中国水稻科学 ›› 2025, Vol. 39 ›› Issue (2): 187-196.DOI: 10.16819/j.1001-7216.2025.240107
冯涛1,2,#, 张朝阳2,#, 黄新妮1, 王月1, 钟旭志1, 冯志明3, 刘欣3, 左示敏3,*(), 欧阳寿强1,2,*(
)
收稿日期:
2024-01-14
修回日期:
2024-02-28
出版日期:
2025-03-10
发布日期:
2025-03-19
通讯作者:
* email: sqouyang@zjnu.edu.cn; smzuo@yzu.edu.cn作者简介:
#共同第一作者
基金资助:
FENG Tao1,2,#, ZHANG Zhaoyang2,#, HUANG Xinni1, WANG Yue1, ZHONG Xuzhi1, FENG Zhiming3, LIU Xin3, ZUO Shimin3,*(), OUYANG Shouqiang1,2,*(
)
Received:
2024-01-14
Revised:
2024-02-28
Online:
2025-03-10
Published:
2025-03-19
Contact:
* email: sqouyang@zjnu.edu.cn; smzuo@yzu.edu.cnAbout author:
#These authors contributed equally to this work
摘要:
【目的】纹枯病是水稻上的重要病害,严重影响稻米品质和产量。在感病的粳型常规水稻品种徐稻3号和高抗籼粳交后代群体YSBR1中,Osa-miR166i-3p响应立枯丝核菌(Rhizoctonia solani)的侵染。明确Osa-miR166i-3p在水稻抗纹枯病过程中发挥的作用及其分子机制,同时探究下游基因可能涉及的通路具有重要意义。【方法】通过构建Osa-miR166i-3p的敲除和过表达载体,使用农杆菌转化法创制徐稻3号背景下的转基因植株,通过测序及检测Osa-miR166i-3p表达水平验证转基因植株真实性。在温室环境对筛选后的植株进行纹枯病菌接种,统计病斑长度,同时对大田环境下正常生长的转基因植株及对照进行主要农艺性状考察。选取立枯丝核菌接种后0 h、8 h、16 h的水稻叶鞘组织构建文库进行RNA-seq分析,对Osa-miR166i-3p的生物学功能进行研究。【结果】与徐稻3号相比,在敲除植株中Osa-miR166i-3p表达水平明显降低,在过表达植株中则明显升高。接种立枯丝核菌后,Osa-miR166i-3p敲除植株病斑长度增加,对纹枯病的抗性下降;过表达植株病斑长度减小,对纹枯病的抗性增强。大田中转基因植株及对照的株高、穗长、每穗枝梗数、千粒重的统计结果没有显著差异,表明过表达和敲除Osa-miR166i-3p不影响水稻的农艺性状。富集分析结果显示,在接种立枯丝核菌8 h后的Osa-miR166i-3p过表达植株中,多个过氧化物酶基因被诱导表达。【结论】综上所述,Osa-miR166i-3p主要通过调节植物第三类过氧化物酶相关基因的表达,影响水稻中活性氧的积累,正调控水稻纹枯病抗性,可为提高水稻抗病性提供新思路。
冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性[J]. 中国水稻科学, 2025, 39(2): 187-196.
FENG Tao, ZHANG Zhaoyang, HUANG Xinni, WANG Yue, ZHONG Xuzhi, FENG Zhiming, LIU Xin, ZUO Shimin, OUYANG Shouqiang. Osa-miR166i-3 Positively Regulates Resistance to Sheath Blight Through Mediating the Accumulation of Reactive Oxygen Species[J]. Chinese Journal OF Rice Science, 2025, 39(2): 187-196.
引物 Primer | 序列 Sequence(5’-3’) | 引物用途 Usage | |
---|---|---|---|
OsmiR166KO F | GCCGATTGAGAGAGATAGGTGTT | 构建Osa-miR166i-3p敲除载体 | |
OsmiR166KO R | AAACAACACCTATCTCTCTCAAT | Constructing a knockout vector for Osa-miR166i-3p | |
OsmiR166OE F | GATATCCGTTGTGGTCGTAACCTTCT GCACTAGGTACC | 构建Osa-miR166i-3p过表达载体 Constructing an overexpression vector for Osa-miR166i-3p | |
OsmiR166OE R | CTCGAAGTAAGGAATGAGCCGCTCG ACCTGCAGGTACC | ||
OsmiR166 Fq | CGTTAGCTTTGCCTTTTGTT | 转基因及对照植株中Osa-miR166i-3p表达 | |
OsmiR166 Rq | GGGCTGGTTTCACTTTCATA | Expression of Osa-miR166i-3p in transgenic and control plants | |
OsmiR166 RT | GTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACGAGGAA | 水稻基因组DNA反转录为Osa-miR166i-3p Reverse transcription of rice genomic DNA into Osa-miR166i-3p | |
OsmiR166-F | GCGGCGGTCGGATCAGGCTTCA | ||
Universal primer | GTGCAGGGTCCGAGGT | ||
Os18S rRNA F | CTACGTCCCTGCCCTTTGTACA | 差异表达基因水平检测的内参基因 | |
Os18S rRNA R | ACACTTCACCGGACCATTCAA | Internal reference genes for detection of differentially expressed gene levels | |
Os06g35520 Fq | GATTGCTTCGTCAATGGATG | 转录组测序中差异表达基因表达水平检测 Detection of differentially expressed gene levels in transcriptome sequencing | |
Os06g35520 Rq | GCCTCCACCTGCGTCTTGAT | ||
Os01g73200 Fq | ACTTCCACGACTGCTTCGTC | ||
Os01g73200 Rq | GGAGCAGGACACGACGGTGT | ||
Os07g47990 Fq | AGTCCTGTTGCTCTTGTGTC | ||
Os07g47990 Rq | AAGCAGTCATGGAAGTGAAG | ||
Os12g02080 Fq | AGCTTCTACTCGTACTCGTG | ||
Os12g02080 Rq | GATGGCGTCGATCACCTCAA |
表1 本研究中使用的引物
Table 1. Primers used in this study.
引物 Primer | 序列 Sequence(5’-3’) | 引物用途 Usage | |
---|---|---|---|
OsmiR166KO F | GCCGATTGAGAGAGATAGGTGTT | 构建Osa-miR166i-3p敲除载体 | |
OsmiR166KO R | AAACAACACCTATCTCTCTCAAT | Constructing a knockout vector for Osa-miR166i-3p | |
OsmiR166OE F | GATATCCGTTGTGGTCGTAACCTTCT GCACTAGGTACC | 构建Osa-miR166i-3p过表达载体 Constructing an overexpression vector for Osa-miR166i-3p | |
OsmiR166OE R | CTCGAAGTAAGGAATGAGCCGCTCG ACCTGCAGGTACC | ||
OsmiR166 Fq | CGTTAGCTTTGCCTTTTGTT | 转基因及对照植株中Osa-miR166i-3p表达 | |
OsmiR166 Rq | GGGCTGGTTTCACTTTCATA | Expression of Osa-miR166i-3p in transgenic and control plants | |
OsmiR166 RT | GTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACGAGGAA | 水稻基因组DNA反转录为Osa-miR166i-3p Reverse transcription of rice genomic DNA into Osa-miR166i-3p | |
OsmiR166-F | GCGGCGGTCGGATCAGGCTTCA | ||
Universal primer | GTGCAGGGTCCGAGGT | ||
Os18S rRNA F | CTACGTCCCTGCCCTTTGTACA | 差异表达基因水平检测的内参基因 | |
Os18S rRNA R | ACACTTCACCGGACCATTCAA | Internal reference genes for detection of differentially expressed gene levels | |
Os06g35520 Fq | GATTGCTTCGTCAATGGATG | 转录组测序中差异表达基因表达水平检测 Detection of differentially expressed gene levels in transcriptome sequencing | |
Os06g35520 Rq | GCCTCCACCTGCGTCTTGAT | ||
Os01g73200 Fq | ACTTCCACGACTGCTTCGTC | ||
Os01g73200 Rq | GGAGCAGGACACGACGGTGT | ||
Os07g47990 Fq | AGTCCTGTTGCTCTTGTGTC | ||
Os07g47990 Rq | AAGCAGTCATGGAAGTGAAG | ||
Os12g02080 Fq | AGCTTCTACTCGTACTCGTG | ||
Os12g02080 Rq | GATGGCGTCGATCACCTCAA |
图1 R. solani侵染抑制Osa-miR166i-3p表达 A: R. solani侵染徐稻3号和YSBR1的纹枯病症状;B: R. solani侵染徐稻3号和YSBR1后不同天数病斑长度;C: Osa-miR166i-3p Northern印迹分析。将受R. solani侵染后5、10、20 h的徐稻3号和YSBR1叶鞘组织,分别命名为XT5、XT10、XT20和YT5、YT10、YT20;清水处理后5、10、20 h的叶鞘组织,分别命名为XC5、XC10、XC20和YC5、YC10、YC20。
Fig. 1. Expression level of Osa-miR166i-3p was suppressed by R. solani infection A, Symptoms of Xudao 3 and YSBR1 infected by R. solani. B, Lesion length of Xudao 3 and YSBR1 at different days after R. solani infection. C, Northern Blot of Osa-miR166i-3p. The sheath tissues of Xudao 3 and YSBR1 infected by R. solani at 5, 10, and 20 hours were designated as XT5, XT10, XT20 and YT5, YT10, YT20, respectively. The sheath tissues of Xudao 3 and YSBR1 treated with water at 5, 10, and 20 hours were designated as XC5, XC10, XC20 and YC5, YC10, YC20, respectively.
图2 Osa-miR166i-3p转基因植株创制及表达分析 A: Osa-miR166i-3p敲除株系测序结果,蓝框表示间隔相邻基序,红框表示成熟miRNA的序列;B: Osa-miR166i-3p过表达(OE_1~OE_4)和敲除植株(KO_1~KO_4)中相对表达水平,误差线表示标准差,样本数为3,不同小写字母表示差异达显著水平(P<0.05)。
Fig. 2. Generation and expression analysis of Osa-miR166i-3p transgenic lines A, Sequencing results of Osa-miR166i-3p knockout lines. Blue box represents predicted protospacer adjacent motifs (PAM), and red boxes represent mature miRNA sequence. B, Relative expression levels of Osa-miR166i-3p in overexpression(OE_1-OE_4) and knockout lines(KO_1-KO_4). Error bars represent SD, n=3. Different lowercase letters indicate significant difference (P<0.05).
图3 过表达Osa-miR166i-3p增加感病品种徐稻3号对纹枯病的抗性 A: R. solani接种5、10、15 d后,不同Osa-miR166i-3p株系与徐稻3号病斑。比例尺为10 cm;B,C: R. solani接种5、10、15 d后,Osa-miR166i-3p过表达株系(B)和敲除株系(C)与徐稻3号病斑长度。误差线表示标准差,样本大小为20,小写字母表示差异显著(P<0.05)。
Fig. 3. Overexpression of Osa-miR166i-3p enhances sheath blight resistance of Xudao 3 A, Lesion of Osa-miR166i-3p lines as compared to Xudao 3 at 5, 10, 15 day after infection by R. solani. Bars=10 cm. B and C, Lesion length of Osa-miR166i-3p_OE(B) and Osa-miR166i-3p_KO(C) as compared to Xudao 3 at 5, 10,15 days after infection by R. solani. Error bars represent SD, n=20, Different lowercase letters indicate significant difference (P<0.05).
图4 Osa-miR166i-3p转基因植株与对照主要农艺性状比较 A~E为Osa-miR166i-3p过表达株系、Osa-miR166i-3p敲除株系与对照徐稻3号(Xudao 3)株高(A)、穗长(B)、每穗枝梗数(C)、穗数(D)、千粒重(E)。误差线表示标准差,n=20,相同小写字母表示差异不显著(P≥0.05)。F,G为Osa-miR166i-3p过表达株系、Osa-miR166i-3p敲除株系与徐稻3号穗长(F)和一次枝梗(G);H和I分别为Osa-miR166i-3p过表达株系、Osa-miR166i-3p敲除株系与徐稻3号植株。
Fig. 4. Comparison of main agronomic traits of Osa-miR166i-3p lines and Xudao 3 A-E, Plant height(A), panicle length(B), No. of primary branches per panicle(C), panicle number(D) and 1000-grain weight(E) of Osa-miR166i-3p_OE, Osa-miR166i-3p_KO and Xudao 3. Error bars represent SD, n=20; Common lowercase letters indicate no significant difference (P≥0.05). F and G, Photograph of panicle length (F) and No. of primary branches per panicle (G) of Osa-miR166i-3p_OE, Osa-miR166i-3p_KO and Xudao 3. H, Photograph of plant height of Osa-miR166i-3p_OE and Xudao 3. I, Photograph of plant height of Osa-miR166i-3p_KO and Xudao 3.
图5 Osa-miR166i-3p过表达株系转录组差异表达基因分析 对接种R. solani后8和16 h的Osa-miR166i-3p过表达株系进行差异表达基因的KEGG通路富集分析。
Fig. 5. Transcriptome analysis of Osa-miR166i-3p_OE lines for differentially expressed genes KEGG enrichment analysis of differentially expressed genes in the Osa-miR166i-3p overexpression lines infected by R. solani at 8 h and 16 h.
图6 R. solani诱导Osa-miR166i-3p过表达系中多个过氧化物酶相关基因表达 A: R. solani接种0 h、8 h、16 h后Osa-miR166i-3p过表达株系差异表达基因数目;B: R. solani接种0 h、8 h、16 h后Os07g47990, Os01g73200, Os06g35520, Os12g02080在Osa-miR166i-3p过表达株系中相对表达水平。
Fig. 6. Expression levels of multiple peroxidase related genes induced by R. solani in the Osa-miR166i-3p _OE lines A, Number of differentially expressed genes in Osa-miR166i-3p_OE lines infected by R. solani at 0 h, 8 h, and 16 h. B, Relative expression level of Os07g47990, Os01g73200, Os06g35520 and Os12g02080 in Osa-miR166i-3p_OE lines infected by R. solani at 0 h, 8 h, and 16 h.
[1] | Taheri P, Tarighi S. Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani[J]. European Journal of Plant Pathology, 2011, 129: 511-528. |
[2] | Zhang C Q, Liu Y H, Ma X Y, Feng Z, Ma Z H. Characterization of sensitivity of Rhizoctonia solani, causing rice sheath blight, to mepronil and boscalid[J]. Crop Protection, 2009, 28(5): 381-386. |
[3] | Margani R, Hadiwiyono, Widadi S. Utilizing bacillus to inhibit the growth and infection by sheath blight pathogen, Rhizoctonia solani in rice[J]. IOP Conference Series: Earth and Environmental Science, 2018, 142(1): 012070. |
[4] | Taheri P, Gnanamanickam S, Hofte M. Characterization, genetic structure, and pathogenicity of Rhizoctonia spp. associated with rice sheath diseases in India[J]. Phytopathology, 2007, 97(3): 373-383. |
[5] | Jasrotia S, Salgotra R K, Sharma M. Efficacy of bioinoculants to control of bacterial and fungal diseases of rice (Oryza sativa L.) in northwestern Himalaya[J]. Brazilian Journal of Microbiology, 2021, 52(2): 687-704. |
[6] | Ma Y, Wang Y R, He Y H, Ding Y Y, An J X, Zhang Z J, Zhao W B, Hu Y M, Liu Y Q. Drug repurposing strategy part 1: From approved drugs to agri-bactericides leads[J]. The Journal of Antibiotics, 2023, 76(1): 27-51. |
[7] | Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Anti-virulence strategy of novel dehydroabietic acid derivatives: Design, synthesis, and antibacterial evaluation[J]. International Journal of Molecular Sciences, 2023, 24(3): 2897-2913. |
[8] | Ontoy J C, Shrestha B, Karki H S, Barphagha I, Angira B, Famoso A, Ham J H. Genetic characterization of the partial disease resistance of rice to bacterial panicle blight and sheath blight by combined QTL linkage and QTL-seq analyses[J]. Plants, 2023, 12(3): 559-577. |
[9] | Zuo S M, Zhang L, Wang H, Yin Y J, Zhang Y F, Chen Z X, Ma Y Y, Pan X B. Prospect of the QTL-qSB-9TQ utilized in molecular breeding program of japonica rice against sheath blight[J]. Journal of Genetics and Genomics, 2008, 35(8): 499-505. |
[10] | Tan C X, Ji X M, Yang Y, Pan X Y, Zuo S M, Zhang Y F, Zou J H, Chen Z X, Zhu L H, Pan X B. Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations[J]. Journal of Genetics and Genomics, 2005, 32(4): 399-405. |
[11] | Channamallikarjuna V, Sonah H, Prasad M, Rao G J N, Chand S, Upreti H C, Singh N K, Sharma T R. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice[J]. Molecular Breeding, 2010, 25(1): 155-166. |
[12] | 陈燕玲, 岑光莉, 孙婷婷, 尤垂淮, 阙友雄, 苏亚春. 植物几丁质酶和β-1,3-葡聚糖酶及其协同抗病性研究进展[J]. 农业生物技术学报, 2022, 30(7): 1394-1411. |
Chen Y L, Cen G L, Sun T T, You C H, Que Y X, Su Y C. Progress on plant chitinase and β-1, 3-glucanase and their synergistic function in disease resistance[J]. Journal of Agricultural Biotechnology, 2022, 30(7): 1394-1411. (in Chinese with English abstract) | |
[13] | Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5): 1485-1498. |
[14] | Peng X, Wang H, Jang J C, Xiao T, He H, Jiang D, Tang X. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1): 63-77. |
[15] | Borges F, Martienssen R A. The expanding world of small RNAs in plants[J]. Nature Reviews Molecular Cell Biology, 2015, 16(12): 727-741. |
[16] | Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. |
[17] | Weiberg A, Wang M, Lin F M, Zhao H, Zhang Z, Kaloshian I, Huang H D, Jin H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science, 2013, 342(6154): 118-123. |
[18] | Sunkar R, Chinnusamy V, Zhu J, Zhu J K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends in Plant Science, 2007, 12(7): 301-309. |
[19] | Wang Z, Xia Y, Lin S, Wang Y, Guo B, Song X, Ding S, Zheng L, Feng R, Chen S, Bao Y, Sheng C, Zhang X, Wu J, Niu D, Jin H, Zhao H. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. The Plant Journal, 2018, 95(4): 584-597. |
[20] | Feng T, Zhang Z Y, Gao P, Feng Z M, Zuo S M, Ouyang S Q. Suppression of rice Osa-miR444.2 improves the resistance to sheath blight in rice mediating through the phytohormone pathway[J]. International Journal of Molecular Sciences, 2023, 24(4): 3653-3665. |
[21] | Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis[J]. The Plant Journal, 2020, 102(5): 948-964. |
[22] | Cao W L, Cao X X, Zhao J H, Zhang Z Y, Feng Z M, Ouyang S Q, Zuo S M. Comprehensive characteristics of microRNA expression profile conferring to Rhizoctonia solani in rice[J]. Mathematical Research Letters, 2020, 27(2): 101-112. |
[23] | Ho T T, Zhou N, Huang J, Koirala P, Xu M, Fung R, Wu F, Mo Y Y. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines[J]. Nucleic Acids Research, 2015, 43(3): 17-28. |
[24] | 贺闽, 尹俊杰, 冯志明, 朱孝波, 赵剑华, 左示敏, 陈学伟. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 577-587. |
He M, Yin J J, Feng Z M, Zhu X B, Zhao J H, Zuo S M, Chen X W. Methods for evaluation of rice resistance to blast and sheath blight diseases[J]. Chinese Bulletin of Botany, 2020, 55(5): 577-587. (in Chinese with English abstract) | |
[25] | Robinson M D, McCarthy D J, Smyth G K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. |
[26] | Li Y, Li T T, He X R, Zhu Y, Feng Q, Yang X M, Zhou X H, Li G B, Ji Y P, Zhao J H, Zhao Z X, Pu M, Zhou S X, Zhang J W, Huang Y Y, Fan J, Wang W M. Blocking Osa- miR1871 enhances rice resistance against Magnaporthe oryzae and yield[J]. Plant Biotechnology Journal, 2022, 20(4): 646-659. |
[27] | Zhao Y T, Wang M, Wang Z M, Fang R X, Wang X J, Jia Y T. Dynamic and coordinated expression changes of rice small RNAs in response to Xanthomonas oryzae pv. oryzae[J]. Journal of Genetics and Genomics, 2015, 42(11): 625-637. |
[28] | Zhang J, Zhang H, Srivastava A K, Pan Y, Bai J, Fang J, Shi H, Zhu J K. Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiology, 2018, 176(3): 2082-2094. |
[29] | Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C. MicroRNA166 modulates cadmium tolerance and accumulation in rice[J]. Plant Physiology, 2018, 177(4): 1691-1703. |
[30] | Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1): 129-138. |
[31] | Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports, 2005, 24(5): 255-265. |
[32] | Liu X, Zhang Z. A double-edged sword: reactive oxygen species (ROS) during the rice blast fungus and host interaction[J]. The FEBS Journal, 2022, 289(18): 5505-5515. |
[33] | O'Brien J A, Daudi A, Finch P, Butt V S, Whitelegge J P, Souda P, Ausubel F M, Paul B G. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense[J]. Plant Physiology, 2012, 158(4): 2013-2027. |
[34] | Zhao L, Phuong L T, Luan M T, Fitrianti A N, Matsui H, Nakagami H, Noutoshi Y, Yamamoto M, Ichinose Y, Shiraishi T, Toyoda K. A class Ⅲ peroxidase PRX34 is a component of disease resistance in Arabidopsis[J]. Journal of General Plant Pathology, 2019, 85(4):1-8. |
[35] | Wally O, Punja Z K. Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over- expressing a rice cationic peroxidase[J]. Planta, 2010, 232(5): 1229-1239. |
[1] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略[J]. 中国水稻科学, 2025, 39(2): 143-155. |
[2] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展[J]. 中国水稻科学, 2025, 39(2): 156-170. |
[3] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展[J]. 中国水稻科学, 2025, 39(2): 171-186. |
[4] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究[J]. 中国水稻科学, 2025, 39(2): 197-208. |
[5] | 闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216[J]. 中国水稻科学, 2025, 39(2): 209-219. |
[6] | 徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇, 杨建昌. 不同耐低磷水稻品种的内源激素水平差异及其与产量和磷利用率的关系[J]. 中国水稻科学, 2025, 39(2): 231-244. |
[7] | 随晶晶, 赵桂龙, 金欣, 卜庆云, 唐佳琦. 水稻孕穗期耐冷调控的分子及生理机制研究进展[J]. 中国水稻科学, 2025, 39(1): 1-10. |
[8] | 任宁宁, 孙永建, 申聪聪, 朱双兵, 李慧菊, 张志远, 陈凯. 水稻中胚轴研究进展[J]. 中国水稻科学, 2025, 39(1): 11-23. |
[9] | 张丰勇, 应晓平, 张健, 杨隆维, 应杰政. 半矮秆基因sd1调控水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2025, 39(1): 24-32. |
[10] | 陈智慧, 陶亚军, 范方军, 许扬, 王芳权, 李文奇, 古丽娜尔·巴合提别克, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻抽穗期调控基因Hd6功能标记的开发及应用[J]. 中国水稻科学, 2025, 39(1): 47-54. |
[11] | 胡风越, 王健, 王春, 王克剑, 刘朝雷. 水稻DMP1、DMP2、DMP3基因突变体的创制及其单倍体诱导能力鉴定[J]. 中国水稻科学, 2025, 39(1): 55-66. |
[12] | 梁楚炎, 曾维, 王洁冰, 叶靖, 巫明明, 翟荣荣, 张小明, 张恒木, 叶胜海. 一个浙粳99短穗小粒突变体的鉴定及转录组分析[J]. 中国水稻科学, 2025, 39(1): 67-81. |
[13] | 陈书融, 朱练峰, 秦碧蓉, 王婕, 朱旭华, 田文昊, 朱春权, 曹小闯, 孔亚丽, 张均华, 金千瑜. 增氧灌溉下配施硝化抑制剂对水稻生长、产量和氮肥利用的影响[J]. 中国水稻科学, 2025, 39(1): 92-100. |
[14] | 吴猛, 倪川, 康钰莹, 毛雨欣, 叶苗, 张祖建. 水稻分蘖早发特性的品种间差异及其氮素响应[J]. 中国水稻科学, 2025, 39(1): 101-114. |
[15] | 王晓茜, 蔡创, 宋练, 周伟, 杨雄, 顾歆悦, 朱春梧. 开放式大气CO2浓度升高和温度升高对扬稻6号稻米品质的影响[J]. 中国水稻科学, 2025, 39(1): 115-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||