中国水稻科学 ›› 2025, Vol. 39 ›› Issue (2): 209-219.DOI: 10.16819/j.1001-7216.2025.240204
闫影1,#, 王凯1,#, 张丽霞1, 胡泽军1, 叶俊华1, 杨航1, 顾春军2,*(), 吴书俊1,*(
)
收稿日期:
2024-02-04
修回日期:
2024-04-26
出版日期:
2025-03-10
发布日期:
2025-03-19
通讯作者:
* email:gcj76@126.com; wushujun@saas.sh.cn作者简介:
#共同第一作者
基金资助:
YAN Ying1,#, WANG Kai1,#, ZHANG Lixia1, HU Zejun1, YE Junhua1, YANG Hang1, GU Chunjun2,*(), WU Shujun1,*(
)
Received:
2024-02-04
Revised:
2024-04-26
Online:
2025-03-10
Published:
2025-03-19
Contact:
* email:gcj76@126.com; wushujun@saas.sh.cnAbout author:
#These authors contributed equally to this work
摘要:
【目的】食味品质优良、综合抗性好一直是优质粳稻育种的重要方向。为满足生产上对水稻品种优质多抗的需求,迫切需要在育种中加强对优质与抗病、抗逆性状的协同改良。【方法】以携带香味基因型badh2-E2和低直链淀粉含量基因型Wxmp的优质粳稻品种南粳46为母本,浓香型优质粳稻品种武香粳1号为父本进行杂交配组。在连续多代的自交过程中,利用基因badh2-E2和Wxmp进行分子标记辅助选择,结合田间表现进行选种,在F8稳定株系中选择综合性状最优株系,命名为沪12-30。随后,以携带抗稻瘟病基因Pita和Pik-m的宜直播、抗稻瘟病品种秀水114为母本,沪12-30为父本进行杂交,回交一代后连续自交选种。在回交和自交过程中,对badh2-E2、Wxmp、Pita和Pik-m进行分子标记辅助选择,结合品质测定、抗稻瘟病鉴定和宜直播性状鉴定筛选育成优质多抗粳稻新品种沪香粳216。【结果】沪香粳216含有香味基因型badh2-E2、低直链淀粉含量基因型Wxmp、抗稻瘟病基因型Pita和Pik-m。该品种具有香味,口感柔软有弹性,直链淀粉含量为9.2%~10.4%;稻瘟病综合抗病指数为2.5,病级3级,表现为中抗;水稻条纹叶枯病抗病等级为3级,表现为抗病;直播成苗率高,株高87 cm,抗倒性强,每667 m²产量达650 kg。【结论】利用分子标记辅助选择结合目标性状表型鉴定是实现多目标性状聚合育种的重要手段,能够准确、有效地实现优质多抗粳稻品种选育。
闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216[J]. 中国水稻科学, 2025, 39(2): 209-219.
YAN Ying, WANG Kai, ZHANG Lixia, HU Zejun, YE Junhua, YANG Hang, GU Chunjun, WU Shujun. Development of a New High-Quality and Multi-Resistant japonica Rice Variety, Huxianggeng 216, Through Molecular Pyramiding Breeding[J]. Chinese Journal OF Rice Science, 2025, 39(2): 209-219.
性状 Trait | 等位基因 Allele | 分子标记 Molecular marker | 引物序列(5’-3’) Primer sequence(5’-3’) | 多态性 Polymorphism |
---|---|---|---|---|
香味Fragrance | badh2-E2 | InDel-E2 | F:GGGAGGCGCTGAAGAGGA | 100 bp/107 bp |
R:GGGTAGTCACCACCCTACCTTG | ||||
低直链淀粉含量 Low amylose content | Wxmp | Wx-mp-o | F:ATGTTGTGTTCTTGTGTTCTTTGCAGGC | A/G |
R:GTAGATCTTCTCACCGGTCTTTCCCCAA | ||||
KASP-WXMP | F1:GAAGGTGACCAAGTTCATGCTGATGAA CACACGGTCGACTCCAT | A/G | ||
F2:GAAGGTCGGAGTCAACGGATTATGAAC ACACGGTCGACTCCAC | ||||
R:GAGAGGGTGAGGTTTTTCCATTGCTA | ||||
抗稻瘟病 Resistance to rice blast | Pita | YL155/YL87 | F:AGCAGGTTATAAGCTAGGCC | 1042 bp/- |
R:CTACCAACAAGTTCATCAAA | ||||
感稻瘟病 Blast susceptibility | pita | YL183/YL87 | F:AGCAGGTTATAAGCTAGCTAT | -/1042 bp |
R:CTACCAACAAGTTCATCAAA | ||||
抗稻瘟病 Resistance to rice blast | Pikm | Pikm-1 | 1F:TGAGCTCAAGGCAAGAGTTGAGGA | 174 bp / 213 bp |
1R:TGTTCCAGCAACTCGATGAG | ||||
Pikm-2 | 2F:CAGTAGCTGTGTCTCAGAACTATG | 290 bp / 332 bp | ||
2R:AAGGTACCTCTTTTCGGCCAG |
表1 基因和分子标记信息
Table 1. Genes and molecular markers
性状 Trait | 等位基因 Allele | 分子标记 Molecular marker | 引物序列(5’-3’) Primer sequence(5’-3’) | 多态性 Polymorphism |
---|---|---|---|---|
香味Fragrance | badh2-E2 | InDel-E2 | F:GGGAGGCGCTGAAGAGGA | 100 bp/107 bp |
R:GGGTAGTCACCACCCTACCTTG | ||||
低直链淀粉含量 Low amylose content | Wxmp | Wx-mp-o | F:ATGTTGTGTTCTTGTGTTCTTTGCAGGC | A/G |
R:GTAGATCTTCTCACCGGTCTTTCCCCAA | ||||
KASP-WXMP | F1:GAAGGTGACCAAGTTCATGCTGATGAA CACACGGTCGACTCCAT | A/G | ||
F2:GAAGGTCGGAGTCAACGGATTATGAAC ACACGGTCGACTCCAC | ||||
R:GAGAGGGTGAGGTTTTTCCATTGCTA | ||||
抗稻瘟病 Resistance to rice blast | Pita | YL155/YL87 | F:AGCAGGTTATAAGCTAGGCC | 1042 bp/- |
R:CTACCAACAAGTTCATCAAA | ||||
感稻瘟病 Blast susceptibility | pita | YL183/YL87 | F:AGCAGGTTATAAGCTAGCTAT | -/1042 bp |
R:CTACCAACAAGTTCATCAAA | ||||
抗稻瘟病 Resistance to rice blast | Pikm | Pikm-1 | 1F:TGAGCTCAAGGCAAGAGTTGAGGA | 174 bp / 213 bp |
1R:TGTTCCAGCAACTCGATGAG | ||||
Pikm-2 | 2F:CAGTAGCTGTGTCTCAGAACTATG | 290 bp / 332 bp | ||
2R:AAGGTACCTCTTTTCGGCCAG |
图1 沪香粳216及其亲本badh2-E2(A)、Wxmp(B)、Pita(C)、pita(D)和Pikm(E, F)基因型的分子标记检测 M: DL2000 标记; 1: 南粳46; 2: 武香粳1号; 3: 沪香粳216; 4: 秀水114。
Fig. 1. Molecular marker-powered genotyping of badh2-E2(A), Wxmp(B), Pita(C), pita(D) and Pikm(E, F) for Huxianggeng 216 and its parents M, DL2000 Marker; 1, Nangeng 46; 2, Wuxianggeng 1; 3, Huxianggeng 216; 4, Xiushui 114.
品种 Variety | 香味 Fragrance | 直链淀粉含量 Amylose content(%) | 穗颈瘟抗性评价 Evaluation of resistance to neck blast |
---|---|---|---|
南粳46 Nangeng 46 | 有 Yes | 10.1±0.44 c | 高感Highly susceptible(HS) |
武香粳1号Wuxianggeng 1 | 有 Yes | 16.0±0.17 b | 高感Highly susceptible(HS) |
秀水114 Xiushui 114 | 无 No | 17.6±0.20 a | 抗病 Resistant(R) |
表2 沪香粳216亲本香味、直链淀粉含量和穗颈瘟抗性评价结果
Table 2. Evaluation of fragrance, amylose content and blast resistance for cross parents of Huxianggeng216
品种 Variety | 香味 Fragrance | 直链淀粉含量 Amylose content(%) | 穗颈瘟抗性评价 Evaluation of resistance to neck blast |
---|---|---|---|
南粳46 Nangeng 46 | 有 Yes | 10.1±0.44 c | 高感Highly susceptible(HS) |
武香粳1号Wuxianggeng 1 | 有 Yes | 16.0±0.17 b | 高感Highly susceptible(HS) |
秀水114 Xiushui 114 | 无 No | 17.6±0.20 a | 抗病 Resistant(R) |
图3 秀水114//秀水114/沪12-30 F3代部分单株badh2-E2(A)、Wxmp(B)、Pita(C)、pita(D)和Pikm(E, F)基因型的分子标记检测 1~10:随机选择的10个秀水114//秀水114/沪12-30 F3单株;B中每个点代表随机选择的秀水114//秀水114/沪12-30 F3单株。
Fig. 3. Molecular marker detection of badh2-E2(A)、Wxmp(B)、Pita(C)、pita(D) and Pikm(E, F) for F3 individuals from the cross Xiushui 114//Xiushui 114/Hu 12-30 1-10, Ten randomly selected F3 individuals from the cross Xiushui 114// Xiushui 114/Hu 12-30. In Fig B, each dot represents a randomly selected F3 individual from the cross Xiushui 114// Xiushui 114/Hu 12-30.
品系 Line | 直链淀粉 Amylose content(%) | 胶稠度 Gel consistency (m) | 食味值 Taste value | 峰值黏度 Peak viscosity (RVU) | 热浆黏度Hot paste viscosity (RVU) | 崩解值 Breakdown (RVU) | 终值黏度 Final viscosity (RVU) | 消减值Setback (RVU) | 糊化温度 Gelatinization temperature (℃) |
---|---|---|---|---|---|---|---|---|---|
ZX1 | 8.7±0.3 e | 80.3±1.5 cd | 74.5±1.0 d | 315.6±6.4 ab | 209.4±12.3 a | 106.2±6.0 b | 310.3±6.8 a | −5.3±0.4 b | 73.1±1.2 a |
ZX2 | 9.2±0.3 d | 82.7±2.1 bc | 81.8±0.8 c | 235.3±7.2 c | 135.1±6.3 b | 100.1±0.8 b | 238.7±7.4 c | 3.4±0.3 a | 70.5±1.1 ab |
ZX3 | 11.6±0.2 ab | 77.3±2.3 de | 82.3±0.5 c | 285.6±7.7 b | 170.8±22.7 ab | 114.8±15.0 b | 263.7±13.2 bc | −22.0±5.5 c | 71.1±0.5 ab |
ZX4 | 11.2±0.3 b | 79.3±1.2 d | 84.8±0.4 b | 290.4±7.1 ab | 179.3±5.7 ab | 111.1±12.8 b | 245.6±5.5 c | −44.7±1.7 d | 73.2±1.3 a |
ZX5 | 9.8±0.4 c | 79.7±1.5 d | 84.3±0.5 b | 303.0±41.9 ab | 161.9±40.4 ab | 141.1±1.6 a | 219.8±41.9 c | −83.1±0.1 e | 70.3±0.6 ab |
ZX6 | 9.3±0.1 cd | 85.3±0.6 ab | 86.0±0.0 a | 336.7±38.8 a | 182.8±27.7 ab | 153.9±11.2 a | 236.7±38.1 c | −100.0±0.8 e | 70.7±1.1 ab |
ZX7 | 12.0±0.4 a | 75.3±1.5 de | 81.8±1.2 c | 303.5±12.9 ab | 199.9±15.2 a | 103.5±2.3 b | 305.7±13.1 ab | 2.2±0.2 a | 71.9±1.7 ab |
ZX8 | 8.5±0.2 e | 86.7±1.5 a | 85.0±0.0 b | 307.4±2.3 ab | 168.2±6.5 ab | 139.2±4.2 a | 228.6±0.1 c | −78.8±2.4 e | 70.0±0.0 b |
表3 沪香粳216(ZX6)及其7个姊妹系的食味品质性状比较
Table 3. Comparative analysis of eating and cooking quality among Huxianggeng 216(ZX6) and its seven sister lines
品系 Line | 直链淀粉 Amylose content(%) | 胶稠度 Gel consistency (m) | 食味值 Taste value | 峰值黏度 Peak viscosity (RVU) | 热浆黏度Hot paste viscosity (RVU) | 崩解值 Breakdown (RVU) | 终值黏度 Final viscosity (RVU) | 消减值Setback (RVU) | 糊化温度 Gelatinization temperature (℃) |
---|---|---|---|---|---|---|---|---|---|
ZX1 | 8.7±0.3 e | 80.3±1.5 cd | 74.5±1.0 d | 315.6±6.4 ab | 209.4±12.3 a | 106.2±6.0 b | 310.3±6.8 a | −5.3±0.4 b | 73.1±1.2 a |
ZX2 | 9.2±0.3 d | 82.7±2.1 bc | 81.8±0.8 c | 235.3±7.2 c | 135.1±6.3 b | 100.1±0.8 b | 238.7±7.4 c | 3.4±0.3 a | 70.5±1.1 ab |
ZX3 | 11.6±0.2 ab | 77.3±2.3 de | 82.3±0.5 c | 285.6±7.7 b | 170.8±22.7 ab | 114.8±15.0 b | 263.7±13.2 bc | −22.0±5.5 c | 71.1±0.5 ab |
ZX4 | 11.2±0.3 b | 79.3±1.2 d | 84.8±0.4 b | 290.4±7.1 ab | 179.3±5.7 ab | 111.1±12.8 b | 245.6±5.5 c | −44.7±1.7 d | 73.2±1.3 a |
ZX5 | 9.8±0.4 c | 79.7±1.5 d | 84.3±0.5 b | 303.0±41.9 ab | 161.9±40.4 ab | 141.1±1.6 a | 219.8±41.9 c | −83.1±0.1 e | 70.3±0.6 ab |
ZX6 | 9.3±0.1 cd | 85.3±0.6 ab | 86.0±0.0 a | 336.7±38.8 a | 182.8±27.7 ab | 153.9±11.2 a | 236.7±38.1 c | −100.0±0.8 e | 70.7±1.1 ab |
ZX7 | 12.0±0.4 a | 75.3±1.5 de | 81.8±1.2 c | 303.5±12.9 ab | 199.9±15.2 a | 103.5±2.3 b | 305.7±13.1 ab | 2.2±0.2 a | 71.9±1.7 ab |
ZX8 | 8.5±0.2 e | 86.7±1.5 a | 85.0±0.0 b | 307.4±2.3 ab | 168.2±6.5 ab | 139.2±4.2 a | 228.6±0.1 c | −78.8±2.4 e | 70.0±0.0 b |
品系 Line | 穗瘟损失指数 Panicle blast loss index(%) | 病级 Disease grade | 抗性评价 Evaluation of resistance to panicle blast |
---|---|---|---|
ZX1 | 0.5 | 1 | 抗病Resistant(R) |
ZX2 | 16.0 | 5 | 中感Moderately susceptible(MS) |
ZX3 | 31.6 | 7 | 感Susceptible(S) |
ZX4 | 30.0 | 5 | 中感Moderately susceptible(MS) |
ZX5 | 10.1 | 3 | 中抗Moderately resistant(MR) |
ZX6 | 0.5 | 1 | 抗病Resistant(R) |
ZX7 | 22.1 | 5 | 中感Moderately susceptible(MS) |
ZX8 | 46.5 | 7 | 感Susceptible(S) |
表4 沪香粳216(ZX6)及其7个姊妹系的穗瘟抗性评价结果比较
Table 4. Comparison of panicle blast resistance among Huxianggeng 216(ZX6) and its seven sister lines
品系 Line | 穗瘟损失指数 Panicle blast loss index(%) | 病级 Disease grade | 抗性评价 Evaluation of resistance to panicle blast |
---|---|---|---|
ZX1 | 0.5 | 1 | 抗病Resistant(R) |
ZX2 | 16.0 | 5 | 中感Moderately susceptible(MS) |
ZX3 | 31.6 | 7 | 感Susceptible(S) |
ZX4 | 30.0 | 5 | 中感Moderately susceptible(MS) |
ZX5 | 10.1 | 3 | 中抗Moderately resistant(MR) |
ZX6 | 0.5 | 1 | 抗病Resistant(R) |
ZX7 | 22.1 | 5 | 中感Moderately susceptible(MS) |
ZX8 | 46.5 | 7 | 感Susceptible(S) |
品种 Variety | 直播成苗能力 Direct seedling ability | 低氧芽鞘 长度 Hypoxic coleoptile length(cm) | 缺氧反 应指数 Anoxic response index(%) | 中胚轴 长度 Mesocotyl length(cm) | 株高 Plant height(cm) | 抗倒力 Lodging resistance | 发芽率 Germination rate(%) | ||
---|---|---|---|---|---|---|---|---|---|
苗高 Seedling height/cm | 成苗指数 Seedling index | 低氧Hypoxia | 正常 Normal | ||||||
南粳46 Nangeng 46 | 6.6±0.2 d | 2.0±0.8 | 0.8±0.0 d | 42.3±0.2 d | 0.16±0.01 c | 108.7±0.3 a | 4.5±0.2 d | 40.0±1.7 c | 86.7±0.7 b |
武香粳1号 | 7.7±0.1 c | 2.0±0.7 | 1.1±0.1 c | 43.3±0.3 c | 0.15±0.01 c | 101.7±0.8 b | 4.9±0.2 c | 66.7±0.6 b | 100.0±0.0 a |
Wuxianggeng 1 | |||||||||
秀水114 Xiushui 114 | 10.5±0.1 a | 2.4±0.5 | 1.8±0.1 a | 50.8±0.3 a | 0.26±0.01 a | 98.5±1.0 c | 6.6±0.1 b | 80.0±0.1 a | 100.0±0.0 a |
沪香粳216 | 8.2±0.1 b | 2.0±0.0 | 1.2±0.0 b | 44.9±0.0 b | 0.21±0.03 b | 87.0±0.8 c | 7.5±0.2 a | 80.0±0.2 a | 100.0±0.0 a |
Huxianggeng 216 |
表5 品种宜直播相关性状表现
Table 5. Performance of direct seedling related traits among varieties
品种 Variety | 直播成苗能力 Direct seedling ability | 低氧芽鞘 长度 Hypoxic coleoptile length(cm) | 缺氧反 应指数 Anoxic response index(%) | 中胚轴 长度 Mesocotyl length(cm) | 株高 Plant height(cm) | 抗倒力 Lodging resistance | 发芽率 Germination rate(%) | ||
---|---|---|---|---|---|---|---|---|---|
苗高 Seedling height/cm | 成苗指数 Seedling index | 低氧Hypoxia | 正常 Normal | ||||||
南粳46 Nangeng 46 | 6.6±0.2 d | 2.0±0.8 | 0.8±0.0 d | 42.3±0.2 d | 0.16±0.01 c | 108.7±0.3 a | 4.5±0.2 d | 40.0±1.7 c | 86.7±0.7 b |
武香粳1号 | 7.7±0.1 c | 2.0±0.7 | 1.1±0.1 c | 43.3±0.3 c | 0.15±0.01 c | 101.7±0.8 b | 4.9±0.2 c | 66.7±0.6 b | 100.0±0.0 a |
Wuxianggeng 1 | |||||||||
秀水114 Xiushui 114 | 10.5±0.1 a | 2.4±0.5 | 1.8±0.1 a | 50.8±0.3 a | 0.26±0.01 a | 98.5±1.0 c | 6.6±0.1 b | 80.0±0.1 a | 100.0±0.0 a |
沪香粳216 | 8.2±0.1 b | 2.0±0.0 | 1.2±0.0 b | 44.9±0.0 b | 0.21±0.03 b | 87.0±0.8 c | 7.5±0.2 a | 80.0±0.2 a | 100.0±0.0 a |
Huxianggeng 216 |
年份 Year | 糙米率 Brown rice rate (%) | 整精米率 Head rice rate (%) | 垩白度 Chalkiness (%) | 透明度 Transparency (Grade) | 碱消值 Alkali digestion value(Grade) | 胶稠度 Gel consistency (mm) | 直链淀粉含量 Amylose content (%) |
---|---|---|---|---|---|---|---|
2021 | 83.4 | 69.3 | 1.5 | 2 | 6.5 | 80 | 10.4 |
2022 | 83.9 | 71.8 | 2.8 | 2 | 7.0 | 74 | 9.2 |
表6 2021−2022年沪香粳216稻米品质检测结果
Table 6. Results of rice quality testing for Huxianggeng 216 in 2021−2022
年份 Year | 糙米率 Brown rice rate (%) | 整精米率 Head rice rate (%) | 垩白度 Chalkiness (%) | 透明度 Transparency (Grade) | 碱消值 Alkali digestion value(Grade) | 胶稠度 Gel consistency (mm) | 直链淀粉含量 Amylose content (%) |
---|---|---|---|---|---|---|---|
2021 | 83.4 | 69.3 | 1.5 | 2 | 6.5 | 80 | 10.4 |
2022 | 83.9 | 71.8 | 2.8 | 2 | 7.0 | 74 | 9.2 |
品种 Variety | 苗瘟病级 Grade of seedling blast | 叶瘟病级 Grade of leaf blast | 穗发病率(病级) Incidence of panicle disease(Disease grade) | 穗瘟损失指数(病级) Rice panicle blast loss index(Disease grade) | 综合指数(病级) Composite index (Disease grade) | 抗性评价 Evaluation of resistance |
---|---|---|---|---|---|---|
沪香粳216 Huxianggeng 216 | 0 | 3 | 20%(5) | 2.0%(1) | 2.5(3) | 中抗MR |
表7 沪香粳216对稻瘟病的抗性鉴定结果
Table 7. Identification of resistance to rice blast in Huxianggeng 216
品种 Variety | 苗瘟病级 Grade of seedling blast | 叶瘟病级 Grade of leaf blast | 穗发病率(病级) Incidence of panicle disease(Disease grade) | 穗瘟损失指数(病级) Rice panicle blast loss index(Disease grade) | 综合指数(病级) Composite index (Disease grade) | 抗性评价 Evaluation of resistance |
---|---|---|---|---|---|---|
沪香粳216 Huxianggeng 216 | 0 | 3 | 20%(5) | 2.0%(1) | 2.5(3) | 中抗MR |
品种 Variety | 发病率 Incidence rate of rice blast (%) | 抗病等级 Disease resistance grade(Grade) |
---|---|---|
沪香粳216 Huxianggeng 216 | 12.90 | 3 |
镇稻88(抗病对照)Zhendao 88 (Disease-resistant control) | 5.71 | 3 |
武育粳3号(感病对照)Wuyugeng 3(Susceptible control) | 71.43 | 9 |
表8 沪香粳216对水稻条纹叶枯病抗性鉴定结果
Table 8. Identification of resistance to rice stripe disease in Huxianggeng 216
品种 Variety | 发病率 Incidence rate of rice blast (%) | 抗病等级 Disease resistance grade(Grade) |
---|---|---|
沪香粳216 Huxianggeng 216 | 12.90 | 3 |
镇稻88(抗病对照)Zhendao 88 (Disease-resistant control) | 5.71 | 3 |
武育粳3号(感病对照)Wuyugeng 3(Susceptible control) | 71.43 | 9 |
[1] | 国家统计局. 关于2021年粮食产量数据的公告[EB/OL]. (2021-12-06) [2023-12-16]. http://www.stats.gov.cn/tjsj/zxfb/202112/t20211206_1825053.html. |
National Bureau of Statistics. Announcement on grain production data for 2021[EB/OL]. (2021-12-06) [2023-12-16]. http://www.stats.gov.cn/tjsj/zxfb/202112/t20211206_1825053.html. (in Chinese) | |
[2] | Qiao W H, Chen Y T, Wang R S, Wei X, Cao L R, Zhang W X, Yang Q W. Nucleotide diversity in waxy gene and validation of single nucleotide polymorphism in relation to amylose content in Chinese microcore rice germplasm[J]. Crop Science, 2012, 52(4): 1689-1697. |
[3] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
Zhang C Q, Feng L H, Gu M H, Liu Q Q. Progress on inheritance and gene cloning for rice grain quality in Jiangsu Province[J]. Hereditas(Beijing), 2021, 43(5): 425-441. (in Chinese with English abstract) | |
[4] | Verma D K, Srivastav P P. Introduction to rice aroma, flavor, and fragrance//Verma D K, Srivastav P P. Science and Technology of Aroma, Flavour and Fragrance in Rice[M]. USA: Apple Academic Press, 2019: 3-34. |
[5] | He Q, Park Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice[J]. Molecular Breeding, 2015, 35(11): 217. |
[6] | Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q S, Waters D L E. The gene for fragrance in rice[J]. Plant Biotechnology Journal, 2005, 3(3): 363-370. |
[7] | 闫影, 诸光明, 张丽霞, 万常照, 曹黎明, 赵志鹏, 吴书俊. 水稻香味基因分子标记的开发及应用[J]. 西北植物学报, 2015, 35(2): 269-274. |
Yan Y, Zhu G M, Zhang L X, Wan C Z, Cao L M, Zhao Z P, Wu S J. Development of molecular markers for fragrant gene and its application[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2): 269-274. (in Chinese with English abstract) | |
[8] | Dean R, van Kan J A L, Pretorius Z A, Hammond- Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. |
[9] | Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19: 1216-1228. |
[10] | Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355: 962-965. |
[11] | Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled- coil-nucleotide-binding-leucine-rich repeat genes[J]. Genetics, 2009, 181: 1627-1638. |
[12] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide- binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance[J]. Genetics, 2008, 180: 2267-2276. |
[13] | Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. The Plant Cell, 2000, 12: 2033-2046. |
[14] | 李莹. 抗稻瘟病早粳稻空育131(Pid2/Pid3)的培育[D]. 哈尔滨: 黑龙江大学, 2015. |
Li Y. Cultivation of blast resistant early japonica rice Kongyu 131 (Pid2/Pid3)[D]. Harbin: Heilongjiang University, 2015. (in Chinese with English abstract) | |
[15] | 国家水稻数据中心. 中国水稻品种及其系谱数据库[DB/OL]. http://www.ricedata.cn/variety/. |
National Rice Data Center. China Rice Varieties and Pedigree Database[DB/OL]. http://www.ricedata.cn/gene/. (in Chinese) | |
[16] | 陈涛, 骆名瑞, 张亚东, 朱镇, 赵凌, 赵庆勇, 周丽慧, 姚姝, 于新, 王才林. 利用四引物扩增受阻突变体系PCR技术检测水稻低直链淀粉含量基因Wx-mq[J]. 中国水稻科学, 2013, 27(5): 529-534. |
Chen T, Luo M R, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Zhou L H, Yao S, Yu X, Wang C L. Detection of Wx-mq gene for low-amylose content tetra-primer amplification refractory mutation system PCR in rice[J]. Chinese Journal Rice Science, 2013, 27(5): 529-534. (in Chinese with English abstract) | |
[17] | 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Pillay B, 王才林. Wxmp基因背景下可溶性淀粉合成酶基因SSⅡa和去分支酶基因PUL对水稻蒸煮食味品质的影响[J]. 中国水稻科学, 2020, 34(3): 217-227. |
Yao S, Zhang Y D, Liu Y Q, Zhao C F, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Pillay B, Wang C L. Allelic effects on eating and cooking quality of SSⅡa and PUL genes under Wxmp background in rice[J]. Chinese Journal of Rice Science, 2020, 34(3): 217-227. (in Chinese with English abstract) | |
[18] | 王军, 杨杰, 陈志德, 仲维功. 水稻香米基因标记的开发与应用[J]. 分子植物育种, 2008, 6(6): 1209-1212. |
Wang J, Yang J, Chen Z D, Zhong W G. Development and application of fragrance gene markers in rice[J]. Molecular Plant Breeding, 2008, 6(6): 1209-1212. (in Chinese with English abstract) | |
[19] | 王忠华. 水稻抗稻瘟病基因Pi-ta分子标记的建立及其应用[D]. 杭州: 浙江大学, 2003. |
Wang Z H. Development of molecular markers of the rice blast resistance gene Pi-ta and its application[D]. Hangzhou: Zhejiang University, 2003. (in Chinese with English abstract) | |
[20] | 范方军, 王芳权, 刘永峰, 王军, 朱金燕, 李文奇, 仲维功, 杨杰. Pi-b、Pi-ta、Pikm和Pi54对水稻穗颈瘟的抗性评价[J]. 华北农学报, 2014, 29(3): 221-226. |
Fan F J, Wang F Q, Liu Y F, Wang J, Zhu J Y, Li W Q, Zhong W G, Yang J. Evaluation of resistance to rice panicle blast with resistant genes Pi-b, Pi-ta, Pikm and Pi54[J]. Acta Agriculturae Boreali-sinica, 2014, 29(3): 221-226. (in Chinese with English abstract) | |
[21] | 吴书俊, 闫影, 张丽霞, 万常照, 龚凯, 顾永平. 分子标记辅助选择培育抗条纹叶枯病香粳品种沪香粳106[J]. 上海农业学报, 2017, 33(3): 25-30. |
Wu S J, Yan Y, Zhang L X, Wan C Z, Gong K, Gu Y P. Breeding of RSD-resistant and fragrant japonica variety ‘Huxiangjing106’ by marker assisted selection in rice(Oryza sativa)[J]. Acta Agriculturae Shanghai, 2017, 33(3): 25-30. (in Chinese with English abstract) | |
[22] | 陈桂华, 邓化冰, 张桂莲, 唐文帮, 黄璜. 水稻茎秆性状与抗倒性的关系及配合力分析[J]. 中国农业科学, 2016, 49(3): 407-417. |
Chen G H, Deng H B, Zhang G L, Tang W B, Huang H. The correlation of stem characters and lodging resistance and combining ability analysis in rice[J]. Scientia Agricultura Sinica, 2016, 49(3): 407-417. (in Chinese with English abstract) | |
[23] | 陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65. |
Chen T, Zhao Q Y, Zhu Z, Zhao L, Yao S, Zhou L H, Zhao C F, Zhang Y D, Wang C L. Development of new low glutelin content japonica rice lines with good eating quality and fragrance by molecular marker-assisted selection[J]. Chinese Journal of Rice Science, 2023, 37(1): 55-65. (in Chinese with English abstract) | |
[24] | 降好宇, 曾盖, 郝明, 黄湘桂, 肖应辉. 广谱抗稻瘟病种质75-1-127的褐飞虱抗性基因鉴定及分子标记辅助选择育种[J]. 中国水稻科学, 2019, 33(2): 227-234. |
Jiang H Y, Zeng G, Hao M, Huang X G, Xiao Y H. Identification of brown planthopper resistance genes in broad-spectrum blast resistant rice germplasm 75-1-127 and its molecular marker-assisted selection breeding[J]. Chinese Journal of Rice Science, 2019, 33(2): 227-234. (in Chinese with English abstract) | |
[25] | 马作斌, 全东兴, 时羽, 王昌华, 周广春, 郑文静. 分子标记辅助选育聚合抗稻瘟病基因Pi5及Pita的水稻新品系[J]. 分子植物育种, 2021(1): 173-179. |
Ma Z B, Quan D X, Shi Y, Wang C H, Zhou G C, Zheng W J. Molecular markers-assisted selection of new rice lines with blast resistance gene Pi5 and Pita[J]. Molecular Plant Breeding, 2021(1): 173-179. (in Chinese with English abstract) | |
[26] | 上海市农业农村委员会. 关于2021年水稻机械化种植情况的通报[EB/OL]. (2021-08-25) [2023-12-25]. http://nyncw.sh.gov.cn/xxgk/20210825/1234567890abcdef.html. |
Shanghai Agriculture and Rural Affairs Committee. Bulletin on Mechanized Rice Planting in 2021[EB/OL]. (2021-08-25) [2023-12-25]. http://nyncw.sh.gov.cn/xxgk/20210825/1234567890abcdef.html. (in Chinese) | |
[27] | 熊怀阳, 李阳生. 水稻的耐淹性状及其Sub1基因[J]. 遗传, 2010, 32(9): 886-892. |
Xiong H Y, Li Y S. Submergence tolerance and Sub1 locus in rice[J]. Hereditas(Beijing), 2010, 32(9): 886-892. (in Chinese with English abstract) | |
[28] | Kretzschmar T, Pelayo M A F, Trijatmiko K R, Gabunada L F M, Alam R, Jimenez R, Mendioro M S, Slamet-Loedin I H, Sreenivasulu N, Bailey-Serres J, Ismail A M, Mackill D J. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice[J]. Nature Plants, 2015, 1(9): 15124. |
[29] | Ye N H, Wang F Z, Shi L, Chen M X, Cao Y Y, Zhu F Y, Wu Y Z, Xie L J, Liu T Y, Su Z Z, Xiao S, Zhang H, Yang J, Gu H Y, Hou X X, Hu Q J, Yi H J, Zhu C X, Zhang J, Liu Y G. Natural variation in the promoter of rice calcineurin B-like protein 10(OsCBL10) affects flooding tolerance during seed germination among rice subspecies[J]. The Plant Journal, 2018, 94(4): 612-625. |
[30] | Sun J, Zhang G C, Cui Z B, Kong X M, Yu X Y, Gui R, Han Y Q, Li Z, Lang H, Hua Y C, Zhang X M, Xu Q, Tang L, Xu Z J, Ma D R, Chen W F. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nature Communications, 2022, 13: 5664. |
[31] | He Y Q, Sun S, Zhao J, Huang Z B, Peng L L, Huang C W, Tang Z B, Huang Q Q, Wang Z F. UDP- glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination[J]. Nature Communications, 2023, 14: 2296. |
[32] | Lü Y S, Shao G N, Jiao G A, Sheng Z H, Xie L H, Hu S K, Tang S Q, Wei X J, Hu P S. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield[J]. Molecular Plant, 2021, 14(2): 344-351. |
[33] | Xiong Q, Ma B, Lu X, Huang Y H, He S J, Yang C, Yin C C, Zhao H, Zhou Y, Zhang W K, Wang W S, Li Z K, Chen S Y, Zhang J S. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings[J]. The Plant Cell, 2017, 29: 1053-1072. |
[34] | Sun S Y, Wang T, Wang L L, Li X M, Jia Y C, Liu C, Huang X H, Xie W B, Wang X L. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523. |
[35] | 李先锋. 水稻热精胺合成酶基因OsACL5的功能研究[D]. 扬州: 扬州大学, 2022. |
Li X F. Functional analysis of OsACL5, a gene putatively encoding thermospermine synthase[D]. Yangzhou: Yangzhou University, 2022. (in Chinese with English abstract) |
[1] | 卢椰子, 邱结华, 蒋楠, 寇艳君, 时焕斌. 稻瘟病菌效应子研究进展 [J]. 中国水稻科学, 2025, 39(3): 287-294. |
[2] | 王超瑞, 周宇琨, 温雅, 张瑛, 法晓彤, 肖治林, 张耗. 秸秆还田方式对稻田土壤特性和温室气体排放的影响及其水肥互作调控 [J]. 中国水稻科学, 2025, 39(3): 295-305. |
[3] | 王雅宣, 王新峰, 杨后红, 刘芳, 肖晶, 蔡玉彪, 魏琪, 傅强, 万品俊. 稻飞虱适应水稻抗性机制的研究进展 [J]. 中国水稻科学, 2025, 39(3): 306-321. |
[4] | 黄涛, 魏兆根, 陈玘, 程泽, 刘欣, 王广达, 胡珂鸣, 谢文亚, 陈宗祥, 冯志明, 左示敏.
水稻类病斑突变体lm52的基因 |
[5] | 马顺婷, 胡运高, 高方远, 刘利平, 牟昌铃, 吕建群, 苏相文, 刘松, 梁毓玉, 任光俊, 郭鸿鸣. 水稻真核翻译起始因子OseIF6.2调控粒型的功能研究 [J]. 中国水稻科学, 2025, 39(3): 331-342. |
[6] | 张彬涛, 刘聪聪, 郭明亮, 杨绍华, 吴世强, 郭龙彪, 朱义旺. 水稻OsDR8基因的稻瘟病抗性评价及优异单倍型鉴定 [J]. 中国水稻科学, 2025, 39(3): 343-351. |
[7] | 韦新宇, 曾跃辉, 肖长春, 黄建鸿, 阮宏椿, 杨旺兴, 邹文广, 许旭明. 水稻康丰B抗稻瘟病基因Pi-kf2(t)的克隆与功能验证 [J]. 中国水稻科学, 2025, 39(3): 352-364. |
[8] | 李文奇, 许扬, 王芳权, 朱建平, 陶亚军, 李霞, 范方军, 蒋彦婕, 陈智慧, 杨杰. 广谱抗稻瘟病基因PigmR的KASP标记开发及应用 [J]. 中国水稻科学, 2025, 39(3): 365-372. |
[9] | 韦还和, 汪璐璐, 马唯一, 张翔, 左博源, 耿孝宇, 朱旺, 朱济邹, 孟天瑶, 陈英龙, 高平磊, 许轲, 戴其根. 盐−旱复合胁迫下粳稻品种南粳9108籽粒灌浆特性及其与产量形成的关系 [J]. 中国水稻科学, 2025, 39(3): 373-386. |
[10] | 沈智达, 余秋华, 张斌, 曹玉东, 王少华, 王红飞, 伍永清, 戴志刚, 李小坤. 磷肥施用量对湖北省直播水稻产量、磷素积累及利用率的影响 [J]. 中国水稻科学, 2025, 39(3): 399-411. |
[11] | 何勇, 张诗骞, 王志成, 詹逍康, 丁一可, 刘晓瑞, 马素素, 田志宏. 印度梨形孢与复合肥组合施用对水稻机插秧秧苗素质的影响 [J]. 中国水稻科学, 2025, 39(3): 412-422. |
[12] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略[J]. 中国水稻科学, 2025, 39(2): 143-155. |
[13] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展[J]. 中国水稻科学, 2025, 39(2): 156-170. |
[14] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展[J]. 中国水稻科学, 2025, 39(2): 171-186. |
[15] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性[J]. 中国水稻科学, 2025, 39(2): 187-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||