中国水稻科学 ›› 2025, Vol. 39 ›› Issue (2): 231-244.DOI: 10.16819/j.1001-7216.2025.241004
徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇*(), 杨建昌*(
)
收稿日期:
2024-10-12
修回日期:
2025-03-06
出版日期:
2025-03-10
发布日期:
2025-03-19
通讯作者:
* email:kyzhu@yzu.edu.cn, jcyang@yzu.edu.cn基金资助:
XU Yuemei, PENG Shiyan, SUN Zhiwei, WANG Zhiqin, ZHU Kuanyu*(), YANG Jianchang*(
)
Received:
2024-10-12
Revised:
2025-03-06
Online:
2025-03-10
Published:
2025-03-19
Contact:
* email:kyzhu@yzu.edu.cn, jcyang@yzu.edu.cn摘要:
【目的】探明不同耐低磷水稻品种内源激素水平的差异及其与产量和磷吸收利用的关系。【方法】以2个强耐低磷品种 (耐低磷指数>0.9)和2个弱耐低磷水稻品种 (耐低磷指数<0.5)为材料,采用水培种植,设置低磷(磷浓度为标准营养液中磷浓度的1/20,0.401 mg/L)和正常磷(8.02 mg/L)两个处理。【结果】与正常磷相比,低磷显著降低了两类品种的产量和磷的吸收量,但提高了磷素干物质生产效率和磷产谷利用率。在低磷处理下,与弱耐低磷品种相比,强耐低磷品种具有较高的产量、磷吸收量、磷利用效率、根干质量、地上部干质量和根系氧化力,根和叶中具有较高的生长素、玉米素及其核苷、脱落酸、茉莉酸类(茉莉酸和茉莉酸甲酯)、油菜素甾醇(24-表油菜素内酯和28-高油菜素内酯)含量,根中具有较高的独脚金内酯含量。这些激素水平与产量、磷吸收利用率、根干质量、地上部干质量和根系氧化力呈显著或极显著正相关;而根和叶中乙烯释放速率和1-氨基环丙烷-1-羧酸含量表现为强耐低磷品种显著低于弱耐低磷品种,并与产量和磷利用率显著或极显著负相关。随机森林分析表明,在各类激素中茉莉酸类和油菜素甾醇对产量和磷利用率的贡献最大。【结论】在低磷胁迫下,强耐低磷品种内源激素之间的平衡,特别是较高的茉莉酸类和油菜素甾醇含量,有利于优化根系形态,维持较高的根系活性,促进磷的吸收和利用,获得较高产量。
徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇, 杨建昌. 不同耐低磷水稻品种的内源激素水平差异及其与产量和磷利用率的关系[J]. 中国水稻科学, 2025, 39(2): 231-244.
XU Yuemei, PENG Shiyan, SUN Zhiwei, WANG Zhiqin, ZHU Kuanyu, YANG Jianchang. Differences in Endogenous Hormone Levels and Their Relationship with Yield and Phosphorus Use Efficiency in Rice Varieties With Various Tolerance to Low Phosphorus Stress[J]. Chinese Journal OF Rice Science, 2025, 39(2): 231-244.
气象因子 Meteorological factors | 五月 May | 六月 June | 七月 July | 八月 August | 九月 September | 十月 October |
---|---|---|---|---|---|---|
平均温度Average temperature(℃) | 21.8 | 25.7 | 28.8 | 28.2 | 24.5 | 18.4 |
降水量Precipitation(mm) | 75.7 | 246 | 625 | 92.6 | 253 | 32.7 |
日照时长Sunshine hours(h) | 156 | 136 | 101 | 179 | 98.0 | 195 |
表1 2023年水稻季气温、降水和日照时长状况
Table 1. Temperature, precipitation, and sunshine hours during rice growing season in 2023
气象因子 Meteorological factors | 五月 May | 六月 June | 七月 July | 八月 August | 九月 September | 十月 October |
---|---|---|---|---|---|---|
平均温度Average temperature(℃) | 21.8 | 25.7 | 28.8 | 28.2 | 24.5 | 18.4 |
降水量Precipitation(mm) | 75.7 | 246 | 625 | 92.6 | 253 | 32.7 |
日照时长Sunshine hours(h) | 156 | 136 | 101 | 179 | 98.0 | 195 |
处理 Treatment | 类别/品种 Category/Variety | 穗数 Panicles (No./m2) | 每穗粒数 Spikelets per panicle | 总颖花数 Total spikelets number(×103/m2) | 千粒重 1000-grain weight (g) | 结实率 Filled-grain percentage(%) | 产量 Grain yield (g/m2) |
---|---|---|---|---|---|---|---|
正常磷 NP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 300.78 d | 156.35 a | 47.01 a | 25.16 b | 68.71 e | 812.68 a |
强耐低磷/盐粳2号 STV/Yanjing 2 | 511.64 a | 93.49 e | 47.83 a | 22.51 d | 73.26 c | 788.11 b | |
弱耐低磷/国际24号 WTV/IR24 | 286.62 e | 101.61 d | 29.12 e | 24.21 c | 58.90 g | 415.15 f | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 375.56 c | 110.63 c | 41.55 b | 24.48 bc | 70.87 d | 720.77 d | |
低磷 LP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 295.46 d | 128.84 b | 38.07 c | 26.78 a | 73.55 c | 749.77 c |
强耐低磷/盐粳2号 STV/Yanjing 2 | 442.37 b | 79.12 f | 35.00 d | 24.32 bc | 83.92 a | 714.23 d | |
弱耐低磷/国际24号 WTV/IR24 | 270.64 f | 81.02 f | 21.93 g | 24.96 bc | 62.27 f | 340.79 g | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 299.30 d | 91.52 e | 27.38 f | 26.19 a | 76.35 b | 547.56 e |
表2 不同耐低磷水稻品种在不同磷处理下的产量及其构成因素
Table 2. Grain yield and its components of rice varieties differed in tolerance to LP under various P levels
处理 Treatment | 类别/品种 Category/Variety | 穗数 Panicles (No./m2) | 每穗粒数 Spikelets per panicle | 总颖花数 Total spikelets number(×103/m2) | 千粒重 1000-grain weight (g) | 结实率 Filled-grain percentage(%) | 产量 Grain yield (g/m2) |
---|---|---|---|---|---|---|---|
正常磷 NP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 300.78 d | 156.35 a | 47.01 a | 25.16 b | 68.71 e | 812.68 a |
强耐低磷/盐粳2号 STV/Yanjing 2 | 511.64 a | 93.49 e | 47.83 a | 22.51 d | 73.26 c | 788.11 b | |
弱耐低磷/国际24号 WTV/IR24 | 286.62 e | 101.61 d | 29.12 e | 24.21 c | 58.90 g | 415.15 f | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 375.56 c | 110.63 c | 41.55 b | 24.48 bc | 70.87 d | 720.77 d | |
低磷 LP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 295.46 d | 128.84 b | 38.07 c | 26.78 a | 73.55 c | 749.77 c |
强耐低磷/盐粳2号 STV/Yanjing 2 | 442.37 b | 79.12 f | 35.00 d | 24.32 bc | 83.92 a | 714.23 d | |
弱耐低磷/国际24号 WTV/IR24 | 270.64 f | 81.02 f | 21.93 g | 24.96 bc | 62.27 f | 340.79 g | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 299.30 d | 91.52 e | 27.38 f | 26.19 a | 76.35 b | 547.56 e |
图1 不同耐低磷水稻品种地上部在不同磷处理下磷积累量(A)、磷素干物质生产效率(B)和磷产谷利用率(C) YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种。LP: 低磷;NP: 正常磷; MT: 分蘖期; PI: 穗分化始期; HD: 抽穗期; MA: 成熟期。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 1. Phosphorus (P) accumulation (A), dry matter production per unit P (B) and internal P use efficiency (C) of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2, Yangdao 2; YJ2, Yanjing 2. Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24. LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MA, Maturity. Different letters within the same stage indicate the significance at the P = 0.05 level.
变异来源 Source of variation | 磷产谷利用率 IPE | 磷积累量 PA | 磷素干物质生产效率 PUEDW | 产量 Grain yield |
---|---|---|---|---|
品种 Variety(V) | 467** | 294** | 2.83ns | 1068** |
处理 Treatment(T) | 4583** | 6504** | 602** | 293** |
品种×处理 (V×T) | 43.6** | 42.3** | 4.97* | 21.2** |
表3 产量和磷利用率在品种和处理间的方差分析
Table 3. Variance analysis of yield and phosphorus use efficiency (PUE) between varieties and treatments
变异来源 Source of variation | 磷产谷利用率 IPE | 磷积累量 PA | 磷素干物质生产效率 PUEDW | 产量 Grain yield |
---|---|---|---|---|
品种 Variety(V) | 467** | 294** | 2.83ns | 1068** |
处理 Treatment(T) | 4583** | 6504** | 602** | 293** |
品种×处理 (V×T) | 43.6** | 42.3** | 4.97* | 21.2** |
图2 不同耐低磷水稻品种在不同磷处理下的根长(A)、根直径(B)和根干质量 (C) YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种; LP: 低磷; NP: 正常磷; MT: 分蘖期; PI:穗分化始期; HD: 抽穗期; MGF: 灌浆中期; MA: 成熟期。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 2. Root length (A), root diameter (B) and root dry weight (C) of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling; MA, Maturity. Different letters indicate significance at the P = 0.05 level.
图3 不同耐低磷水稻品种在不同磷处理下的叶面积指数(A)、光合速率(B)、地上部干质量(C)和根系氧化力(D) YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种; LP, 低磷;NP, 正常磷; MT, 分蘖期; PI, 穗分化始期; HD, 抽穗期; MGF, 灌浆中期; MA, 成熟期;DW,干质量。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 3. Shoot dry weight (A) and root oxidation activity (B) of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling; MA, Maturity; DW, Dry matter weight. Different letters within the same stage indicate significance at the P = 0.05 level.
图4 不同耐低磷水稻品种在不同磷处理下根和叶中吲哚-3-乙酸(A, B)、玉米素+玉米素核苷(C, D)和脱落酸(E, F)的含量 YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种; LP: 低磷; NP: 正常磷; MT: 分蘖期; PI:穗分化始期; HD: 抽穗期; MGF: 灌浆中期。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 4. Content of indole-3-acetic acid (A, B), zeatin and zeatin riboside (C, D), and abscisic acid (E, F) in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
图5 不同耐低磷水稻品种在不同磷处理下根系和叶片乙烯释放速率(A, C)和1-氨基环丙烷-1-羧酸(ACC)含量(B, D) YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种; LP: 低磷; NP: 正常磷; MT: 分蘖期; PI:穗分化始期; HD: 抽穗期; MGF: 灌浆中期。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 5. Ethylene emission rate (A, C) and l-aminocyclopropane-1-carboxylic acid (ACC) content (B, D) in roots and leaves of rice varieties differing in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
图6 不同耐低磷水稻在不同磷处理下品种根和叶中茉莉酸(A, B)和茉莉酸甲酯(C, D)的含量 YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种; LP: 低磷; NP: 正常磷; MT: 分蘖期; PI:穗分化始期; HD: 抽穗期; MGF: 灌浆中期。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 6. Content of jasmonic acid (A, B) and methyl jasmonic acid (C, D) in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
图7 不同耐低磷水稻品种在不同磷处理下根和叶中的24-表油菜素内酯(24-EBL)和28-高油菜素内酯(28-HBL)含量 YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种; LP: 低磷; NP: 正常磷; MT: 分蘖期; PI:穗分化始期; HD: 抽穗期; MGF: 灌浆中期。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 7. Content of 24-epibrassinolide (A, B) and 28-homobrassinolide (C, D) in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
图8 不同耐低磷水稻品种在不同磷处理下根和叶中的独脚金内酯的含量 YD2: 扬稻2号; YJ2: 盐粳2号; 两者均为强耐低磷品种; ZD88(镇稻88)和IR24均为弱耐低磷水稻品种; LP: 低磷; NP: 正常磷; MT: 分蘖期; PI:穗分化始期; HD: 抽穗期; MGF: 灌浆中期。同一测定时期内不同字母表示在P=0.05水平上差异显著。
Fig. 8. Strigolactones content in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
图9 不同耐低磷水稻品种产量、磷利用率和根系性状与内源激素含量的相关性分析(A, B)及各激素水平对产量和磷利用率贡献力的随机森林分析(C) MT: 分蘖期; PI: 穗分化始期; HD: 抽穗期; MGF: 灌浆中期;Yield: 产量; IPE: 磷产谷利用率; PUEDW: 磷素干物质生产效率; PA: 植株地上部磷积累量; SDW: 地上部干物质量; TS: 总颖花量; FG: 结实率; RL: 根长; RDW: 根干物质量; ROA: 根系氧化力; R: 根; L: 叶; IAA: 生长素; Z+ZR: 玉米素+玉米素核苷; ABA: 脱落酸; Ethylene: 乙烯释; ACC: 1-氨基环丙烷-1-羧酸; JA: 茉莉酸; SLs: 独脚金内酯; MeJA: 茉莉酸甲酯; 24-EBL: 24-表油菜素内酯; 28-HBL: 28-高油菜素内酯; 变量重要性: 均方误差增加值,值越大表示重要性越高。
Fig. 9. Correlation analysis of grain yield, P use efficiency, root traits, and endogenous hormone levels (A, B) of rice varieties with various LP tolerance and random forest analysis of the contribution of hormone levels to grain yield and P use efficiency (C) MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling; PA, Phosphorus accumulation; IPE, Internal P use efficiency; PUEDW, Dry matter production per unit P; SDW, Shoot dry weight; TS, Total spikelets; FG, Filled grains; RL, Root length;RDW, Root dry weight; ROA, Root oxidation activity; R, Roots; L, Leaves; IAA, Indole-3-acetic acid; Z+ZR, Zeatin+zeatin riboside; ABA, Abscisic acid; ETH, Ethylene; ACC, l-aminocyclopropane-1-carboxylic acid; JA, Jasmonic acid; MeJA, Methyl jasmonate; SLs, Strigolactones; 24-EBL, 24-epibrassinolide; 28-HBL, 28-homobrassinolide; Increase in mean squared error, a higher value indicates greater importance.
[1] | 徐晓明, 张迎信, 王会民, 程式华, 曹立勇. 水稻氮、磷、钾吸收利用遗传特征研究进展[J]. 核农学报, 2016, 30(4): 685-694. |
Xu X M, Zhang Y X, Wang H M, Cheng S H, Cao L Y. R Advancement of genetic characteristics for N, P and K utilization of rice[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 685-694. (in Chinese with English abstract) | |
[2] | 李继云, 刘秀娣, 周伟, 孙建华, 童依平, 刘文杰, 李振声, 王培田, 姚树江. 有效利用土壤营养元素的作物育种新技术研究[J]. 中国科学: B辑, 1995(1): 41-48. |
Li J Y, Liu X D, Zhou W, Sun J H, Tong Y P, Liu W J, Li Z S, Wang P T, Yao S J. Study on new techniques of crop breeding for effective utilization of soil nutrient elements[J]. Science in China: Series B, 1995(1): 41-48. (in Chinese with English abstract) | |
[3] | 陈健晓, 王小娟, 屠乃美, 王效宁, 符策强, 唐清杰, 刘爱玉. 磷水平对不同香稻品种苗期形态生理的影响[J]. 华北农学报, 2020, 35(2): 117-125. |
Chen J X, Wang X J, Tu N M, Wang X N, Fu C Q, Tang Q J, Liu A Y. Effects of phosphorus levels on morphological physiology of different fragrant rice varieties at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(2): 117-125. (in Chinese with English abstract) | |
[4] | 陈磊, 王盛锋, 刘荣乐, 汪洪. 不同磷供应水平下小麦根系形态及根际过程的变化特征[J]. 植物营养与肥料学报, 2012, 18(2): 324-331. |
Chen L, Wang S F, Liu R L, Wang H. C Changes of root morphology and rhizosphere processes of wheat under different phosphate supply[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(2): 324-331. (in Chinese with English abstract) | |
[5] | Weyers J D B, Paterson N W. Plant hormones and the control of physiological processes[J]. New Phytologist, 2001, 152(3): 375-407. |
[6] | Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology, 2016, 16: 86. |
[7] | Yang Y, Wang L, Zhang D, Che Z, Wang Q, Cui R, Zhao W, Huang F, Zhang H, Cheng H, Yu D. Soybean type-B response regulator GmRR1 mediates phosphorus uptake and yield by modifying root architecture[J]. Plant Physiology, 2024, 194(3): 1527-1544. |
[8] | Hu D, Cui R, Wang K, Yang Y M, Wang R, Zhu H, He M, Fan Y, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lv G, Zhang D D, Wang J, Kong F, Yu D, Zhang H Y, Zhang D. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean[J]. The Plant Cell, 2024, 36(6): 2176-2200. |
[9] | Zhang Y, Li T T, Wang L F, Guo J X, Lu K K, Song R F, Zuo J X, Chen H H, Liu W C. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis[J]. The Plant Journal, 2022, 111(1): 269-281. |
[10] | Santoro V, Schiavon M, Visentin I, Constán-Aguilar C, Cardinale F, Celi L. Strigolactones affect phosphorus acquisition strategies in tomato plants[J]. Plant, Cell & Environment, 2021, 44(11): 3628-3642. |
[11] | Ma L, Zhang J, Li Z, Xin X, Guo Z, Wang D, Li D, Zhao B. Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis[J]. Applied Soil Ecology, 2020, 148: 103506. |
[12] | Yan J, Lou L, Bai W, Zhang S, Zhang N. Phosphorus deficiency is the main limiting factor for re-vegetation and soil microorganisms in Mu Us Sandy Land, Northwest China[J]. Science of the Total Environment, 2023, 900: 165770. |
[13] | Deng Y, Men C, Qiao S, Wang W, Gu J, Liu L, Zhang Z, Zhang H, Wang Z, Yang J. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth[J]. The Crop Journal, 2020, 8(4): 534-547. |
[14] | Beltrano J, Ronco M G, Montaldi E R. Drought stress syndrome in wheat is provoked by thylene evolution imbalance and reversed by rewatering, aminoethoxyvinylglycine, or sodium benzoate[J]. Journal of Plant Growth Regulation, 1999, 18(2): 59-64. |
[15] | Cheng C Y, Lur H S. Ethylene may be involved in abortion of the maize caryopsis[J]. Physiologia Plantarum, 1996, 98(2): 245-252. |
[16] | Bollmark M, Kubát B, Eliasson L. Variation in endogenous cytokinin content during adventitious root formation in pea cuttings[J]. Journal of Plant Physiology, 1988, 132(3): 262-265. |
[17] | Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry[J]. Nature Protocols, 2010, 5(6): 986-992. |
[18] | Liu X, Yang Y L, Lin W H, Tong J, Huang Z, Xiao L. Determination of both jasmonic acid and methyl jasmonate in plant samples by liquid chromatography tandem mass spectrometry[J]. Chinese Science Bulletin, 2010, 55(21): 2231-2235. |
[19] | Ding J, Mao L J, Yuan B F, Feng Y Q. A selective pretreatment method for determination of endogenous active brassinosteroids in plant tissues: Double layered solid phase extraction combined with boronate affinity polymer monolith microextraction[J]. Plant Methods, 2013, 9: 13. |
[20] | Chen J, Fei K, Zhang W, Wang Z, Zhang J, Yang J. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo- thermosensitive genetic male-sterile rice lines[J]. The Crop Journal, 2021, 9(1): 109-119. |
[21] | Stewart W M, Dibb D W, Johnston A E, Smyth T J. The contribution of commercial fertilizer nutrients to food production[J]. Agronomy Journal, 2005, 97(1): 1-6. |
[22] | Irfan M, Shah J A, Abbas M. Evaluating the performance of mungbean genotypes for grain yield, phosphorus accumulation and utilization efficiency[J]. Journal of Plant Nutrition, 2017, 40(19): 2709-2720. |
[23] | 孙志伟, 徐月梅, 许荣越, 朱宽宇, 杨建昌. 水稻低磷胁迫响应及其调控机制的研究进展[J]. 核农学报, 2023, 37(08): 1562-1570. |
Sun Z W, Xu Y M, Xu R Y, Zhu K Y, Yang J C. Research advance in the response of rice to low phosphorus stress and its regulation mechanism[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(8): 1562-1570. (in Chinese with English abstract) | |
[24] | Wang K, Cui K, Liu G, Luo X, Huang J, Nie L, Wei D, Peng S. Low straw phosphorus concentration is beneficial for high phosphorus use efficiency for grain production in rice recombinant inbred lines[J]. Field Crops Research, 2017, 203: 65-73. |
[25] | Sun Z, Qiao S, Xu Y, Ji D, Zhang W, Gu J, Zhu K, Wang Z, Zhang J, Yang J. Agronomic and physiological performance of the indica rice varieties differing in tolerance to low phosphorus[J]. Agronomy, 2023, 14(1): 41. |
[26] | Gonçalves B X, Lima-Melo Y, dos Santos Maraschin F, Margis-Pinheiro M. Phosphate starvation responses in crop roots: From well-known players to novel candidates[J]. Environmental and Experimental Botany, 2020, 178: 104162. |
[27] | Ku Y S, Sintaha M, Cheung M Y, Lam H M. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(10): 3206. |
[28] | Munné-Bosch S, Müller M. Hormonal cross-talk in plant development and stress responses[J]. Frontiers in Plant Science, 2013, 4: 529. |
[29] | Liu J, Moore S, Chen C, Lindsey K. Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: From experiments to systems modeling, and back again[J]. Molecular Plant, 2017, 10(12): 1480-1496. |
[30] | Yang J, Zhang J, Wang Z, Zhu Q. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J]. Plant Growth Regulation, 2003, 41(3): 185-195. |
[31] | Guo T, Lu Z Q, Shan J X, Ye W W, Dong N Q, Lin H X. ERECTA1 acts upstream of the OsMKKK10- OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice[J]. The Plant Cell, 2020, 32(9): 2763-2779. |
[32] | Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress[J]. New Phytologist, 2013, 197(1): 139-150. |
[33] | Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress[J]. Journal of Plant Physiology, 2013, 170(10): 915-922. |
[34] | Miyoshi Y, Soma F, Yin Y G, Suzui N, Noda Y, Enomoto K, Nagao Y, Yamaguchi M, Kawachi N, Yoshida E, Tashima H, Yamaya T, Kuya N, Teramoto S, Uga Y. Rice immediately adapts the dynamics of photosynthates translocation to roots in response to changes in soil water environment[J]. Frontiers in Plant Science, 2022, 13: 1024144. |
[35] | Gu J, Li Z, Mao Y, Struik P C, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications[J]. Plant Science, 2018, 274: 320-331. |
[36] | Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress[J]. Journal of Plant Physiology, 2013, 170(10): 915-922. |
[37] | Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling[J]. Plant Physiology, 2001, 127(1): 315-323. |
[38] | Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J]. Plant Physiology and Biochemistry, 2009, 47(3): 195-204. |
[39] | Sekhar S, Panda B B, Mohapatra T, Das K, Shaw B P, Kariali E, Mohapatra P K. Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact- and lax-panicle rice (Oryza sativa) cultivars[J]. Journal of Plant Physiology, 2015, 179: 21-34. |
[40] | Panda B B, Kariali E, Panigrahi R, Mohapatra P K. High ethylene production slackens seed filling in compact panicled rice cultivar[J]. Plant Growth Regulation, 2009, 58(2): 141-151. |
[41] | Yang J C, Zhang J H, Liu K, Wang Z, Liu L. Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis[J]. Journal of Plant Growth Regulation, 2007, 26(4): 318-328. |
[42] | Zhu X F, Zhu C Q, Zhao X S, Zheng S J, Shen R F. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa L.) by regulating cell-wall pectin and enhancing phosphate translocation to shoots[J]. Annals of Botany, 2016, 118(4): 645-653. |
[43] | Howe G A, Major I T, Koo A J. Modularity in jasmonate signaling for multistress resilience[J]. Annual Review of Plant Biology, 2018, 69: 387-415. |
[44] | Zou L, Qu M, Zeng L, Xiong G. The molecular basis of the interaction between Brassinosteroid induced and phosphorous deficiency induced leaf inclination in rice[J]. Plant Growth Regulation, 2020, 91(2): 263-276. |
[45] | Muzaffar A, Chen Y S, Lee H T, Wu C C, Le T T, Liang J Z, Lu C H, Balasubramaniam H, Lo S F, Yu L C, Chan C H, Chen K T, Lee M H, Hsing Y I, Ho T D, Yu S M. A newly evolved rice-specific gene JAUP1 regulates jasmonate biosynthesis and signalling to promote root development and multi-stress tolerance[J]. Plant Biotechnology Journal, 2024, 22(5): 1417-1432 |
[46] | Chen Y, Jin G, Liu M, Wang L, Lou Y, Baldwin I, Li R. Multiomic analyses reveal key sectors of jasmonate- mediated defense responses in rice[J]. The Plant Cell, 2024, 36(9): 3362-3377. |
[47] | 王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1): 34-49. |
Wang L M, Yang R Z, Sun J Q. Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids: A review[J]. Chinese Journal of Biotechnology, 2022, 38(1): 34-49. (in Chinese with English abstract) | |
[48] | Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. |
[49] | Sun H, Li W, Burritt D J, Tian H, Zhang H, Liang X, Miao Y, Mostofa M G, Tran L P. Strigolactones interact with other phytohormones to modulate plant root growth and development[J]. The Crop Journal, 2022, 10(6): 1517-1527. |
[50] | Li L, Ge S, He L, Liu R, Mei Y, Xia X, Yu J, Zhou Y. SlDELLA interacts with SlPIF4 to regulate arbuscular mycorrhizal symbiosis and phosphate uptake in tomato[J]. Horticulture Research, 2024, 11(9): uhae195. |
[51] | Yuan K, Zhang H, Yu C, Luo N, Yan J, Zheng S, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice[J]. Molecular Plant, 2023, 16(11): 1811-1831. |
[1] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略[J]. 中国水稻科学, 2025, 39(2): 143-155. |
[2] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展[J]. 中国水稻科学, 2025, 39(2): 156-170. |
[3] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展[J]. 中国水稻科学, 2025, 39(2): 171-186. |
[4] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性[J]. 中国水稻科学, 2025, 39(2): 187-196. |
[5] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究[J]. 中国水稻科学, 2025, 39(2): 197-208. |
[6] | 闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216[J]. 中国水稻科学, 2025, 39(2): 209-219. |
[7] | 唐承翰, 王晶卿, 陈惠哲, 张玉屏, 向镜, 张义凯, 王志刚, 怀燕, 陈佳峰, 王亚梁. 杂交稻条播育秧机插秧苗素质对产量的影响[J]. 中国水稻科学, 2025, 39(2): 245-254. |
[8] | 舒傲, 解嘉鑫, 曹威, 周传名, 李蓓蕾, 陈嘉馨, 李莉, 曹放波, 陈佳娜, 黄敏. 氮肥运筹对优质杂交中稻产量和品质的影响[J]. 中国水稻科学, 2025, 39(2): 255-263. |
[9] | 随晶晶, 赵桂龙, 金欣, 卜庆云, 唐佳琦. 水稻孕穗期耐冷调控的分子及生理机制研究进展[J]. 中国水稻科学, 2025, 39(1): 1-10. |
[10] | 任宁宁, 孙永建, 申聪聪, 朱双兵, 李慧菊, 张志远, 陈凯. 水稻中胚轴研究进展[J]. 中国水稻科学, 2025, 39(1): 11-23. |
[11] | 张丰勇, 应晓平, 张健, 杨隆维, 应杰政. 半矮秆基因sd1调控水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2025, 39(1): 24-32. |
[12] | 陈智慧, 陶亚军, 范方军, 许扬, 王芳权, 李文奇, 古丽娜尔·巴合提别克, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻抽穗期调控基因Hd6功能标记的开发及应用[J]. 中国水稻科学, 2025, 39(1): 47-54. |
[13] | 胡风越, 王健, 王春, 王克剑, 刘朝雷. 水稻DMP1、DMP2、DMP3基因突变体的创制及其单倍体诱导能力鉴定[J]. 中国水稻科学, 2025, 39(1): 55-66. |
[14] | 陈书融, 朱练峰, 秦碧蓉, 王婕, 朱旭华, 田文昊, 朱春权, 曹小闯, 孔亚丽, 张均华, 金千瑜. 增氧灌溉下配施硝化抑制剂对水稻生长、产量和氮肥利用的影响[J]. 中国水稻科学, 2025, 39(1): 92-100. |
[15] | 吴猛, 倪川, 康钰莹, 毛雨欣, 叶苗, 张祖建. 水稻分蘖早发特性的品种间差异及其氮素响应[J]. 中国水稻科学, 2025, 39(1): 101-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||