中国水稻科学 ›› 2025, Vol. 39 ›› Issue (1): 1-10.DOI: 10.16819/j.1001-7216.2025.231208
• 综述与专论 • 下一篇
随晶晶1, 赵桂龙2, 金欣3, 卜庆云3,*(), 唐佳琦3,*(
)
收稿日期:
2023-12-14
修回日期:
2024-01-15
出版日期:
2025-01-10
发布日期:
2025-01-14
通讯作者:
*email: buqingyun@iga.ac.cn;基金资助:
SUI Jingjing1, ZHAO Guilong2, JIN Xin3, BU Qingyun3,*(), TANG Jiaqi3,*(
)
Received:
2023-12-14
Revised:
2024-01-15
Online:
2025-01-10
Published:
2025-01-14
Contact:
*email: buqingyun@iga.ac.cn;摘要:
水稻孕穗期低温胁迫会破坏生殖器官功能,使花药发育受损、花粉育性降低,最终导致水稻结实率下降、产量降低。部分生长调节物质,如可溶性糖、活性氧、植物内源激素(脱落酸和赤霉素)的含量都与水稻孕穗期耐冷性密切相关。本文系统总结了水稻孕穗期低温胁迫对水稻花药发育的影响,生长调节物质的变化,以及水稻孕穗期耐冷QTL和克隆的孕穗期耐冷基因的功能解析,以期为水稻孕穗期耐冷品种育种改良和材料创制提供理论指导。
随晶晶, 赵桂龙, 金欣, 卜庆云, 唐佳琦. 水稻孕穗期耐冷调控的分子及生理机制研究进展[J]. 中国水稻科学, 2025, 39(1): 1-10.
SUI Jingjing, ZHAO Guilong, JIN Xin, BU Qingyun, TANG Jiaqi. Advances in Molecular and Physiological Mechanisms of Cold Tolerance Regulation of Rice at the Booting Stage[J]. Chinese Journal OF Rice Science, 2025, 39(1): 1-10.
QTL名称 QTL name | 染色体 Chromosome | 遗传功能验证 Genetic function verification | 物理位置 Physical position (bp) | 候选基因 Candidate gene | 参考文献Reference |
---|---|---|---|---|---|
qCTB8 | 8 | 无 No | 2900000―3100000 | LOC_Os08g44340 | [ |
qLTB3 | 3 | 无 No | 33540013―34653353 | LOC_Os03g57680 LOC_Os03g59200 | [ |
qCT-3-2 | 3 | 无 No | 1823958―2096096 | 无 No | [ |
qCTB10-2 | 10 | 无 No | 4892513―8990159 | LOC_Os10g11730 LOC_Os10g11770 LOC_Os10g11810 | [ |
qCTB7 | 7 | 有 Yes | 3866978―391073 | LOC_Os07g07690 | [ |
表1 水稻孕穗期关键耐冷QTL
Table 1. Key cold tolerance QTL of rice at the booting stage
QTL名称 QTL name | 染色体 Chromosome | 遗传功能验证 Genetic function verification | 物理位置 Physical position (bp) | 候选基因 Candidate gene | 参考文献Reference |
---|---|---|---|---|---|
qCTB8 | 8 | 无 No | 2900000―3100000 | LOC_Os08g44340 | [ |
qLTB3 | 3 | 无 No | 33540013―34653353 | LOC_Os03g57680 LOC_Os03g59200 | [ |
qCT-3-2 | 3 | 无 No | 1823958―2096096 | 无 No | [ |
qCTB10-2 | 10 | 无 No | 4892513―8990159 | LOC_Os10g11730 LOC_Os10g11770 LOC_Os10g11810 | [ |
qCTB7 | 7 | 有 Yes | 3866978―391073 | LOC_Os07g07690 | [ |
图1 孕穗期低温胁迫下不同调节因子对水稻耐冷性影响的模式图
Fig. 1. Model of effects of different growth regulatory factors on cold tolerance of rice under cold stress at the booting stage
基因名 Gene | 基因登录号 Gene ID | 优异功能位点 Excellent functional sites | 克隆方式 Cloning method | 参考文献 Reference |
---|---|---|---|---|
CTB1 | LOC_Os04g52830 | 无 None | 正向 Forward | [ |
APXa | LOC_Os03g17690 | 无 None | 反向 Reverse | [ |
CTB4a | LOC_Os04g04330 | SNP-2536(G> A) SNP-2511(C> T) SNP-1930(C> G) | 正向 Forward | [ |
bZIP73 | LOC_Os09g29820 | SNP+511(G> A; Lys> Glu) | 正向 Forward | [ |
LTT1 | LOC_Os05g06660 | 无 None | 正向 Forward | [ |
CTB2 | LOC_Os04g04254 | SNP+1222(G> A; Val> Ile) | 正向 Forward | [ |
WRKY53 | LOC_Os05g27730 | 无 None | 反向 Reverse | [ |
MKKK70 | LOC_Os01g50410 | 无 None | 反向 Reverse | [ |
MAPK3 | LOC_Os03g17700 | SNP-1850(T> C) SNP-820(G> A) SNP-807(A> G) | 正向 Forward | [ |
LEA9 | LOC_Os01g21250 | SNP-776(G> A) | 正向 Forward | [ |
qCTB7 | LOC_Os07g07690 | SNP-1110(G> T) SNP-1074(G> A) SNP+4037(C> G; Pro> Arg) | 正向 Forward | [ |
COG3 | LOC_Os11g44680 | SNP-793(C> A) SNP-663(A> G) SNP-379(-> G) SNP-63(G> A) | 正向 Forward | [ |
表2 已克隆的水稻孕穗期关键耐冷基因
Table 2. Key cold tolerance gene has been cloned in rice at the booting stage
基因名 Gene | 基因登录号 Gene ID | 优异功能位点 Excellent functional sites | 克隆方式 Cloning method | 参考文献 Reference |
---|---|---|---|---|
CTB1 | LOC_Os04g52830 | 无 None | 正向 Forward | [ |
APXa | LOC_Os03g17690 | 无 None | 反向 Reverse | [ |
CTB4a | LOC_Os04g04330 | SNP-2536(G> A) SNP-2511(C> T) SNP-1930(C> G) | 正向 Forward | [ |
bZIP73 | LOC_Os09g29820 | SNP+511(G> A; Lys> Glu) | 正向 Forward | [ |
LTT1 | LOC_Os05g06660 | 无 None | 正向 Forward | [ |
CTB2 | LOC_Os04g04254 | SNP+1222(G> A; Val> Ile) | 正向 Forward | [ |
WRKY53 | LOC_Os05g27730 | 无 None | 反向 Reverse | [ |
MKKK70 | LOC_Os01g50410 | 无 None | 反向 Reverse | [ |
MAPK3 | LOC_Os03g17700 | SNP-1850(T> C) SNP-820(G> A) SNP-807(A> G) | 正向 Forward | [ |
LEA9 | LOC_Os01g21250 | SNP-776(G> A) | 正向 Forward | [ |
qCTB7 | LOC_Os07g07690 | SNP-1110(G> T) SNP-1074(G> A) SNP+4037(C> G; Pro> Arg) | 正向 Forward | [ |
COG3 | LOC_Os11g44680 | SNP-793(C> A) SNP-663(A> G) SNP-379(-> G) SNP-63(G> A) | 正向 Forward | [ |
[1] | Roy P, Orikasa T, Okadome H, Nakamura N, Shiina T. Processing conditions, rice properties, health and environment[J]. International Journal of Environmental Research and Public Health, 2011, 8(6): 1957-1976. |
[2] | Khush G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Molecular Biology, 1997, 35: 25-34. |
[3] | 罗玉坤, 朱智伟, 陈能, 段彬伍, 章林平. 中国主要稻米的粒型及其品质特性[J]. 中国水稻科学, 2004, 18(2): 49-53. |
Luo Y K, Zhu Z W, Chen N, Duan B W, Zhang L P. Grain types and related characteristics of rice in China[J]. Chinese Journal of Rice Science, 2004, 18(2): 49-53. (in Chinese with English abstract) | |
[4] | Shi S J, Wang E T, Li C X, Zhou H, Cai M L, Cao C G, Jiang Y. Comprehensive evaluation of 17 qualities of 84 types of rice based on principal component analysis[J]. Foods, 2021, 10(11): 2883. |
[5] | 胡培松, 翟虎渠, 万建民. 中国水稻生产新特点与稻米品质改良[J]. 中国农业科技导报, 2002(4): 33-39. |
Hu P S, Zhai H Q, Wan J M. New characteristics of rice production and quality improvement in China[J]. Journal of Agricultural Science and Technology, 2002(4): 33-39. (in Chinese with English abstract) | |
[6] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020. |
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020. (in Chinese) | |
[7] | Gough N R. Rice that tolerates a chill[J]. Science Signaling, 2015, 8(370): ec76-ec76. |
[8] | 杨荣教, 郭梦逸, 王白昌, 余选礼, 王白, 徐津. 不同海拔条件下籼、粳稻生长发育差异分析[J/OL]. 分子植物育种, https://link.cnki.net/urlid/46.1068.S.20230831.2009.014 |
Yang R J, Guo M Y, Wang B C, Yu X L, Wang B, Xu J. Analysis of growth and development differences between indica and japonica rice under different altitude conditions[J/OL]. Molecular Plant Breeding, https://link.cnki.net/urlid/46.1068.S.20230831.2009.014. (in Chinese with English abstract) | |
[9] | 杨荣教, 雷娟, 王白昌, 余选礼, 王白, 徐津. 不同海拔条件下籼粳稻产量和品质性状的差异分析[J/OL]. 分子植物育种, https://link.cnki.net/urlid/46.1068.S.20230811.1332.002. |
Yang R J, Lei J, Wang B C, Yu X L, Wang B, Xu J. Difference analysis of yield and quality traits of indica and japonica rice under different altitude conditions[J/OL]. Molecular Plant Breeding, https://link.cnki.net/urlid/46.1068.S.20230811.1332.002. (in Chinese with English abstract) | |
[10] | 李文枫, 毕洪文, 黄峰华, 李晓晨, 李金霞, 张妍, 刘艳霞. 黑龙江省水稻产业发展现状及展望[J]. 农业展望, 2020, 16(12): 48-53. |
Li W F, Bi H W, Huang F H, Li X C, Li J X, Zhang Y, Liu Y X. Current status and prospects of rice industry development in Heilongjiang Province[J]. Agricultural Outlook, 2020, 16 (12): 48-53. (in Chinese) | |
[11] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021. |
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021. (in Chinese) | |
[12] | Liu Z X, Deng H B. Development of genetic and QTLs analysis for cold tolerance in rice[J]. Chinese Agricultural Science Bulletin, 2009, 25: 45-50. |
[13] | 马建勇, 许吟隆, 潘婕. 东北地区农业气象灾害的趋势变化及其对粮食产量的影响[J]. 中国农业气象, 2012, 33(2): 283-288. |
Ma J Y, Xu Y L, Pan J. Analysis of agro-meteorological disasters tendency variation and the impacts on grain yield over Northeast China[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 283-288. (in Chinese with English abstract) | |
[14] | 张养才, 何维勋, 李世奎. 中国农业气象灾害概论[M]. 北京: 气象出版社, 1991: 25-30. |
Zhang Y C, He W X, Li S K. Introduction to agricultural meteorological disasters in China[M]. Beijing: Meteorological Press, 1991: 25-30. (in Chinese) | |
[15] | 王书裕. 作物低温冷害研究[M]. 北京: 气象出版社, 1995, 116-120. |
Wang S Y. Research on low-temperature chilling damage to crops[M]. Beijing: Meteorological Press, 1995: 116-120. (in Chinese) | |
[16] | 王绍武, 马树庆, 陈莉, 黄建斌. 低温冷害[M]. 北京: 气象出版社, 2009: 23-40. |
Wang S W, Ma S Q, Chen L, Huang J B. Cold damage[M]. Beijing: Meteorological Press, 2009: 23-40. (in Chinese) | |
[17] | 张莉萍, 黄少锋, 王丽萍, 刘颖, 沈巧梅. 2002年黑龙江省东部水稻冷害解析[J]. 黑龙江农业科学, 2004(1): 39-42. |
Zhang L P, Huang S F, Wang L P, Liu Y, Shen Q M. Analysis of chilling damage to rice in eastern Heilongjiang Province in 2002[J]. Heilongjiang Agricultural Sciences, 2004(1): 39-42. (in Chinese with English abstract) | |
[18] | Mamun E A, Cantrill L C, Overall R L, Sutton B G. Mechanism of low-temperature-induced pollen failure in rice[J]. Cell Biology International, 2010, 34(5): 469-476. |
[19] | Xu L M, Zhou L, Zeng Y W, Wang F M, Zhang H L, Shen S Q, Li Z C. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line[J]. Plant Science, 2008, 174(3): 340-347. |
[20] | Li S C, Li W B, Huang B, Cao X M, Zhou X Y, Ye S M, Li C B, Gao F Y, Zou T, Xie K L, Ren Y, Ai P, Tang Y F, Li X M, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth[J]. Nature Communications, 2013, 4: 2793. |
[21] | Nishiyama I. Male sterility caused by cooling treatment at the meiotic stage in rice plants: IV. Respiratory activity of anthers following cooling treatments at the meiotic stage[J]. Japanese Journal of Crop Science, 1970, 39: 65-70. |
[22] | Satake T. Male sterility caused by cooling treatment at the young microspore stage in rice plants[J]. Japanese Journal of Crop Science, 1991, 60: 523-528. |
[23] | Yamamori K, Ogasawara K, Ishiguro S, Koide Y, Takamure I, Fujino K, Sato Y, Kishima Y. Revision of the relationship between anther morphology and pollen sterility by cold stress at the booting stage in rice[J]. Annals of Botany, 2021, 128(5): 559-575. |
[24] | Saito K, Miura K, Nagano K, Hayano-Saito Y, Araki H, Kato A. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length[J]. Theoretical and Applied Genetics, 2001, 103: 862-868. |
[25] | Shi Y, Guo E, Cheng X, Wang L, Jiang S, Yang X, Ma H, Zhang T, Li T, Yang X. Effects of chilling at different growth stages on rice photosynthesis, plant growth, and yield[J]. Environmental and Experimental Botany, 2022, 203: 105045. |
[26] | Gothandam K M, Kim E S, Chung Y Y. Ultrastructural study of rice tapetum under low-temperature stress[J]. Journal of Plant Biology, 2007, 50: 396-402. |
[27] | Liang Z M, Luo J, Wei B, Liao Y C, Liu Y. Trehalose can alleviate decreases in grain number per spike caused by low-temperature stress at the booting stage by promoting floret fertility in wheat[J]. Journal of Agronomy and Crop Science, 2021, 207(4): 717-732. |
[28] | Wu L B, Eom J S, Isoda R, Li C H, Char S N, Luo D P, Schepler-Luu V, Nakamura M, Yang B, Frommer W B. OsSWEET11b, a potential sixth leaf blight susceptibility gene involved in sugar transport-dependent male fertility[J]. New Phytologist, 2022, 234(3): 975-989. |
[29] | Oliver S N, van Dongen J T, Alfred S C, Mamun E A, Zhao X C, Saini H S, Fernandes S F, Blanchard C L, Sutton B G, Geigenberger P, Dennis E S, Dolferus R. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility[J]. Plant Cell and Environment, 2005, 28(12): 1534-1551. |
[30] | Mamun E A, Alfred S, Cantrill L C, Overall R L, Sutton B G. Effects of chilling on male gametophyte development in rice[J]. Cell Biology International, 2006, 30(7): 583-591. |
[31] | Oliver S N, Dennis E S, Dolferus R. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice[J]. Plant and Cell Physiology, 2007, 48(9): 1319-1330. |
[32] | Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi- Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H, Watanabe M, Matsuoka M, Higashitani A. Reduction of gibberellin by low temperature disrupts pollen development in rice[J]. Plant Physiology, 2014, 164(4): 2011-2019. |
[33] | Liu C T, Schläppi M R, Mao B G, Wang W, Wang A J, Chu C C. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal, 2019, 17(9): 1834-1849. |
[34] | Mittal D, Madhyastha D A, Grover A. Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons[J]. PLoS One, 2012, 7: e40899. |
[35] | Chakraborty A, Bhattacharjee S. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars[J]. Journal of Plant Physiology, 2015, 176: 65-77. |
[36] | El-Esawi M A, Alayafi A A. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.)[J]. Genes (Basel), 2019, 10(1): 56. |
[37] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
Liu C T, Wang W, Mao B G, Chu C C. Cold stress tolerance in rice: Physiological changes, molecular mechanism, and future prospects[J]. Hereditas(Beijing) 2018, 40(3): 171-185. (in Chinese with English abstract) | |
[38] | Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa[J]. Plant Cell Reports, 2011, 30(3): 399-406. |
[39] | Suzuki K, Aoki N, Matsumura H, Okamura M, Ohsugi R, Shimono H. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets[J]. Plant Cell and Environment, 2015, 38(7): 1255-1274. |
[40] | Tovuu A, Zulfugarov I S, Wu G X, Kang I S, Kim C, Moon B Y, An G, Lee C H. Rice mutants deficient in ω-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures[J]. Plant Physiology and Biochemistry, 2016, 109: 525-535. |
[41] | Luo D P, Xu H, Liu Z L, Guo J X, Li H Y, Chen L T, Fang C, Zhang Q Y, Bai M, Yao N, Wu H, Wu H, Ji C H, Zheng H Q, Chen Y L, Ye S, Li X Y, Zhao X C, Li R Q, Liu Y G. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice[J]. Nature Genetics, 2013, 45(5): 573-577. |
[42] | Ko S S, Li M J, Ho Y C, Yu C P, Yang T T, Lin Y J, Hsing H C, Chen T K, Jhong C M, Li W H, Sun-Ben Ku M. Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR during anther tapetal and pollen development[J]. Journal of Experimental Botany, 2021, 72(13): 4888-4903. |
[43] | Choudhury F K, Rivero R M, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5): 856-867. |
[44] | Dreyer A, Dietz K J. Reactive oxygen species and the redox-regulatory network in cold stress acclimation[J]. Antioxidants (Basel), 2018, 7(11): 169. |
[45] | Mittler R. ROS are good[J]. Trends in Plant Science, 2017, 22(1): 11-19. |
[46] | Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J]. The Plant Cell, 2009, 21(5): 1453-1472. |
[47] | Khan D R, Mackill D J, Vergara B S. Selection for tolerance to low temperature-induced spikelet sterility at anthesis in rice[J]. Crop Science, 1986, 26(4): 694-698. |
[48] | Yang T F, Zhang S H, Zhao J L, Huang Z H, Zhang G Q, Liu B. Meta-analysis of QTLs underlying cold tolerance in rice (Oryza sativa L.)[J]. Molecular Plant Breeding, 2015, 13: 1-15. |
[49] | Li J H, Zhang Z Y, Chong K, Xu Y Y. Chilling tolerance in rice: Past and present[J]. Journal of Plant Physiology, 2022, 268: 153576. |
[50] | Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8[J]. Theoretical and Applied Genetics, 2007, 115: 593-600. |
[51] | Shirasawa S, Endo T, Nakagomi K, Yamaguchi M, Nishio T. Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L[J]. Theoretical and Applied Genetics, 2012, 124: 937-946. |
[52] | Zhu Y J, Chen K, Mi X F, Chen T X, Ali J, Ye G Y, Xu J L, Li Z K. Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice[J]. PLoS One, 2015, 10(12): e0145704. |
[53] | Li J L, Pan Y H, Guo H F, Zhou L, Yang S M, Zhang Z Y, Yang J Z, Zhang H L, Li J J, Zeng Y W, Li Z C. Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice[J]. Theoretical and Applied Genetics, 2018, 131: 157-166. |
[54] | Zhou L, Zeng Y W, Zheng W W, Tang B, Yang S M, Zhang H L, Li J J, Li Z C. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line[J]. Theoretical and Applied Genetics, 2010, 121: 895-905. |
[55] | Takeuchi Y, Hayasaka H, Chiba B, Tanaka Isao, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M. Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice[J]. Breeding Science, 2001, 51(3): 191-197. |
[56] | Dai L Y, Lin X H, Ye C R, Ise K, Saito K J, Kato A, Xu F R, Yu T Q, Zhang D P. Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu[J]. Breeding Science, 2004, 54(3): 253-258. |
[57] | Yang L M, Lei L, Wang J G, Zheng H L, Xin W, Liu H L, Zou D T. qCTB7 positively regulates cold tolerance at booting stage in rice[J]. Theoretical and Applied Genetics, 2023, 136(6): 135. |
[58] | Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1[J]. Plant Science, 2010, 179(1-2): 97-102. |
[59] | Zhang Z Y, Li J J, Pan Y H, Li J L, Zhou L, Shi H L, Zeng Y W, Guo H F, Yang S M, Zheng W W, Yu J P, Sun X M, Li G L, Ding Y L, Ma L, Shen S Q, Dai L Y, Zhang H L, Yang S H, Guo Y, Li Z C. Natural variation in CTB4a enhances rice adaptation to cold habitats[J]. Nature Communications, 2017, 8: 14788. |
[60] | Li J L, Zeng Y M, Pan Y H, Zhang Z Y, Guo H F, Luo Q J, Shui G H, Zhang H L, Yang S H, Guo Y, Ge S, Li J J, Li Z C. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice[J]. New Phytologist, 2021, 231(3): 1056-1072. |
[61] | Lou Q J, Guo H F, Li J, Han S C, Khan N U, Gu Y S, Zhao W T, Zhang Z Y, Zhang H L, Li Z C, Li J J. Cold-adaptive evolution at the reproductive stage in Geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9[J]. Plant Journal, 2022, 111(4): 1032-1051. |
[62] | Liu C T, Ou S J, Mao B G, Tang J Y, Wang W, Wang H R, Cao S Y, Schläppi M R, Zhao B R, Xiao G Y, Wang X P, Chu C C. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications, 2018, 9(1): 3302. |
[63] | Xu Y F, Wang R C, Wang Y M, Zhang L, Yao S G. A point mutation in LTT1 enhances cold tolerance at the booting stage in rice[J]. Plant Cell and Environment, 2020, 43(4): 992-1007. |
[64] | Tang J Q, Tian X J, Mei E Y, He M L, Gao J W, Yu J, Xu M, Liu J L, Song L, Li X F, Wang Z Y, Guan Q J, Zhao Z G, Wang C M, Bu Q Y. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels[J]. The Plant Cell, 2022, 34(11): 4495-4515. |
[65] | Mei E Y, Tang J Q, He M L, Liu Z Q, Tian X J, Bu Q Y. OsMKKK70 negatively regulates cold tolerance at booting stage in rice[J]. International Journal of Molecular Sciences, 2022, 23(22): 14472. |
[66] | Liu D F, Luo S T, Li Z C, Liang G H, Guo Y L, Xu Y Y, Chong K. COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice[J]. New Phytologist, 2024, 241: 2143-2157. |
[67] | Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A. Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice[J]. Theoretical and Applied Genetics, 2004, 109: 515-522. |
[68] | Xu L M, Zhou L, Zeng Y W, Wang F M, Zhang H L, Shen S Q, Li Z C. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line[J]. Plant Science, 2008, 174: 340-347. |
[69] | Zhou L, Zeng Y W, Hu G G, Pan Y H, Yang S M, You A Q, Zhang H L, Li J J, Li Z C. Characterization and identification of cold tolerant near-isogenic lines in rice[J]. Breed Science, 2012, 62(2): 196-201. |
[70] | Zhang Z Y, Li J H, Li F, Liu H H, Yang W S, Chong K, Xu Y Y. OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance[J]. Developmental Cell, 2017, 43(6): 731-743.e5. |
[71] | Hu L F, Ye M, Li R, Zhang T F, Zhou G X, Wang Q, Lu J, Lou Y G. The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity[J]. Plant Physiology, 2015, 169(4): 2907-2921. |
[72] | Gao Y, Xue C Y, Liu J M, He Y, Mei Q, Wei S H, Xuan Y H. Sheath blight resistance in rice is negatively regulated by WRKY53 via SWEET2a activation[J]. Biochemical and Biophysical Research Communications, 2021, 585: 117-123. |
[73] | Xie W Y, Ke Y G, Cao J B, Wang S P, Yuan M. Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls, confers bacterial blight resistance[J]. Plant Physiology, 2021, 187(3): 1746-1761. |
[1] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略 [J]. 中国水稻科学, 2025, 39(2): 143-155. |
[2] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展 [J]. 中国水稻科学, 2025, 39(2): 156-170. |
[3] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展 [J]. 中国水稻科学, 2025, 39(2): 171-186. |
[4] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性 [J]. 中国水稻科学, 2025, 39(2): 187-196. |
[5] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究 [J]. 中国水稻科学, 2025, 39(2): 197-208. |
[6] | 闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216 [J]. 中国水稻科学, 2025, 39(2): 209-219. |
[7] | 徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇, 杨建昌. 不同耐低磷水稻品种的内源激素水平差异及其与产量和磷利用率的关系 [J]. 中国水稻科学, 2025, 39(2): 231-244. |
[8] | 任宁宁, 孙永建, 申聪聪, 朱双兵, 李慧菊, 张志远, 陈凯. 水稻中胚轴研究进展[J]. 中国水稻科学, 2025, 39(1): 11-23. |
[9] | 张丰勇, 应晓平, 张健, 杨隆维, 应杰政. 半矮秆基因sd1调控水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2025, 39(1): 24-32. |
[10] | 陈智慧, 陶亚军, 范方军, 许扬, 王芳权, 李文奇, 古丽娜尔·巴合提别克, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻抽穗期调控基因Hd6功能标记的开发及应用[J]. 中国水稻科学, 2025, 39(1): 47-54. |
[11] | 胡风越, 王健, 王春, 王克剑, 刘朝雷. 水稻DMP1、DMP2、DMP3基因突变体的创制及其单倍体诱导能力鉴定[J]. 中国水稻科学, 2025, 39(1): 55-66. |
[12] | 陈书融, 朱练峰, 秦碧蓉, 王婕, 朱旭华, 田文昊, 朱春权, 曹小闯, 孔亚丽, 张均华, 金千瑜. 增氧灌溉下配施硝化抑制剂对水稻生长、产量和氮肥利用的影响[J]. 中国水稻科学, 2025, 39(1): 92-100. |
[13] | 吴猛, 倪川, 康钰莹, 毛雨欣, 叶苗, 张祖建. 水稻分蘖早发特性的品种间差异及其氮素响应[J]. 中国水稻科学, 2025, 39(1): 101-114. |
[14] | 王晓茜, 蔡创, 宋练, 周伟, 杨雄, 顾歆悦, 朱春梧. 开放式大气CO2浓度升高和温度升高对扬稻6号稻米品质的影响[J]. 中国水稻科学, 2025, 39(1): 115-127. |
[15] | 江敏, 王广伦, 李明璐, 苗波, 李明煊, 石春林. 基于模型的水稻高温热害风险评估与动态预警[J]. 中国水稻科学, 2025, 39(1): 128-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||