中国水稻科学 ›› 2025, Vol. 39 ›› Issue (3): 295-305.DOI: 10.16819/j.1001-7216.2025.240703
王超瑞, 周宇琨, 温雅, 张瑛, 法晓彤, 肖治林, 张耗*()
收稿日期:
2024-07-04
修回日期:
2024-11-29
出版日期:
2025-05-10
发布日期:
2025-05-21
通讯作者:
*email: haozhang@yzu.edu.cn基金资助:
WANG Chaorui, ZHOU Yukun, WEN Ya, ZHANG Ying, FA Xiaotong, XIAO Zhilin, ZHANG Hao*()
Received:
2024-07-04
Revised:
2024-11-29
Online:
2025-05-10
Published:
2025-05-21
Contact:
*email: haozhang@yzu.edu.cn
摘要:
作物秸秆的合理利用对实现农业的可持续发展具有重要意义。我国在秸秆综合利用方面取得了显著进步。秸秆还田是秸秆资源化利用的一种有效途径,对保证粮食生产力和促进土壤良性循环有积极影响,同时,秸秆还田会改变稻田土壤特性进而改变土壤微生物组成和活性,最终影响温室气体排放。本文综述了秸秆翻耕还田、免耕覆盖还田和炭化还田等秸秆还田方式对稻田土壤特性和温室气体排放的影响及机制,总结了秸秆还田条件下的配套水肥栽培调控措施,并提出了存在的问题和讨论了未来研究重点。
王超瑞, 周宇琨, 温雅, 张瑛, 法晓彤, 肖治林, 张耗. 秸秆还田方式对稻田土壤特性和温室气体排放的影响及其水肥互作调控[J]. 中国水稻科学, 2025, 39(3): 295-305.
WANG Chaorui, ZHOU Yukun, WEN Ya, ZHANG Ying, FA Xiaotong, XIAO Zhilin, ZHANG Hao. Effects of Straw Returning Methods on Soil Characteristics and Greenhouse Gas Emissions in Paddy Fields and Their Regulation Through Water-fertilizer Interactions[J]. Chinese Journal OF Rice Science, 2025, 39(3): 295-305.
秸秆还田方式 Straw returning method | 技术要求 Technical requirement | 土壤特性 Soil characteristics | 温室气体 Greenhouse gas | 参考文献 Reference |
---|---|---|---|---|
翻耕还田 | 秸秆合格粉碎长度<15 cm,机械翻耕打入耕作层,提高秸秆的入土率和还田质量 | 深层土壤容重降低、大团聚体数量和孔隙度提高;补充土壤碳库,N、P、K等营养元素含量增多;碳氮循环相关细菌丰度、活性增强,脲酶、磷酸酶等土壤酶活性提高 | 显著促进CH4和CO2排放,极显著增加温室气体排放强度 | [ |
覆盖免耕还田 | 秸秆覆盖在田面,不扰动土壤,进行水稻直播或移栽的技术 | 表层土壤容重降低,大团聚体比例增加;减少田间水分蒸发和灌溉用水量;促进硝化作用、提高C、P、K等养分积累,提高综合生产能力 | CH4增排幅度小于翻耕还田,或能降低CH4排放 | [ |
炭化还田 | 秸秆通过热解工艺,在低氧和较低温度下得到的富含碳的多孔固体颗粒材料,水稻移栽前混入土壤 | 团粒结构增多,土壤通气性增强,容重降低;减缓土壤酸化,降低重金属积累;固碳效果显著,对营养元素有吸附性;酸杆菌丰度降低 | 生物炭促进CH4氧化,显著降低或不影响温室气体排放当量 | [ |
菌剂促腐还田 | 使用秸秆生物菌剂,快速降解秸秆纤维结构,7~10 d基本软化并初步腐熟,耕作时旋、耕、犁、耙不被缠绕, 便于水稻的播种或移栽 | 改善土壤物理性质;避免微生物与水稻出现争氮现象,快速释放秸秆中营养元素,提高土壤碳库容量;菌剂本身富含大量微生物,能激发土壤酶活性,改变土壤微生物群落构成 | 水稻生育前期,温室气体因底物充足提前出现排放高峰 | [ |
表1 不同秸秆还田方式对土壤特性和温室气体排放的影响比较
Table 1. Comparison of effects of different straw returning methods on soil characteristics and greenhouse gas emissions
秸秆还田方式 Straw returning method | 技术要求 Technical requirement | 土壤特性 Soil characteristics | 温室气体 Greenhouse gas | 参考文献 Reference |
---|---|---|---|---|
翻耕还田 | 秸秆合格粉碎长度<15 cm,机械翻耕打入耕作层,提高秸秆的入土率和还田质量 | 深层土壤容重降低、大团聚体数量和孔隙度提高;补充土壤碳库,N、P、K等营养元素含量增多;碳氮循环相关细菌丰度、活性增强,脲酶、磷酸酶等土壤酶活性提高 | 显著促进CH4和CO2排放,极显著增加温室气体排放强度 | [ |
覆盖免耕还田 | 秸秆覆盖在田面,不扰动土壤,进行水稻直播或移栽的技术 | 表层土壤容重降低,大团聚体比例增加;减少田间水分蒸发和灌溉用水量;促进硝化作用、提高C、P、K等养分积累,提高综合生产能力 | CH4增排幅度小于翻耕还田,或能降低CH4排放 | [ |
炭化还田 | 秸秆通过热解工艺,在低氧和较低温度下得到的富含碳的多孔固体颗粒材料,水稻移栽前混入土壤 | 团粒结构增多,土壤通气性增强,容重降低;减缓土壤酸化,降低重金属积累;固碳效果显著,对营养元素有吸附性;酸杆菌丰度降低 | 生物炭促进CH4氧化,显著降低或不影响温室气体排放当量 | [ |
菌剂促腐还田 | 使用秸秆生物菌剂,快速降解秸秆纤维结构,7~10 d基本软化并初步腐熟,耕作时旋、耕、犁、耙不被缠绕, 便于水稻的播种或移栽 | 改善土壤物理性质;避免微生物与水稻出现争氮现象,快速释放秸秆中营养元素,提高土壤碳库容量;菌剂本身富含大量微生物,能激发土壤酶活性,改变土壤微生物群落构成 | 水稻生育前期,温室气体因底物充足提前出现排放高峰 | [ |
[1] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022. |
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2002. | |
[2] | Zhao X, Li R C, Liu W X, Liu W S, Xue Y H, Sun R H, Wei Y X, Chen Z, Lal R, Dang Y P, Xu Z Y, Zhang H L. Estimation of crop residue production and its contribution to carbon neutrality in China[J]. Resources,Conservation and Recycling, 2024, 203: 107450. |
[3] | Shao J, Gao C, Afi Seglah P, Xie J, Zhao L, Bi Y, Wang Y. Analysis of the available straw nutrient resources and substitution of chemical fertilizers with straw returned directly to the field in China[J]. Agriculture, 2023, 13(6): 1187. |
[4] | He Z, Cao H, Qi C, Hu Q, Liang J, Li Z. Straw management in paddy fields can reduce greenhouse gas emissions: A global meta-analysis[J]. Field Crops Research, 2024, 306: 109218. |
[5] | Yin H, Zhao W, Li T, Cheng X, Liu Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews, 2018, 81(2): 2695-2702. |
[6] | IPCC. Climate Change 2023: Synthesis Report[M]. Cambridge: Cambridge University Press, 2023. |
[7] | Carlson K, Gerber J, Mueller N, Herrero M, MacDonald G, Brauman K, Havlik P, Connell C, Johnson J, Saatchi S and West P. Greenhouse gas emissions intensity of global croplands[J]. Nature Climate Change, 2017, 7: 63-68. |
[8] | Yang L, Muhammad I, Chi Y X, Liu Y X, Wang G Y, Wang Y, Zhou X B. Straw return and nitrogen fertilization regulate soil greenhouse gas emissions and global warming potential in dual maize cropping system[J]. Science of the Total Environment, 2022, 853: 158370. |
[9] | 邓姣, 李心雨, 朱杰, 杨伟, 李成伟, 蒋梦蝶, 朱波, 聂江文, 刘章勇. 体排放的影响[J]. 植物营养与肥料学报, 2024, 30(2): 268-278. |
Deng J, Li X Y, Zhu J, Yang W, Li C W, Jiang M D, Zhu B, Nie J W, Liu Y Z. Effects of straw returning and drought-water rotation patterns on soil greenhouse gas emissions in rice season[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(2): 268-278. (in Chinese with English abstract) | |
[10] | 范倩玉, 李军辉, 李晋, 刘振华, 黄春国, 杨珍平, 高志强. 不同作物秸秆还田对潮土结构的改良效果[J]. 水土保持学报, 2020, 34(4): 230-236. |
Fan Q Y, Li J H, Li J, Liu Z, Yang Z P, Gao Z Q. Effect of straw returning from different crops on structure improvement of tidal soil[J]. Journal of Soil and Water Conservation, 2020, 34(4): 230-236. (in Chinese with English abstract) | |
[11] | 熊瑞, 欧阳宁, 欧茜, 钟康裕, 周文涛, 王泓瑞, 龙攀, 徐莹, 傅志强. 秸秆还田与耕作方式对双季稻土壤团聚体及碳氮含量的影响[J]. 浙江农业学报, 2024, 36(6): 1347-1356. |
Xiong R, Ouyang N, Ou X, Zhong K Y, Zhou W T, Wang H R, Long P, Xu Y, Fu Z Q. Effects of straw returning and tillage methods on soil aggregate and carbon and nitrogen content of double-cropping rice[J]. Acta Agriculturae Zhejiangensis, 2019, 36(6): 1347-1356. (in Chinese with English abstract) | |
[12] | Zheng K, Cheng J, Xia J F, Liu G, Xu L. Effects of soil bulk density and moisture content on the physico-mechanical properties of paddy soil in plough layer[J]. Water, 2021, 13(16): 2290. |
[13] | Hussain R, Kumar Ghosh K, Ravi K. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures[J]. Geoderma, 2021, 385: 114836. |
[14] | 冀建华, 吕真真, 刘淑珍, 侯红乾, 刘益仁, 刘秀梅, 李絮花, 蓝贤瑾. 长期施用化肥对南方稻田土壤酸化和盐基离子损失的影响[J]. 中国农业科学, 2024, 57(13): 2599-2611. |
Ji J H, Lu Z Z, Liu S Z, Hou H Q, Liu Y R, Liu X M, Li X H, Lan X J. Effects of long-term application of chemical fertilizer on soil acidification and base ion loss in rice field in southern China[J]. Scientia Agricultural Sinica, 2024, 57(13): 2599-2611. (in Chinese with English abstract) | |
[15] | Butterly C R, Baldock J A, Tang C. The contribution of crop residues to changes in soil pH under field conditions[J]. Plant and Soil, 2013, 366(1): 185-198. |
[16] | Wang Y, Tang C, Wu J, Liu X M, Xu J M. Impact of organic matter addition on pH change of paddy soils[J]. Journal of Soils and Sediments, 2013, 13(1): 12-23. |
[17] | Liang F, Li B, Vogt R D, Mulder J, Song H, Chen J S, Guo J H. Straw return exacerbates soil acidification in major Chinese croplands[J]. Resources, Conservation and Recycling, 2023, 198: 107176. |
[18] | Zhao X, He C, Liu W S, Liu W X, Liu Q Y, Bai W, Li L J, Lal R, Zhang H L. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis[J]. Global Change Biology, 2022, 28(1): 154-166. |
[19] | 高静, 徐明岗, 李然, 蔡泽江, 孙楠, 张强, 郑磊. 整合分析生物炭施用对土壤pH的影响[J]. 中国农业科技导报, 2023, 25(9): 186-196. |
Gao J, Xu M G, Li R, Cai Z J, Sun N, Zhang Q, Zheng L. Effects of biochar application on soil pH: A meta-analysis[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 186-196. (in Chinese with English abstract) | |
[20] | Xu R K, Zhao A Z, Yuan J H, Jiang J. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars[J]. Journal of Soils and Sediments, 2012, 12(4): 494-502. |
[21] | Liu Q, Wu C, Wei L, Wang S, Deng Y W, Ling W L, Xiang W, Kuzyakov Y, Zhu Z, Ge T. Microbial mechanisms of organic matter mineralization induced by straw in biochar-amended paddy soil[J]. Biochar, 2024, 6(1): 18. |
[22] | 于洋, 张常仁, 杨雅丽, 徐欣, 吕付泽, 郑甜甜, 解宏图, 鲍雪莲. 长期免耕和秸秆覆盖量对黑土碳氮含量及碳氮循环相关酶活性的影响[J]. 应用生态学报, 2024, 35(3): 695-704. |
Yu Y, Zhang C R, Yang Y L, Xu X, Lü F Z, Zheng T T, Xie H T, Bao X L. Effects of long-term no-tillage and different stover mulching amounts on soil carbon and nitrogen contents and enzyme activities of carbon and nitrogen cycle in mollisols[J]. Chinese Journal of Applied Ecology, 2024, 35(3): 695-704. (in Chinese with English abstract) | |
[23] | Haefele S M, Konboon Y, Wongboon W, Amarante S, Maarifat A A, Pfeiffer E M, Knoblauch C. Effects and fate of biochar from rice residues in rice-based systems[J]. Field Crops Research, 2011, 121(3): 430-440. |
[24] | He F, Hu W, He F, Wang P, Pi B, Zhao M. An appraisal of the utility of biochar in a rotation involving tobacco-rice in Southern China[J]. Global Change Biology Bioenergy 2023, 15(8): 979-993. |
[25] | Liu J, Fang L, Qiu T, Chen J, Wang H, Liu M, Yi J, Zhang H, Wang C, Sardans J, Chen L, Huang M, Penuelas J. Crop residue return achieves environmental mitigation and enhances grain yield: A global meta-analysis[J]. Agronomy for Sustainable Development, 2023, 43(6): 78. |
[26] | Wang E, Lin X, Tian L, Wang X, Ji L, Jin F, Tian C. Effects of short-term rice straw return on the soil microbial community[J]. Agriculture, 2021, 11(6): 561. |
[27] | 李春雅, 王炎伟, 王荣, 李丽丽, 刘长莉. 秸秆还田方式对东北水稻土理化性质及微生物群落的影响[J]. 微生物学报, 2022, 62(12): 4811-4824. |
Li C Y, Wang Y W, Wang R, Li L L, Liu C L. Effects of straw returning method on physicochemical properties and microbial community of paddy soil in Northeast China[J]. Acta Microbiologica Sinica, 2022, 62(12): 4811-4824. (in Chinese with English abstract) | |
[28] | Qiu H, Hu Z Z, Liu J J, Zhang H Y, Shen W L. Effect of biochar on labile organic carbon fractions and soil carbon pool management index[J]. Agronomy, 2023, 13(5): 1385. |
[29] | Li Y, Hu Y, Song D, Liang S, Qin X, Siddique K H M. The effects of straw incorporation with plastic film mulch on soil properties and bacterial community structure on the Loess Plateau[J]. European Journal of Soil Science, 2021, 72(2): 979-994. |
[30] | Wang X D, Feng J G, Ao G, Qin W K, Han M G, Shen Y W, Liu M L, Chen Y, Zhu B. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness[J]. Soil Biology and Biochemistry, 2023, 179: 108982. |
[31] | 黄茜, 赵梦颖, 纪红梅, 徐永记, 纪洋, 冯彦房. 不同种类秸秆还田对单季稻田CH4排放和功能微生物丰度的影响[J]. 土壤通报, 2023, 54(5): 1107-1116. |
Huang X, Zhao M Y, Ji H M, Xu Y J, Ji Y, Feng Y F. Effects of different types of straw application on CH4 emissions and functional microbial quantities in single-cropping paddy field[J]. Chinese Journal of Soil Science, 2023, 54(5): 1107-1116. (in Chinese with English abstract) | |
[32] | Zhang F, Li P, Chen M, Wu J H, Zhu N W, Wu P X, Chiang P, Hu Z Q. Effect of operational modes on nitrogen removal and nitrous oxide emission in the process of simultaneous nitrification and denitrification[J]. Chemical Engineering Journal, 2015, 280: 549-557. |
[33] | Guo J H, Peng Y Z, Wang S Y, Ma B, Ge S J, Wang Z W, Huang H J, Zhang J R, Zhang L. Pathways and organisms involved in ammonia oxidation and nitrous oxide emission[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(21): 2213-2296. |
[34] | 逯非, 王效科, 韩冰, 欧阳志云, 郑华. 稻田秸秆还田: 土壤固碳与甲烷增排[J]. 应用生态学报, 2010, 21(1): 99-108. |
Lu F, Wang X K, Han B, Ouyang Z Y, Zheng H. Straw returning to rice paddy: soil sequestration and increase methane emission[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 99-108. (in Chinese with English abstract) | |
[35] | Yuan Q, Pump J, Conrad R. Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms[J]. PLoS One, 2012, 7(11): e49073. |
[36] | Guo L, Zhang L, Liu L, Sheng F, Cao C, Li C. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in Central China[J]. Agriculture,Ecosystems & Environment, 2021, 322: 107650. |
[37] | 尹晓雷, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同轮作模式下土壤细菌群落特征及其对土壤全碳、全氮与温室气体释放潜力影响[J]. 环境科学学报, 2021, 41(12): 5161-5173. |
Yin X L, Li X D, Lin S Y, Yang X, Wang W Q, Zhang Y X. Effect of bacterial community characteristics on total carbon and total nitrogen contents and greenhouse gas emission potential under different rotation patterns[J]. Acta Sciences Circumstantiae, 2021, 41(12): 5161-5173. (in Chinese with English abstract) | |
[38] | 李成芳, 寇志奎, 张枝盛, 曹凑贵, 吴海亚, 梅金安, 翟中兵, 张丛德, 魏坦雄, 刘诗晴, 夏起昕. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11): 2362-2367. |
Li C F, Kou Z K, Zhang Z S, Cao C G, Wu H Y, Mei J A, Zhai Z B, Zhang C D, Wei T X, Liu S Q, Xia Q X. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice field[J]. Journal of Agro-Environment Sciences, 2011, 30(11): 2362-2367. (in Chinese with English abstract) | |
[39] | Harada N, Otsuka S, Nishiyama M, Matsumoto S. Influences of indigenous phototrophs on methane emissions from a straw-amended paddy soil[J]. Biology and Fertility of Soils, 2005, 41(1): 46-51. |
[40] | Huang T T, Wen S Y, Zhang M X, Pan Y Y, Chen X P, Pu X, Zhang M M, Dang P F, Meng M, Wang W, Qin X L, Siddique K H M. Effect on greenhouse gas emissions (CH4 and N2O) of straw mulching or its incorporation in farmland ecosystems in China[J]. Sustainable Production and Consumption, 2024, 46: 223-232. |
[41] | Qi L, Niu H D, Zhou P, Jia R J, Gao M. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils[J]. Sustainability, 2018, 10(5): 1403. |
[42] | Sun H F, Zhang X X, Zhang J N, Wang C, Zhou S. Long term comparison of GHG emissions and crop yields in response to direct straw or biochar incorporation in rice-wheat rotation systems: A 10-year field observation[J]. Agriculture, Ecosystems and Environment, 2024, 374: 109188. |
[43] | Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota: A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. |
[44] | 聂媛卿, 王俊, 季杨贝贝, 秦莉, 刘立军. 生物炭还田对稻田土壤和水稻根系形态生理影响的研究进展[J]. 杂交水稻, 2025, 40(1): 5-12. |
Nie Y Q, Wang J, Ji Y B B, Qin L, Liu L J. Research progress on the effects of biochar return to paddy soil and rice root morphology and physiology[J]. Hybrid rice, 2025, 40(1): 5-12. (in Chinese with English abstract) | |
[45] | Ussirl D A N, Lai R, Jarkeki M K. Nitrous oxide and methane emissions from long-term tillage under acontinuous corn cropping system in Ohio[J]. Soil and Tillage Research, 2009, 104: 247-255. |
[46] | 周晨, 潘玉婷, 刘敏, 陈滢. 反硝化过程中氧化亚氮释放机理研究进展[J]. 化工进展, 2017, 36(8): 3074-3084. |
Zhou C, Pan Y T, Liu M, Chen Y. Advance of mechanism on N2O emissions from biological denitrification[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 3074-3084. (in Chinese with English abstract) | |
[47] | Liu Y, Tang H, Muhammad A, Zhong C, Li P, Zhang P, Yang B J, Huang G Q. Rice yield and greenhouse gas emissions affected by Chinese milk vetch and rice straw retention with reduced nitrogen fertilization[J]. Agronomy Journal. 2019, 111(6): 3028-3038. |
[48] | Zhang B, Pang C Q, Qin J T, Liu K L, Xu H, Li H X. Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field[J]. Biology and fertility of soils, 2013, 49: 1039-1052. |
[49] | 王雅霏, 杨喜爱, 潘婷, 高峰峰, 江先民, 银敏华. 覆盖对水稻田温室气体排放效应的影响[J]. 作物研究, 2022, 36(1): 1-8. |
Wang Y F, Yang X A, Pan T, Gao F F, Xiang X M, Yin M H. Effect of mulching on greenhouse gas emissions from paddy fields[J]. Crop Research, 2022, 36(1): 1-8. (in Chinese with English abstract) | |
[50] | Ahmad Z, Mosa A, Zhan L, Gao B. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review[J]. Chemosphere, 2021, 278: 130378. |
[51] | Fungo B, Lehmann J, Kalbitz K, Thionģo M, Tenywa M, Okeyo I, Neufeldt H. Ammonia and nitrous oxide emissions from a field Ultisol amended with Tithonia green manure, urea, and biochar[J]. Biology and Fertility of Soils, 2019, 55(2): 135-148. |
[52] | VAN DEN HEUVEL R N, Bakker S E, Jetten M S M, Hefting M M. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem[J]. Geobiology, 2011, 9(3): 294-300. |
[53] | Shen J L, Tang H, Liu J Y, Wang C, Li Y, Ge T, Jones D L, Wu J S. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems[J]. Agriculture, Ecosystems and Environment, 2014, 188: 264-274. |
[54] | 仁增草, 武均, 蔡立群, 王正伟. 秸秆、生物质炭不同管理模式下旱作农田温室气体排放日变化研究[J]. 国土与自然资源研究, 2024, (6): 42-47. |
Ren Z C, Wu J, Cai L Q, Wang Z W. Study on diurnal variation of greenhouse gas emissions in dry farmland under different management modes of straw and biochar[J]. Territory and Natural Resources Study, 2024, (6): 42-47. (in Chinese with English abstract) | |
[55] | Hussain S, Peng S, Fahad S, Khaliq A, Huang J L, Cui K H, Nie L X. Rice management interventions to mitigate greenhouse gas emissions: A review[J]. Environmental Science and Pollution Research, 2015, 22: 3342-3360. |
[56] | Liu C, Lu M, Cui J, LI B, Fang C M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381. |
[57] | 蔡炜, 秦缘, 陈浩田, 林晨语, 杨建昌. 干湿交替灌溉和生物质炭施用对稻田碳汇与甲烷排放的影响及其机理研究进展[J]. 中国稻米, 2024, 30(6): 7-14. |
Cai W, Qin Y, Chen H T, Lin C Y, Yang J C. Research progress on effects of dry and wet alternate irrigation and biochar application on carbon sink and methane emission in rice field[J]. China Rice, 2024, 30(6): 7-14. (in Chinese with English abstract) | |
[58] | Friedlingstein P, O'Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G, Peter W. Global carbon budget 2020[M]. Earth System Science Data, 2020, 12: 3269-3340. |
[59] | Liang S, Zhang H. Different responses of greenhouse gas emissions to straw application at different seasons in Northeast China[J]. Sains Malaysiana, 2019, 48(7): 1347-1355. |
[60] | Alonso-Serra J. Carbon sequestration: Counterintuitive feedback of plant growth[J]. Quantitative Plant Biology, 2021, 2: e11. |
[61] | Lun F, Canadell J G, He L, Yang B, Liu M C, Yuan Z, Tian M, Liu J G, Li W H. Estimating cropland carbon mitigation potentials in China affected by three improved cropland practices[J]. Journal of Mountain Science, 2016, 13(10): 1840-1854. |
[62] | Xia F, Zhang Z, Zhang Q, Huang H C, Zhao X H. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment[J]. Science of The Total Environment, 2024, 911: 168734. |
[63] | 王天宇, 樊迪, 宋开付, 张广斌, 徐华, 马静. 巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究[J]. 农业环境科学学报, 2021, 40 (8): 1829-1838. |
Wang T Y, Fan D, Song K F, Zhang G B, Xu H, Ma J. Reduced methane and nitrous oxide emissions from ratoon rice paddy in Chaohu polder area[J]. Journal of Agro-Environment Science, 2021, 40(8): 1829-1838. (in Chinese with English abstract) | |
[64] | 张浪, 徐华勤, 李林林, 陈元伟, 郑华斌, 唐启源, 唐剑武. 再生稻和双季稻田CH4排放对比研究[J]. 中国农业科学, 2019, 52 (12): 2101-2113. |
Zhang L, Xu H Q, Li L L, Chen Y H, Zheng H B, Tang Q Y, Tang J W. Comparative study on CH4 emission from ratoon rice and double-cropping rice fields[J]. Scientia Agricultura Sinica, 2019, 52(12), 2101-2113. (in Chinese with English abstract) | |
[65] | Li C, Zhu J, Li X, Deng J, Yang W, Zhou Y, Li S Q, Yi L, Liu Z Z, Zhu B. CH4 and N2O emission and grain yield performance of three main rice-farming patterns in Central China[J]. Agronomy, 2023, 13(6): 1460. |
[66] | 李心雨, 邓姣, 朱杰, 李成伟, 蒋梦蝶, 刘章勇, 聂江文, 朱波. 秸秆还田和种植制度对长江中游稻田温室气体排放的影响[J]. 农业环境科学学报, 2024, 43(8): 1915-1927. |
Li X Y, Deng J, Zhu J, Li C W, Jiang M D, Liu Z Y, Nie J W, Zhu B. Effects of straw returning and planting system on greenhouse gas emissions from rice fields in the middle reaches of Yangtze River[J]. Journal of Agro-Environmental Science, 2024, 43(8): 1915-1927. (in Chinese with English abstract) | |
[67] | Jiang Y, Qian H, Huang S, Zhang X, Wang L, Zhang L, Shen M, Xiao X, Chen F, Zhang H, Lu C, Li C, Zhang J, Deng A, van Groenigen K J, Zhang W. Acclimation of methane emissions from rice paddy fields to straw addition[J]. Science Advances, 2019, 5(1): eaau9038. |
[68] | 王红妮, 王学春, 黄晶, 李军, 胡运高. 秸秆还田对土壤还原性和水稻根系生长及产量的影响[J]. 农业工程学报, 2017, 33(20): 116-126. |
Wang H N, Wang X C, Huang J, Li J, Hu Y G. Effect of straw incorporated into soil on reducibility in soil and root system and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 116-126. (in Chinese with English abstract) | |
[69] | Ghosh S, Majumdar D, Jain M C. Methane and nitrous oxide emissions from an irrigated rice of North India[J]. Chemosphere, 2003, 51(3): 181-195. |
[70] | 周胜, 张鲜鲜, 王从, 孙会峰, 张继宁. 水分和秸秆管理减排稻田温室气体研究与展望[J]. 农业环境科学学报, 2020, 39(4): 852-862. |
Zhou S, Zhang X X, Wang C, Sun H F, Zhang J N. Research progress and prospect of water and crop residue management to mitigate greenhouse gas emission from paddy fields[J]. Journal of Agro-Environment Science, 2020, 39(4): 852-862. (in Chinese with English abstract) | |
[71] | Mallareddy M, Thirumalaikumar R, Balasubramanian P, Naseeruddin R, Nithya N, Mariadoss A, Eazhilkrishna, Choudhary A, Deiveegan M, Subramanian E, Padmaja B, Vijayakumai S. Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies[J]. Water, 2023, 15(10): 1802. |
[72] | 顾希, 刘昆, 高捷, 刘立军. 节水灌溉技术及其对水稻产量影响的研究进展[J]. 杂交水稻, 2022, 37(2): 7-13. |
Gu Xi, Liu K, Gao J, Liu L J. Research advances of water-saving irrigation methods and their influences on rice yield[J]. Hybrid Rice, 2022, 37(2): 7-13. (in Chinese with English abstract) | |
[73] | 李大明, 成艳红, 刘满强, 秦江涛, 焦加国, 李慧信, 胡峰. 秸秆覆盖旱作对稻田甲烷排放和水稻产量的影响[J]. 农业环境科学学报, 2012, 31(10): 2053-2059. |
Li D M, Cheng Y H, Liu M Q, Qin J T, Jiao J G, Li H X, Hu J. Effects of non-flood with straw mulching management on methane emission and rice yield in paddy field[J]. Journal of Agro-Environment Science, 2012, 31(10): 2053-2059. (in Chinese with English abstract) | |
[74] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟阳. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
Chen H T, Qin Y, Zhong X H, Lin C Y, Qin J H, Yang J C, Zhang W Y. Research progress on the relationship between rice root, soil propreties and methane emission in paddy field[J]. Chinese Journal of Rice Science, 2024, 38(3): 233-245. (in Chinese with English abstract) | |
[75] | 张天尧, 吴泽璐, 卫正宇, 柴如山, 王智, 马超. 整合分析秸秆还田对中国主要粮食作物氮肥利用率的影响[J]. 土壤与作物, 2023, 12(4): 429-438. |
Zhang T Y, Wu Z L, Wei Z Y, Chai R S, Wang Z, Ma C. Effects of straw returning on nitrogen use efficiency of major grain crops in China: A meta-analysis[J]. Soil and Crops, 2023, 12(4): 429-438. (in Chinese with English abstract) | |
[76] | Liu B, Xia H, Jiang C C, Riaz M, Yang L, Chen Y, Fan X, Xia X. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China[J]. Science of the Total Environment, 2022, 841: 156608. |
[77] | Zhong Y, Wang X P, Yang J P, Zhao X, Ye X. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields[J]. The Science of The Total Environment, 2016, 565: 420-426. |
[78] | 袁梦, 邢稳, 罗美玲, 王玉峰, 谷学佳, 宋吉青, 娄翼来. 东北稻田有机肥替代部分氮肥措施下土壤酶群分析[J]. 生态学杂志, 2021, 40(1): 123-130. |
Yuan M, Xing W, Luo M L, Wang Y F, Gu J X, Song J Q, Lou Y L. Analysis of soil enzyme under organic manure partial substitution for nitrogen fertilizer in paddy field of Northeast China[J]. Chinese Journal of Ecology, 2021, 40(1): 123-130. (in Chinese with English abstract) | |
[79] | Xiong Z Q, Xin G X, Tsurta H, Shen G Y, Shi S L, Du L J. Measurement of nitrous oxide e-missions from two rice-based cropping systems in China[J]. Nutrient Cycling in Agroecosystems, 2002, 64(1-2): 125-133. |
[80] | Nyamadzawo G, Wuta M, Nyamangara J, Smith J L, Rees R M. Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management[J]. Nutrient Cycling in Agroecosystems, 2014, 100(2): 161-175. |
[81] | Shahzad K, Akmal M. Yield performance of wheat under split n application rates and timing[J]. Sarhad Journal of Agriculture, 2017, 33: 350-356. |
[82] | Zhang Z, Chen G, Yu X, Liang D, Xu C, Ji C, Wang L, Ma H, Wang J. A slow-release fertilizer containing cyhalofop-butyl reduces N2O emissions by slowly releasing nitrogen and down-regulating the relative abundance of nirK[J]. Science of the Total Environment, 2024, 906: 167493. |
[83] | Liu G, Yu H, Ma J, Xu H, Wu Q, Yang J, Zhuang Y. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields[J]. Science of the Total Environment, 2015, 518: 209-216. |
[84] | Shaghaleh H, Zhu Y, Shi X, Alhaj Hamoud Y, Ma C. Co-effects of nitrogen fertilizer and straw-decomposing microbial inoculant on decomposition and transformation of field composted wheat straw[J]. Life, 2023, 13(10): 1993. |
[85] | Sun T, Liu Y, Wu S, Zhang J Z, Qu B, Xu J G. Effects of background fertilization followed by co-application of two kinds of bacteria on soil nutrient content and rice yield in Northeast China[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(2): 154-162. |
[86] | Kalkhajeh Y K, He Z, Yang X, Lu Y, Zhou J, Gao H J, Ma C. Co-application of nitrogen and straw-decomposing microbial inoculant enhanced wheat straw decomposition and rice yield in a paddy soil[J]. Journal of Agriculture and Food Research, 2021, 4: 100134. |
[87] | 马煜春, 周伟, 刘翠英, 孙丽英, 杨波, 郑向群. 秸秆腐熟剂对秸秆还田稻田CH4和N2O排放的影响[J]. 生态与农村环境学报, 2017, 33(2): 159-165. |
Ma Y C, Zhou W, Liu C Y, Sun L Y, Yang B, Zheng X Q. Effects of straw decomposing inoculants on methane and nitrous oxide emission in paddy fields incorporated with straw[J]. Journal of Ecology and Rural Environment, 2017, 33(2): 159-165. (in Chinese with English abstract) | |
[88] | 刘刚, 庄义庆, 杨敬辉, 吴琴燕, 马静, 徐华. 腐秆剂与秸秆配施对稻田N2O排放的影响[J]. 环境科学学报, 2014, 34(3): 736-741. |
Liu G, Zhuang Y Q, Yang J H, Wu Q Y, Ma J, Xu H. Effects of incorporation of straw treated with straw decomposing microbial inoculants on nitrous oxide emission from paddy field[J]. Acta Sciences Circumstantiae, 2014, 34(3): 736-741. (in Chinese with English abstract) | |
[89] | An Y, Jiao X, Gu Z, Shi C M, Liu K H. Effects of straw return and aeration on oxygen status and redox environment in flooded soil[J]. Soil and Water Research, 2022, 17(1): 29-35. |
[90] | 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯, 刘守坎, 金千瑜, 朱练峰. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响[J]. 中国农业科学, 2021, 54(7): 1525-1536. |
Hu J J, Zhong C, Hu Z H, Zhang J H, Cao X C, Liu S K, Jin Q Y, Zhou L F. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristic of rice[J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536. (in Chinese with English abstract) | |
[91] | 胡锦辉, 薛利红, 钱聪, 薛利祥, 曹帅. 增氧对不同秸秆还田稻田田面水养分动态及温室气体排放的影响[J]. 环境科学, 2023, 44(4): 2348-2355. |
Hu J H, Xue L H, Qian C, Xue L X, Cao S. Effects of aeration on surface water nutrient dynamics and greenhouse gas emissions in different straw returning paddy fields[J]. Environmental Science, 2023, 44(4): 2348-2355. (in Chinese with English abstract) |
[1] | 卢椰子, 邱结华, 蒋楠, 寇艳君, 时焕斌. 稻瘟病菌效应子研究进展[J]. 中国水稻科学, 2025, 39(3): 287-294. |
[2] | 王雅宣, 王新峰, 杨后红, 刘芳, 肖晶, 蔡玉彪, 魏琪, 傅强, 万品俊. 稻飞虱适应水稻抗性机制的研究进展[J]. 中国水稻科学, 2025, 39(3): 306-321. |
[3] | 黄涛, 魏兆根, 陈玘, 程泽, 刘欣, 王广达, 胡珂鸣, 谢文亚, 陈宗祥, 冯志明, 左示敏. 水稻类病斑突变体lm52的基因克隆及其广谱抗病性分析[J]. 中国水稻科学, 2025, 39(3): 322-330. |
[4] | 马顺婷, 胡运高, 高方远, 刘利平, 牟昌铃, 吕建群, 苏相文, 刘松, 梁毓玉, 任光俊, 郭鸿鸣. 水稻真核翻译起始因子OseIF6.2调控粒型的功能研究[J]. 中国水稻科学, 2025, 39(3): 331-342. |
[5] | 张彬涛, 刘聪聪, 郭明亮, 杨绍华, 吴世强, 郭龙彪, 朱义旺. 水稻OsDR8基因的稻瘟病抗性评价及优异单倍型鉴定[J]. 中国水稻科学, 2025, 39(3): 343-351. |
[6] | 韦新宇, 曾跃辉, 肖长春, 黄建鸿, 阮宏椿, 杨旺兴, 邹文广, 许旭明. 水稻康丰B抗稻瘟病基因Pi-kf2(t)的克隆与功能验证[J]. 中国水稻科学, 2025, 39(3): 352-364. |
[7] | 李文奇, 许扬, 王芳权, 朱建平, 陶亚军, 李霞, 范方军, 蒋彦婕, 陈智慧, 杨杰. 广谱抗稻瘟病基因PigmR的KASP标记开发及应用[J]. 中国水稻科学, 2025, 39(3): 365-372. |
[8] | 韦还和, 汪璐璐, 马唯一, 张翔, 左博源, 耿孝宇, 朱旺, 朱济邹, 孟天瑶, 陈英龙, 高平磊, 许轲, 戴其根. 盐−旱复合胁迫下粳稻品种南粳9108籽粒灌浆特性及其与产量形成的关系[J]. 中国水稻科学, 2025, 39(3): 373-386. |
[9] | 沈智达, 余秋华, 张斌, 曹玉东, 王少华, 王红飞, 伍永清, 戴志刚, 李小坤. 磷肥施用量对湖北省直播水稻产量、磷素积累及利用率的影响[J]. 中国水稻科学, 2025, 39(3): 399-411. |
[10] | 何勇, 张诗骞, 王志成, 詹逍康, 丁一可, 刘晓瑞, 马素素, 田志宏. 印度梨形孢与复合肥组合施用对水稻机插秧秧苗素质的影响[J]. 中国水稻科学, 2025, 39(3): 412-422. |
[11] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略[J]. 中国水稻科学, 2025, 39(2): 143-155. |
[12] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展[J]. 中国水稻科学, 2025, 39(2): 156-170. |
[13] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展[J]. 中国水稻科学, 2025, 39(2): 171-186. |
[14] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性[J]. 中国水稻科学, 2025, 39(2): 187-196. |
[15] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究[J]. 中国水稻科学, 2025, 39(2): 197-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||