
MoAo1 | OsAO3/ OsAO4 | MoAo1通过抑制水稻中的抗坏血酸氧化酶OsAO3和OsAO4的活性,进而调控细胞外基质的氧化还原状态,以削弱水稻的免疫反应 | [ | |
Bas4 | - | Bas4参与水稻稻瘟病菌从活体营养阶段向死体营养阶段的转变,并改变水稻的防御机制。 | [ | |
Bas113 | - | 稻瘟病菌细胞壁与寄主包膜之间的交界面菌丝膜(EIHM)的主要组成部分 | [ |
表2 稻瘟病菌效应子的作用方式
Table 2. Mode of action of effectors in M. oryzae
效应子类型 Types of effector | 效应子 Effector | 对应的水稻靶标蛋白 Corresponding rice target protein | 作用方式 Mechanism of action | 参考文献 Reference |
---|---|---|---|---|
胞质效应子 Cytoplasmic effectors | Avr-Pita | Ptr | 水稻抗性蛋白Ptr以等位基因特异性方式检测到AVR-Pita,它的不同等位基因赋予水稻特异的Pi-ta或Pi-ta2稻瘟病抗性 | [ |
OsCOX11 | Avr-Pita干扰细胞色素c氧化酶组装的关键蛋白OsCOX11,降低ROS水平,进而降低水稻抗性 | [ | ||
AvrPiz-t | Piz-t | AvrPiz-t被R蛋白Piz-t间接识别,启动Piz-t基因介导的抗病反应 | [ | |
APIP4 | AvrPiz-t与APIP4相互作用,抑制其胰蛋白酶抑制剂功能,调控水稻对稻瘟病的基础抗性 | [ | ||
APIP5 | AvrPiz-t作用于水稻蛋白APIP5,调节水稻细胞死亡和免疫 | [ | ||
APIP6 | AvrPiz-t作用于RING E3泛素连接酶APIP6,减弱水稻的基础抗性 | [ | ||
APIP10 | AvrPiz-t促使E3连接酶APIP10降解,减弱基础抗性,同时增强Piz-t介导的抗性 | [ | ||
APIP12 | AvrPiz-t影响核孔蛋白APIP12,调控水稻对稻瘟病的基础抗性 | [ | ||
OsAKT1 | AvrPiz-t针对钾通道蛋白OsAKT1,影响钾的流动并降低植物的基础抗性 | [ | ||
AvrPi9 | Pi9 | AvrPi9被Pi9识别后,激活Pi9介导的抗性 | [ | |
PICI1 | AvrPi9靶向去泛素化酶PICI1使其降解,从而减弱水稻的基础抗性 | [ | ||
OsRGLG5 | AvrPi9降低E3泛素连接酶OsRGLG5的稳定性,从而减弱水稻的基础抗性 | [ | ||
ANIP1-OsWRKY62 | AvrPi9与ANIP1-OsWRKY62互作,调控水稻的基础抗性及Pi9介导的抗性 | [ | ||
Avr-Pii | Pii | Avr-Pii被R蛋白Pii识别后,能激发Pii介导的抗病反应 | [ | |
NADP-ME2 | Avr-Pii作用于NADP-丙酮酸脱氢酶NADP-ME,减少ROS迸发,进而降低基础抗性 | [ | ||
OsExo70 | 进而调控基础抗性 | |||
MoHTR1-3 | - | 核效应蛋白MoHTR1-3通过降低防御相关基因的表达,抑制宿主的免疫反应 | [ | |
MoIug4 | OsAHL1 | MoIug4通过干扰转录激活因子OsAHL1,减少乙烯信号通路中关键成员OsEIN2和防御相关基因的表达 | [ | |
Bas170 | - | Bas170不仅能在BIC的动态囊状膜效应区MEC的点状结构积累,还能进入水稻细胞核,但是其具体功能目前并不清楚 | [ | |
MoCDIP4 | OsDjA9 | MoCDIP4与线粒体相关的OsDjA9结合,干扰OsDRP1E的功能,导致线粒体缩短,降低水稻抗性 | [ | |
Bas1 | - | 在稻瘟病菌中过表达 BAS1可促进稻瘟病菌在植物中的生长、产孢,增强其毒力 | [ | |
Bas2 | - | Bas2是一种小的富含Cys的分泌蛋白,主要定位于BIC位点 | [ | |
Bas3 | - | Bas3可能在侵染菌丝穿透水稻细胞壁的过程中发挥一定的作用 | [ | |
Bas83 | - | Bas83可能参与募集水稻质膜以帮助BIC效应子进入水稻细胞 | [ | |
Iug9 | - | 在水稻中表达Iug6和Iug9导致水稻防御相关基因表达受到抑制 | [ | |
Pwl1 | Pwl1是Pwl2的同源基因,调控稻瘟病菌寄主专化性,阻止其侵染弯叶画眉草 | [ | ||
Pwl2 | Pwl2是稻瘟病菌寄主决定因子,调控其寄主专化性,可被大麦NLR免疫受体MLA3识别 | [ | ||
Pwl3 | 不参与寄主专化性调控 | |||
Pwl4 | - | 不参与寄主专化性调控 | ||
MoNLE1 | OsPUX8B.2 | MoNLE1是通过特异性干扰OsPUX8B.2来抑制水稻免疫的核毒力因子 | [ | |
MoErs1 | OsRD21 | MoErs1通过抑制水稻半胱氨酸蛋白酶OsRD21来参与水稻免疫,破坏MoErs1-OsRD21互作能够有效地控制稻瘟病 | [ | |
质外体效应子 Apoplastic effectors | MoSlp1 | - | MoSlp1与几丁质结合蛋白OsCEBiP竞争性结合几丁质寡糖,干扰几丁质触发的免疫反应 | [ |
MoAa91 | - | MoAa91与OsCEBiP竞争性结合几丁质,削弱几丁质触发的免疫反应 | [ | |
MoChia1 | OsTPR1 | 水稻中的三肽重复蛋白OsTPR1通过与几丁质酶MoChia1进行竞争性结合,导致游离几丁质积累,进而引发植物免疫反应 | [ | |
MoCel12A/12B | - | 糖苷水解酶家族GH12中的内切酶MoCel12A/12B破坏植物细胞壁来释放损伤相关分子模式,进而激活植物免疫反应 | [ | |
MoCel10A | OsRMC | 受体激酶OsRMC抑制木聚糖酶MoCel10A对水稻木聚糖的降解,进而干扰稻瘟病菌的侵染 | [ | |
MoEbg1 | - | Ebg1蛋白抑制β-1,3-葡聚糖激发的免疫反应 | [ | |
MoAo1 | OsAO3/ OsAO4 | MoAo1通过抑制水稻中的抗坏血酸氧化酶OsAO3和OsAO4的活性,进而调控细胞外基质的氧化还原状态,以削弱水稻的免疫反应 | [ | |
Bas4 | - | Bas4参与水稻稻瘟病菌从活体营养阶段向死体营养阶段的转变,并改变水稻的防御机制。 | [ | |
Bas113 | - | 稻瘟病菌细胞壁与寄主包膜之间的交界面菌丝膜(EIHM)的主要组成部分 | [ |
[1] | Takeda T, Takahashi M, Shimizu M, Sugihara Y, Yamashita T, Saitoh H, Fujisaki K, Ishikawa K, Utsushi H, Kanzaki E, Sakamoto Y, Abe A, Terauchi R. Rice apoplastic CBM1-interacting protein counters blast pathogen invasion by binding conserved carbohydrate binding module 1 motif of fungal proteins[J]. PLoS Pathogens, 2022, 18(9): e1010792. |
[2] | Hu J, Liu M, Zhang A, Dai Y, Chen W, Chen F, Wang W, Shen D, Telebanco-Yanoria M J, Ren B, Zhang H, Zhou H, Zhou B, Wang P, Zhang Z. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity[J]. Molecular Plant, 2022, 15(8): 1347-1366. |
[3] | Giraldo M C, Dagdas Y F, Gupta Y K, Mentlak T A, Yi M, Martinez-Rocha A L, Saitoh H, Terauchi R, Talbot N J, Valent B. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae[J]. Nature Communications, 2013, 4: 1996. |
[4] | Sha G, Sun P, Kong X, Han X, Sun Q, Fouillen L, Zhao J, Li Y, Yang L, Wang Y, Gong Q, Zhou Y, Zhou W, Jain R, Gao J, Huang R, Chen X, Zheng L, Zhang W, Qin Z, Zhou Q, Zeng Q, Xie K, Xu J, Chiu T Y, Guo L, Mortimer J C, Boutté Y, Li Q, Kang Z, Ronald P C, Li G. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance[J]. Nature, 2023, 618(7967): 1017-1023 |
[5] | Delic M, Valli M, Graf A B, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: Exploring yeast diversity[J]. FEMS Microbiology Reviews, 2013, 37(6): 872-914. |
[6] | Cohen M J, Chirico W J, Lipke P N. Through the back door: Unconventional protein secretion[J]. The Cell Surface, 2020, 6: 100045. |
[7] | Chen X, Pan S, Bai H, Fan J, Batool W, Shabbir A, Han Y, Zheng H, Lu G, Lin L, Tang W, Wang Z. A nonclassically secreted effector of Magnaporthe oryzae targets host nuclei and plays important roles in fungal growth and plant infection[J]. Molecular Plant Pathology, 2023, 24(9): 1093-1106. |
[8] | Fernandez J. The Phantom Menace: Latest findings on effector biology in the rice blast fungus[J]. aBIOTECH, 2023, 4(2): 140-154. |
[9] | Ribot C, Césari S, Abidi I, Chalvon V, Bournaud C, Vallet J, Lebrun M H, Morel J B, Kroj T. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery[J]. The Plant Journal, 2013, 74(1): 1-12. |
[10] | Xiao G, Laksanavilat N, Cesari S, Lambou K, Baudin M, Jalilian A, Telebanco-Yanoria M J, Chalvon V, Meusnier I, Fournier E, Tharreau D, Zhou B, Wu J, Kroj T. The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele-specific manner[J]. Nature Plants, 2024, 10(6): 994-1004. |
[11] | Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta[J]. The Plant Cell, 2000, 12(11): 2019-2032. |
[12] | Vergne E, Ballini E, Marques S, Mammar B S, Droc G, Gaillard S, Bourot S, Derose R, Tharreau D, Notteghem J L, Lebrun M H, Morel J B. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus[J]. New Phytologist, 2007, 174: 159-171. |
[13] | Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae[J]. The Plant Cell, 2009, 21(5): 1573-1591. |
[14] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance[J]. Genetics, 2008, 180(4): 2267-2276. |
[15] | Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes[J]. Theoretical and Applied Genetics, 2011, 122(5): 1017-1028. |
[16] | Yang T, Song L, Hu J, Qiao L, Yu Q, Wang Z, Chen X, Lu G D. Magnaporthe oryzae effector AvrPik-D targets a transcription factor WG7 to suppress rice immunity[J]. Rice (N Y), 2024, 17: 14. |
[17] | Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t[J]. Molecular Plant-Microbe Interactions, 2009, 22(4): 411-420. |
[18] | Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song M Y, Cumagun C J R, Deng Q, Lu G, Jeon J S, Naqvi N I, Zhou B. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist, 2015, 206(4): 1463-1475. |
[19] | Zhang S, Wang L, Wu W, He L, Yang X, Pan Q. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib[J]. Scientific Reports, 2015, 5: 11642. |
[20] | Damchuay K, Longya A, Sriwongchai T, Songkumarn P, Parinthawong N, Darwell K, Talumphai S, Tasanasuwan P, Jantasuriyarat C. High nucleotide sequence variation of avirulent gene, AVR-Pita1, in Thai rice blast fungus population[J]. Journal of Genetics, 2020, 99: 45. |
[21] | Ray S, Singh P K, Gupta D K, Mahato A K, Sarkar C, Rathour R, Singh N K, Sharma T R. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54[J]. Frontiers in Plant Science, 2016, 7: 1140. |
[22] | Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species[J]. PLoS Pathogens, 2011, 7(7): e1002147 |
[23] | Fujisaki K, Abe Y, Ito A, Saitoh H, Yoshida K, Kanzaki H, Kanzaki E, Utsushi H, Yamashita T, Kamoun S, Terauchi R. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity[J]. The Plant Journal, 2015, 83(5): 875-887. |
[24] | Han J, Wang X, Wang F, Zhao Z, Li G, Zhu X, Su J, Chen L. The fungal effector avr-pita suppresses innate immunity by increasing COX activity in rice mitochondria[J]. Rice, 2021, 14(1): 12. |
[25] | Park C H, Chen S, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J]. The Plant Cell, 2012, 24(11): 4748-4762. |
[26] | Singh R, Dangol S, Chen Y, Choi J, Cho Y S, Lee J E, Choi M O, Jwa N S. Magnaporthe oryzae effector AVR-pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity[J]. Molecules and Cells, 2016, 39(5): 426-438. |
[27] | Zhang C, Fang H, Shi X, He F, Wang R, Fan J, Bai P, Wang J, Park C H, Bellizzi M, Zhou X, Wang G L, Ning Y. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor[J]. Plant Biotechnology Journal, 2020, 18(11): 2354-2363. |
[28] | Zhang F, Fang H, Wang M, He F, Tao H, Wang R, Long J, Wang J, Wang G L, Ning Y. APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice[J]. Nucleic Acids Research, 2022, 50(9): 5064-5079. |
[29] | Park C H, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang G L. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor piz-t in rice[J]. PLoS Pathogens, 2016, 12(3): e1005529. |
[30] | Tang M, Ning Y, Shu X, Dong B, Zhang H, Wu D, Wang H, Wang G L, Zhou B. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae[J]. Rice, 2017, 10(1): 5. |
[31] | Shi X, Long Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang G L, Ning Y. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel[J]. PLoS Pathogens, 2018, 14(1): e1006878. |
[32] | Gao M, He Y, Yin X, Zhong X, Yan B, Wu Y, Chen J, Li X, Zhai K, Huang Y, Gong X, Chang H, Xie S, Liu J, Yue J, Xu J, Zhang G, Deng Y, Wang E, Tharreau D, Wang G L, Yang W, He Z. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector[J]. Cell, 2021, 184(21): 5391-5404.e17. |
[33] | Zhai K, Liang D, Li H, Jiao F, Yan B, Liu J, Lei Z, Huang L, Gong X, Wang X, Miao J, Wang Y, Liu J Y, Zhang L, Wang E, Deng Y, Wen C K, Guo H, Han B, He Z. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251. |
[34] | de la Concepcion J C, Langner T, Fujisaki K, Yan X, Were V, Lam A H C, Saado I, Brabham H J, Win J, Yoshida K, Talbot N J, Terauchi R, Kamoun S, Banfield M J. Zinc-finger (ZiF) fold secreted effectors form a functionally diverse family across lineages of the blast fungus Magnaporthe oryzae[J]. PLoS Pathogens, 2024, 20(6): e1012277. |
[35] | Liu Z, Qiu J, Shen Z, Wang C, Jiang N, Shi H, Kou Y. The E3 ubiquitin ligase OsRGLG5 targeted by the Magnaporthe oryzae effector AvrPi9 confers basal resistance against rice blast[J]. Plant Communications, 2023, 4(5): 100626. |
[36] | Shi X, Xiong Y, Zhang K, Zhang Y, Zhang J, Zhang L, Xiao Y, Wang G L, Liu W. The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice[J]. Molecular Plant, 2023, 16(4): 739-755. |
[37] | Liu M, Wang F, He B, Hu J, Dai Y, Chen W, Yi M, Zhang H, Ye Y, Cui Z, Zheng X, Wang P, Xing W, Zhang Z. Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast[J]. Nature Plants, 2024, 10(4): 618-632. |
[38] | Mosquera G, Giraldo M C, Khang C H, Coughlan S, Valent B. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease[J]. The Plant Cell, 2009, 21(4): 1273-1290. |
[39] | Lee S, Völz R, Lim Y J, Harris W, Kim S, Lee Y H. The nuclear effector MoHTR3 of Magnaporthe oryzae modulates host defence signalling in the biotrophic stage of rice infection[J]. Molecular Plant Pathology, 2023, 24(6): 602-615. |
[40] | Zhu Z, Xiong J, Shi H, Liu Y, Yin J, He K, Zhou T, Xu L, Zhu X, Lu X, Tang Y, Song L, Hou Q, Xiong Q, Wang L, Ye D, Qi T, Zou L, Li G, Sun C, Wu Z, Li P, Liu J, Bi Y, Yang Y, Jiang C, Fan J, Gong G, He M, Wang J, Chen X, Li W. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis[J]. Nature Communications, 2023, 14(1): 8399. |
[41] | Shi X, Xie X, Guo Y, Zhang J, Gong Z, Zhang K, Mei J, Xia X, Xia H, Ning N, Xiao Y, Yang Q, Wang G L, Liu W. A fungal core effector exploits the OsPUX8B. 2-OsCDC48-6 module to suppress plant immunity[J]. Nature Communications, 2024, 15(1): 2559. |
[42] | Oliveira-Garcia E, Tamang T M, Park J, Dalby M, Martin-Urdiroz M, Rodriguez Herrero C, Vu A H, Park S, Talbot N J, Valent B. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells[J]. The Plant Cell, 2023, 35(7): 2527-2551. |
[43] | Khang C H, Berruyer R, Giraldo M C, Kankanala P, Park S Y, Czymmek K, Kang S, Valent B. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement[J]. The Plant Cell, 2010, 22(4) :1388-1403. |
[44] | Kim S, Kim C Y, Park S Y, Kim K T, Jeon J, Chung H, Choi G, Kwon S, Choi J, Jeon J, Jeon J S, Khang C H, Kang S, Lee Y H. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming[J]. Nature Communications, 2020, 11: 5845. |
[45] | Liu X, Gao Y, Guo Z, Wang N, Wegner A, Wang J, Zou X, Hu J, Liu M, Zhang H, Zheng X, Wang P, Schaffrath U, Zhang Z. MoIug4 is a novel secreted effector promoting rice blast by counteracting host OsAHL1-regulated ethylene gene transcription[J]. New Phytologist, 2022, 235(3): 1163-1178. |
[46] | Ning N, Xie X, Yu H, Mei J, Li Q, Zuo S, Wu H, Liu W, Li Z. Plant peroxisome-targeting effector MoPtep1 is required for the virulence of Magnaporthe oryzae[J]. International Journal of Molecular Sciences, 2022, 23(5): 2515. |
[47] | Xu G, Zhong X, Shi Y, Liu Z, Jiang N, Liu J, Ding B, Li Z, Kang H, Ning Y, Liu W, Guo Z, Wang G L, Wang X. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity[J]. Science Advances, 2020, 6(48): eabb7719. |
[48] | Dong Y, Li Y, Zhao M, Jing M, Liu X, Liu M, Guo X, Zhang X, Chen Y, Liu Y, Liu Y, Ye W, Zhang H, Wang Y, Zheng X, Wang P, Zhang Z. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity -related genes, revealing gene gain and lose dynamics in genome evolution[J]. Plos Pathogens, 2015, 11(4): e1004801. |
[49] | Yang C, Liu R, Pang J, Ren B, Zhou H, Wang G, Wang E, Liu J. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice[J]. Nature Communications, 2021, 12(1): 2178. |
[50] | Yang C, Yu Y, Huang J, Meng F, Pang J, Zhao Q, Islam M A, Xu N, Tian Y, Liu J. Binding of the Magnaporthe oryzae chitinase MoChia1 by a rice tetratricopeptide repeat protein allows free chitin to trigger immune responses[J]. The Plant Cell, 2019, 31(1): 172-188. |
[51] | Han Y, Song L, Peng C, Liu X, Liu L, Zhang Y, Wang W, Zhou J, Wang S, Ebbole D, Wang Z, Lu G D. A Magnaporthe oryzae chitinase interacts with a rice jacalin-related lectin to promote host colonization[J]. Plant Physiology, 2019, 179(4): 1416-1430. |
[52] | Liu H, Lu X, Li M, Lun Z, Yan X, Yin C, Yuan G, Wang X, Liu N, Liu D, Wu M, Luo Z, Zhang Y, Bhadauria V, Yang J, Talbot N J, Peng Y L. Plant immunity suppression by an exo-β-1,3-glucanase and an elongation factor 1a of the rice blast fungus[J]. Nature Communications, 2023, 14(1): 5491. |
[53] | Yang J, Liu L, Wang Y, Wang C, Yan J, Liu Y, Wang C, Li C. Overexpression of BAS1 in rice blast fungus can promote blast fungus growth, sporulation and virulence in planta[J]. Saudi Journal of Biological Sciences, 2017, 24(8): 1884-1893. |
[54] | Kang S C, Sweigard J A, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 1995, 8(6): 939-948. |
[55] | Brabham H J, Gomez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernandez-Pinzon I, Green P, Lorang J, Fujisaki K, Sato K, Molnar I, Simkova H, Dolezel J, Russell J, Taylor J, Smoker M, Gupta Y K, Wolpert T, Talbot N J, Terauchi R, Moscou M J. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae[J]. The Plant Cell, 2024, 36(2): 447-470. |
[56] | Mentlak T A, Kombrink A, Shinya T, Ryder L S, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma B P H J, Talbot N J. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J]. The Plant Cell, 2012, 24(1): 322-335. |
[57] | Li Y, Liu X, Liu M, Wang Y, Zou Y, You Y, Yang L, Hu J, Zhang H, Zheng X, Wang P, Zhang Z. Magnaporthe oryzae auxiliary activity protein MoAa91 functions as chitin-binding protein to induce appressorium formation on artificial inductive surfaces and suppress plant immunity[J]. mBio, 2020, 11(2): e03304-19. |
[1] | 王超瑞, 周宇琨, 温雅, 张瑛, 法晓彤, 肖治林, 张耗. 秸秆还田方式对稻田土壤特性和温室气体排放的影响及其水肥互作调控[J]. 中国水稻科学, 2025, 39(3): 295-305. |
[2] | 王雅宣, 王新峰, 杨后红, 刘芳, 肖晶, 蔡玉彪, 魏琪, 傅强, 万品俊. 稻飞虱适应水稻抗性机制的研究进展[J]. 中国水稻科学, 2025, 39(3): 306-321. |
[3] | 黄涛, 魏兆根, 陈玘, 程泽, 刘欣, 王广达, 胡珂鸣, 谢文亚, 陈宗祥, 冯志明, 左示敏. 水稻类病斑突变体lm52的基因克隆及其广谱抗病性分析[J]. 中国水稻科学, 2025, 39(3): 322-330. |
[4] | 马顺婷, 胡运高, 高方远, 刘利平, 牟昌铃, 吕建群, 苏相文, 刘松, 梁毓玉, 任光俊, 郭鸿鸣. 水稻真核翻译起始因子OseIF6.2调控粒型的功能研究[J]. 中国水稻科学, 2025, 39(3): 331-342. |
[5] | 张彬涛, 刘聪聪, 郭明亮, 杨绍华, 吴世强, 郭龙彪, 朱义旺. 水稻OsDR8基因的稻瘟病抗性评价及优异单倍型鉴定[J]. 中国水稻科学, 2025, 39(3): 343-351. |
[6] | 韦新宇, 曾跃辉, 肖长春, 黄建鸿, 阮宏椿, 杨旺兴, 邹文广, 许旭明. 水稻康丰B抗稻瘟病基因Pi-kf2(t)的克隆与功能验证[J]. 中国水稻科学, 2025, 39(3): 352-364. |
[7] | 李文奇, 许扬, 王芳权, 朱建平, 陶亚军, 李霞, 范方军, 蒋彦婕, 陈智慧, 杨杰. 广谱抗稻瘟病基因PigmR的KASP标记开发及应用[J]. 中国水稻科学, 2025, 39(3): 365-372. |
[8] | 韦还和, 汪璐璐, 马唯一, 张翔, 左博源, 耿孝宇, 朱旺, 朱济邹, 孟天瑶, 陈英龙, 高平磊, 许轲, 戴其根. 盐−旱复合胁迫下粳稻品种南粳9108籽粒灌浆特性及其与产量形成的关系[J]. 中国水稻科学, 2025, 39(3): 373-386. |
[9] | 沈智达, 余秋华, 张斌, 曹玉东, 王少华, 王红飞, 伍永清, 戴志刚, 李小坤. 磷肥施用量对湖北省直播水稻产量、磷素积累及利用率的影响[J]. 中国水稻科学, 2025, 39(3): 399-411. |
[10] | 何勇, 张诗骞, 王志成, 詹逍康, 丁一可, 刘晓瑞, 马素素, 田志宏. 印度梨形孢与复合肥组合施用对水稻机插秧秧苗素质的影响[J]. 中国水稻科学, 2025, 39(3): 412-422. |
[11] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略[J]. 中国水稻科学, 2025, 39(2): 143-155. |
[12] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展[J]. 中国水稻科学, 2025, 39(2): 156-170. |
[13] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展[J]. 中国水稻科学, 2025, 39(2): 171-186. |
[14] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性[J]. 中国水稻科学, 2025, 39(2): 187-196. |
[15] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究[J]. 中国水稻科学, 2025, 39(2): 197-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||