中国水稻科学 ›› 2025, Vol. 39 ›› Issue (5): 575-685.DOI: 10.16819/j.1001-7216.2025.250203
• 综述与专论 • 下一篇
郝雯倩1, 蔡兴菁1, 杨海东1, 吴宇阳1, 滕轩1, 薛超2,*(), 龚志云1,*(
)
收稿日期:
2025-02-12
修回日期:
2025-03-13
出版日期:
2025-09-10
发布日期:
2025-09-10
通讯作者:
*email: zygong@yzu.edu.cn;基金资助:
HAO Wenqian1, CAI Xingjing1, YANG Haidong1, WU Yuyang1, TENG Xuan1, XUE Chao2,*(), GONG Zhiyun1,*(
)
Received:
2025-02-12
Revised:
2025-03-13
Online:
2025-09-10
Published:
2025-09-10
Contact:
*email: zygong@yzu.edu.cn;摘要:
水稻作为全球最重要的粮食作物之一,其产量和品质直接关系到全球粮食安全。然而,水稻在生长过程中常面临各种非生物胁迫,如盐胁迫、干旱、低温、高温等,严重影响水稻的生长发育和产量。近年来,表观遗传学研究尤其是组蛋白修饰在调控水稻耐胁迫响应中的作用日益受到关注。本文综述了组蛋白修饰在水稻非生物胁迫响应中的最新研究进展,以期为水稻遗传改良和抗逆育种提供理论依据。
郝雯倩, 蔡兴菁, 杨海东, 吴宇阳, 滕轩, 薛超, 龚志云. 不同类型组蛋白修饰在水稻响应非生物胁迫中的研究进展[J]. 中国水稻科学, 2025, 39(5): 575-685.
HAO Wenqian, CAI Xingjing, YANG Haidong, WU Yuyang, TENG Xuan, XUE Chao, GONG Zhiyun. Advances in Roles of Different Types of Histone Modifications in Responses of Rice to Abiotic Stresses[J]. Chinese Journal OF Rice Science, 2025, 39(5): 575-685.
HMTs/HDMs家族 HMTs/HDMs Family | 基因名称 Gene name | 编号 Gene ID | 功能分析 Functional analysis | 组蛋白修饰位点 Histone modification site | 参考文献 Reference | |
---|---|---|---|---|---|---|
赖氨酸甲基化HKMTs | E(z) | SDG711 | Os06g0275500 | 干旱胁迫;淀粉积累;光周期调控;穗发育 | H3K27me3 | [ |
SDG718 | Os03g0307800 | 侧生器官发育 | H3K27me3 | [ | ||
Ash | SDG724 | Os09g0307800 | 光周期调控; | H3K36me2/3 | [ | |
SDG708 | Os04g0429100 | 开花调控;干旱胁迫 | H3K36me2/3 | [ | ||
SDG725 | Os02g0554000 | 开花调控 | H3K36me3 | [ | ||
SDG723 | Os09g0134500 | 干旱胁迫;开花调控;油菜素甾醇合成;穗发育 | H3K4me3 | [ | ||
Trx | SDG721 | Os01g0218800 | 盐胁迫;调控产量和株型 | H3K4me3 | [ | |
SDG705 | Os01g0655300 | 细胞伸长;节间发育;赤霉素通路 | H3K4me3 | [ | ||
SDG701 | Os08g0180100 | 成花素基因表达;开花调控 | H3K36me3 | [ | ||
ATXR5/6 | SDG720 | Os01g0965500 | - | - | ||
SDG730 | Os02g0122700 | - | - | |||
Suv | SDG704 | Os11g0602200 | - | - | ||
SDG713 | Os03g0320400 | 转座酶活性 | H3K9 | [ | ||
SDG728 | Os05g0490700 | 转座酶活性 | H3K9me2 | [ | ||
SDG709 | Os01g0811300 | 转座酶活性 | H3K9 | [ | ||
SDG733 | Os11g0131600 | 逆转录转座子的抑制 | H3K9 | [ | ||
SDG734 | 转座酶活性 | H3K9 | [ | |||
SDG714 | Os01g0927000 | 毛状体形态发生调控;雌蕊发育 | H3K9me2 | [ | ||
SDG726 | Os07g0435900 | - | H3K9 | [ | ||
SDG715 | Os08g0565700 | 高温胁迫 | H3K9me2 | [ | ||
SDG729 | Os01g0811300 | 高盐敏感 | H3K9 | [ | ||
SDG703 | Os04g0544100 | 高温胁迫;灰飞虱抗性;雄配子减数分裂; 分蘖数 | H3K9me2 | [ | ||
SDG710 | Os08g0400200 | - | H3K9 | [ | ||
SDG712 | Os02g0621100 | 开花调控 | H3K9me2 | [ | ||
SMYD | SDG728 | Os05g0490700 | 株高;雄配子减数分裂 | H3K9me2 | [ | |
SDG722 | Os04g0629100 | 开花调控 | H3K4me3,H3K36me3 | [ | ||
精氨酸甲基化 PRMTs | PRMTs | OsPRMT1 | Os09g0359800 | 根、茎、叶片、花和幼苗中都有表达,在成熟叶片中表达量高 | H3R17, H4R3 | [ |
OsPRMT3 | Os07g0640000 | 根、茎、叶片、花和幼苗中表达量都很低 | H3, H4 | [ | ||
OsPRMT4 | Os07g0671700 | 根、茎、叶片、花和幼苗中都有表达,在成熟叶片中表达量高 | H3R17 | [ | ||
OsPRMT5 | Os02g0139200 | 根、茎、叶、花和幼苗中的表达量均很低 | H4R3 | [ | ||
OsPRMT6a | Os10g0489100 | 茉莉酸通路;小穗发育 | H3, H4 | [ | ||
OsPRMT6b | Os04g0677066 | 根、茎、叶、花和幼苗中都有表达,表达量高于OsPRMT6a | H3R2, H3R17 | [ | ||
OsPRMT7 | Os06g0105500 | 成熟叶片中表达稍高,根、茎、幼叶、花和幼苗中表达量很低 | H3, H4 | [ | ||
OsPRMT10 | Os06g0142800 | 根、茎、叶、花和幼苗中都有表达 | H3R2, H4R3 | [ | ||
赖氨酸去甲基化KDMs | LSD1 | OsHDM701 | - | |||
OsHDM702 | - | |||||
OsHDM703 | - | |||||
OsHDM704 | - | |||||
KDM5/JARID1 | JMJ703 | Os05g0196500 | 高温胁迫;开花调控 | H3K4me3 | [ | |
JMJ704 | Os05g0302300 | 开花调控 | H3K4me2/3 | [ | ||
JMJ708 | - | 高温胁迫 | H3K36me2 | [ | ||
KDM4/JHDM3 | JMJ701 | - | ||||
JMJ702 | - | |||||
JMJ705 | Os01g0907400 | - | H3K27me3 | |||
JMJ706 | Os10g0577600 | - | H3K9me2/3 | |||
JMJ707 | - | |||||
KDM3/JHDM2 | JMJ715 | - | ||||
JMJ716 | - | |||||
JMJ718 | - | |||||
JMJ719 | - | |||||
JMJ720 | - | |||||
JmjC domain-only | JMJ710 | 干旱胁迫 | H3K36me2 | [ | ||
JMJ711 | 高温胁迫 | H3K27me3 | ||||
JMJ712 | 高温胁迫 | H3K27me3 | ||||
JMJ713 | 高温胁迫 | H3K36me2 | [ | |||
JMJ714 | - | |||||
JMJ717 | - | |||||
精氨酸去甲基化PADI4 | - |
表1 水稻中编码组蛋白甲基转移酶和去甲基化酶的基因
Table 1. Genes encoding histone methyltransferase and demethylase in rice
HMTs/HDMs家族 HMTs/HDMs Family | 基因名称 Gene name | 编号 Gene ID | 功能分析 Functional analysis | 组蛋白修饰位点 Histone modification site | 参考文献 Reference | |
---|---|---|---|---|---|---|
赖氨酸甲基化HKMTs | E(z) | SDG711 | Os06g0275500 | 干旱胁迫;淀粉积累;光周期调控;穗发育 | H3K27me3 | [ |
SDG718 | Os03g0307800 | 侧生器官发育 | H3K27me3 | [ | ||
Ash | SDG724 | Os09g0307800 | 光周期调控; | H3K36me2/3 | [ | |
SDG708 | Os04g0429100 | 开花调控;干旱胁迫 | H3K36me2/3 | [ | ||
SDG725 | Os02g0554000 | 开花调控 | H3K36me3 | [ | ||
SDG723 | Os09g0134500 | 干旱胁迫;开花调控;油菜素甾醇合成;穗发育 | H3K4me3 | [ | ||
Trx | SDG721 | Os01g0218800 | 盐胁迫;调控产量和株型 | H3K4me3 | [ | |
SDG705 | Os01g0655300 | 细胞伸长;节间发育;赤霉素通路 | H3K4me3 | [ | ||
SDG701 | Os08g0180100 | 成花素基因表达;开花调控 | H3K36me3 | [ | ||
ATXR5/6 | SDG720 | Os01g0965500 | - | - | ||
SDG730 | Os02g0122700 | - | - | |||
Suv | SDG704 | Os11g0602200 | - | - | ||
SDG713 | Os03g0320400 | 转座酶活性 | H3K9 | [ | ||
SDG728 | Os05g0490700 | 转座酶活性 | H3K9me2 | [ | ||
SDG709 | Os01g0811300 | 转座酶活性 | H3K9 | [ | ||
SDG733 | Os11g0131600 | 逆转录转座子的抑制 | H3K9 | [ | ||
SDG734 | 转座酶活性 | H3K9 | [ | |||
SDG714 | Os01g0927000 | 毛状体形态发生调控;雌蕊发育 | H3K9me2 | [ | ||
SDG726 | Os07g0435900 | - | H3K9 | [ | ||
SDG715 | Os08g0565700 | 高温胁迫 | H3K9me2 | [ | ||
SDG729 | Os01g0811300 | 高盐敏感 | H3K9 | [ | ||
SDG703 | Os04g0544100 | 高温胁迫;灰飞虱抗性;雄配子减数分裂; 分蘖数 | H3K9me2 | [ | ||
SDG710 | Os08g0400200 | - | H3K9 | [ | ||
SDG712 | Os02g0621100 | 开花调控 | H3K9me2 | [ | ||
SMYD | SDG728 | Os05g0490700 | 株高;雄配子减数分裂 | H3K9me2 | [ | |
SDG722 | Os04g0629100 | 开花调控 | H3K4me3,H3K36me3 | [ | ||
精氨酸甲基化 PRMTs | PRMTs | OsPRMT1 | Os09g0359800 | 根、茎、叶片、花和幼苗中都有表达,在成熟叶片中表达量高 | H3R17, H4R3 | [ |
OsPRMT3 | Os07g0640000 | 根、茎、叶片、花和幼苗中表达量都很低 | H3, H4 | [ | ||
OsPRMT4 | Os07g0671700 | 根、茎、叶片、花和幼苗中都有表达,在成熟叶片中表达量高 | H3R17 | [ | ||
OsPRMT5 | Os02g0139200 | 根、茎、叶、花和幼苗中的表达量均很低 | H4R3 | [ | ||
OsPRMT6a | Os10g0489100 | 茉莉酸通路;小穗发育 | H3, H4 | [ | ||
OsPRMT6b | Os04g0677066 | 根、茎、叶、花和幼苗中都有表达,表达量高于OsPRMT6a | H3R2, H3R17 | [ | ||
OsPRMT7 | Os06g0105500 | 成熟叶片中表达稍高,根、茎、幼叶、花和幼苗中表达量很低 | H3, H4 | [ | ||
OsPRMT10 | Os06g0142800 | 根、茎、叶、花和幼苗中都有表达 | H3R2, H4R3 | [ | ||
赖氨酸去甲基化KDMs | LSD1 | OsHDM701 | - | |||
OsHDM702 | - | |||||
OsHDM703 | - | |||||
OsHDM704 | - | |||||
KDM5/JARID1 | JMJ703 | Os05g0196500 | 高温胁迫;开花调控 | H3K4me3 | [ | |
JMJ704 | Os05g0302300 | 开花调控 | H3K4me2/3 | [ | ||
JMJ708 | - | 高温胁迫 | H3K36me2 | [ | ||
KDM4/JHDM3 | JMJ701 | - | ||||
JMJ702 | - | |||||
JMJ705 | Os01g0907400 | - | H3K27me3 | |||
JMJ706 | Os10g0577600 | - | H3K9me2/3 | |||
JMJ707 | - | |||||
KDM3/JHDM2 | JMJ715 | - | ||||
JMJ716 | - | |||||
JMJ718 | - | |||||
JMJ719 | - | |||||
JMJ720 | - | |||||
JmjC domain-only | JMJ710 | 干旱胁迫 | H3K36me2 | [ | ||
JMJ711 | 高温胁迫 | H3K27me3 | ||||
JMJ712 | 高温胁迫 | H3K27me3 | ||||
JMJ713 | 高温胁迫 | H3K36me2 | [ | |||
JMJ714 | - | |||||
JMJ717 | - | |||||
精氨酸去甲基化PADI4 | - |
HAT/HDAC家族 HMTs/HDMs Family | 基因名称 Gene name | 编号 Gene ID | 功能分析 Functional analysis | 组蛋白修饰位点 Histone modification site | 参考文献 Reference |
---|---|---|---|---|---|
p300/CBP | HAC701 | Os01g14370 | 温度响应、高盐应激 | H3K9ac, H4K12ac | [ |
HAC703 | Os02g04490 | 低温响应、高盐应激 | H3K9ac, H4K12ac | [ | |
HAC704 | Os06g49130 | 温度响应、高盐应激 | H3K9ac, H4K12ac | [ | |
GNAT | HAG702 (GCN5) | Os10g28040 | 高温响应 | H3K9ac, H4K12ac | [ |
HAG703 | Os04g40840 | 高温响应、高盐应激; 干旱应激 | H3K9ac, H4K12ac | [ | |
HAG704 | Os09g17850 | 温度响应 | H4K8ac | [ | |
MYST | HAM701 | Os07g43360 | 高盐应激、干旱应激 | H3K9ac, H4K12ac | [ |
TAFII250 | OsHAF701 | Os06g43790 | 干旱应激 | H3K9ac, H4K12ac | [ |
RPD3/HDA1 | HDA701 | Os01g40400 | 干旱应激 | H3K9 | [ |
HDA702 (HDAC1) | Os06g38470 | 根生长 | H3K14ac, H3K18ac | [ | |
HDA703 (HDAC3) | Os02g12350 | 干旱应激、病害应激 | H4K8ac, H4K12ac | [ | |
HDA704 | Os07g06980 | 干旱应激、剑叶形态 | H4K8ac | [ | |
HDA705 | Os08g25570 | 苗期渗透抗性、逆境激素应答、病害胁迫 | H4K8ac | [ | |
HDA706 (HDAC6) | Os06g37420 | 高盐应激、根和叶的发育 | H4K5ac, H4K8ac | [ | |
HDA707 | Os01g12310 | 逆境激素应答 | [ | ||
HDA709 | Os11g09370 | 干旱应激 | H3K9ac | [ | |
HDA710 (HDAC2) | Os02g12380 | 高盐应激、干旱应激 | H4K5ac, H4K16ac | [ | |
HDA711 | Os04g33480 | 抑制叶片生长 | H3K9ac | [ | |
HDA712 | Os05g36920 | [ | |||
HDA713 | Os07g41090 | H3K9ac | [ | ||
HDA714 (HDAC10) | Os12g08220 | 低温应答、高盐应答 | H3K9ac | [ | |
HDA716 | Os05g36930 | 种子萌发与生长 | H3K9ac | [ | |
HD-tuins | HDT701 | Os05g51830 | 逆境激素应答、胁迫平衡 | H3K9ac | [ |
HDT702 | Os01g68104 | 逆境激素应答、 叶和茎的生长 | H3K9ac | [ | |
Sirtuin | SRT701 | Os04g20270 | 低温应答、高盐应答 | H3K9ac | [ |
SRT702 | Os12g07950 | 低温应答、高盐应答; 干旱应激 | H3K9ac | [ |
表2 水稻中编码组蛋白乙酰转移酶和去乙酰化酶的基因信息
Table 2. Gene information encoding histone acetyltransferase and deacetylase in rice
HAT/HDAC家族 HMTs/HDMs Family | 基因名称 Gene name | 编号 Gene ID | 功能分析 Functional analysis | 组蛋白修饰位点 Histone modification site | 参考文献 Reference |
---|---|---|---|---|---|
p300/CBP | HAC701 | Os01g14370 | 温度响应、高盐应激 | H3K9ac, H4K12ac | [ |
HAC703 | Os02g04490 | 低温响应、高盐应激 | H3K9ac, H4K12ac | [ | |
HAC704 | Os06g49130 | 温度响应、高盐应激 | H3K9ac, H4K12ac | [ | |
GNAT | HAG702 (GCN5) | Os10g28040 | 高温响应 | H3K9ac, H4K12ac | [ |
HAG703 | Os04g40840 | 高温响应、高盐应激; 干旱应激 | H3K9ac, H4K12ac | [ | |
HAG704 | Os09g17850 | 温度响应 | H4K8ac | [ | |
MYST | HAM701 | Os07g43360 | 高盐应激、干旱应激 | H3K9ac, H4K12ac | [ |
TAFII250 | OsHAF701 | Os06g43790 | 干旱应激 | H3K9ac, H4K12ac | [ |
RPD3/HDA1 | HDA701 | Os01g40400 | 干旱应激 | H3K9 | [ |
HDA702 (HDAC1) | Os06g38470 | 根生长 | H3K14ac, H3K18ac | [ | |
HDA703 (HDAC3) | Os02g12350 | 干旱应激、病害应激 | H4K8ac, H4K12ac | [ | |
HDA704 | Os07g06980 | 干旱应激、剑叶形态 | H4K8ac | [ | |
HDA705 | Os08g25570 | 苗期渗透抗性、逆境激素应答、病害胁迫 | H4K8ac | [ | |
HDA706 (HDAC6) | Os06g37420 | 高盐应激、根和叶的发育 | H4K5ac, H4K8ac | [ | |
HDA707 | Os01g12310 | 逆境激素应答 | [ | ||
HDA709 | Os11g09370 | 干旱应激 | H3K9ac | [ | |
HDA710 (HDAC2) | Os02g12380 | 高盐应激、干旱应激 | H4K5ac, H4K16ac | [ | |
HDA711 | Os04g33480 | 抑制叶片生长 | H3K9ac | [ | |
HDA712 | Os05g36920 | [ | |||
HDA713 | Os07g41090 | H3K9ac | [ | ||
HDA714 (HDAC10) | Os12g08220 | 低温应答、高盐应答 | H3K9ac | [ | |
HDA716 | Os05g36930 | 种子萌发与生长 | H3K9ac | [ | |
HD-tuins | HDT701 | Os05g51830 | 逆境激素应答、胁迫平衡 | H3K9ac | [ |
HDT702 | Os01g68104 | 逆境激素应答、 叶和茎的生长 | H3K9ac | [ | |
Sirtuin | SRT701 | Os04g20270 | 低温应答、高盐应答 | H3K9ac | [ |
SRT702 | Os12g07950 | 低温应答、高盐应答; 干旱应激 | H3K9ac | [ |
[1] | Fischle W, Wang Y, Allis C D. Histone and chromatin cross-talk[J]. Current Opinion in Cell Biology, 2003, 15(2): 172-183. |
[2] | Jaskelioff M, Peterson C L. Chromatin and transcription: Histones continue to make their marks[J]. Nature Cell Biology, 2003, 5(5): 395-399. |
[3] | Ueda M, Seki M. Histone modifications form epigenetic regulatory networks to regulate abiotic stress response[J]. Plant Physiology, 2020, 182(1): 15-26. |
[4] | Fang H, Liu X, Thorn G, Duan J, Tian L. Expression analysis of histone acetyltransferases in rice under drought stress[J]. Biochemical and Biophysical Research Communications, 2014, 443(2): 400-405. |
[5] | Ullah F, Xu Q, Zhao Y, Zhou D X. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice[J]. Journal of Integrative Plant Biology, 2020. DOI:10.1111/jipb.13042. |
[6] | Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S. Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress[J]. PLoS One, 2014, 9(6): e100343. |
[7] | Greer E L, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance[J]. Nature Reviews Genetics, 2012, 13(5): 343-357. |
[8] | Cloos P A C, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen K H, Helin K. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3[J]. Nature, 2006, 442(7100): 307-311. |
[9] | Hefferon K L. Recent patents in plant biotechnology: Impact on global health[J]. Recent Patents on Biotechnology, 2012, 6(2): 97-105. |
[10] | Fulton M D, Brown T, Zheng P Y. Mechanisms and inhibitors of histone arginine methylation[J]. The Chemical Record, 2018, 18(12): 1792-1807. |
[11] | Shilatifard A. The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis[J]. Annual Review of Biochemistry, 2012, 81: 65-95. |
[12] | Padeken J, Methot S P, Gasser S M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance[J]. Nature Reviews Molecular Cell Biology, 2022, 23(9): 623-640. |
[13] | Swigut T, Wysocka J. H3K27 demethylases, at long last[J]. Cell, 2007, 131(1): 29-32. |
[14] | Huang C, Zhu B. Roles of H3K36-specific histone methyltransferases in transcription: Antagonizing silencing and safeguarding transcription fidelity[J]. Biophysics Reports, 2018, 4(4): 170-177. |
[15] | Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callén E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez I A, Espejo A, Bedford M T, Nussenzweig A, Busslinger M, Jenuwein T. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse[J]. Genes & Development, 2008, 22(15): 2048-2061. |
[16] | Daujat S, Weiss T, Mohn F, Lange U C, Ziegler-Birling C, Zeissler U, Lappe M, Schübeler D, Torres-Padilla M E, Schneider R. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming[J]. Nature Structural & Molecular Biology, 2009, 16(7): 777-781. |
[17] | Farooq Z, Banday S, Pandita T K, Altaf M. The many faces of histone H3K79 methylation[J]. Mutation Research Reviews in Mutation Research, 2016, 768: 46-52. |
[18] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
Liu K, Chen J J, Liu S, Chen X, Zhao X R, Sun S, Xue C, Gong Z Y. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress{J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411. (in Chinese with English abstract) | |
[19] | Wang H, Fan Z, Shliaha P V, Miele M, Hendrickson R C, Jiang X, Helin K. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release[J]. Nature, 2023, 615(7951): 339-348. |
[20] | Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3[J]. Current Opinion in Genetics & Development, 2004, 14(2): 155-164. |
[21] | Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4): 823-837. |
[22] | Trievel R C. Structure and function of histone methyltransferases[J]. Critical Reviews in Eukaryotic Gene Expression, 2004, 14(3): 147-169. |
[23] | Sawada K, Yang Z, Horton J R, Collins R E, Zhang X, Cheng X. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase[J]. Journal of Biological Chemistry, 2004, 279(41): 43296-43306. |
[24] | Ng D W, Wang T, Chandrasekharan M B, Aramayo R, Kertbundit S, Hall T C. Plant SET domain-containing proteins: Structure, function and regulation[J]. Biochimica et Biophysica Acta (BBA), 2007, 1769(5/6): 316-329. |
[25] | Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants[J]. Protein Science, 2020, 29(5): 1120-1137. |
[26] | Accari S L, Fisher P R. Chapter five emerging roles of JmjC domain-containing proteins[J]. International Review of Cell and Molecular Biology, 2015, 319: 165-220. |
[27] | Liechti M E. Modern clinical research on LSD[J]. Neuropsychopharmacology, 2017, 42(11): 2114-2127. |
[28] | Wang Q, Liu P, Jing H, Zhou X F, Zhao B, Li Y, Jin J B. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis[J]. New Phytologist, 2021, 232(1): 221-236. |
[29] | Liu B, Wei G, Shi J, Jin J, Shen T, Ni T, Shen W H, Yu Y, Dong A. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa)[J]. New Phytologist, 2016, 210(2): 577-588. |
[30] | You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583. |
[31] | Chang Y, Liu J, Guo M, Ouyang W, Yan J, Xiong L, Li X. Drought-responsive dynamics of H3K9ac-marked 3D chromatin interactions are integrated by OsbZIP23-associated super-enhancer-like promoter regions in rice[J]. Genome Biology, 2024, 25(1): 262. |
[32] | Zhao W, Wang X, Zhang Q, Zheng Q, Yao H, Gu X, Liu D, Tian X, Wang X, Li Y, Zhu Z. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice[J]. Plant Physiology, 2022, 189(2): 1050-1064. |
[33] | Zhang D, Zhang D, Zhang Y, Li G, Sun D, Zhou B, Li J. Insights into the epigenetic basis of plant salt tolerance[J]. International Journal of Molecular Sciences, 2024, 25(21): 11698. |
[34] | Das P, Taube J H. Regulating methylation at H3K27: A trick or treat for cancer cell plasticity[J]. Cancers, 2020, 12(10): 2792. |
[35] | Murr R. Interplay between different epigenetic modifications and mechanisms[J]. Advances in Genetics, 2010, 70: 101-141. |
[36] | Yen C Y, Huang H W, Shu C W, Hou M F, Yuan S F, Wang H R, Chang Y T, Ahmad Farooqi A, Tang J Y, Chang H W. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers[J]. Cancer Letters, 2016, 373(2): 185-192. |
[37] | Paik W K, Pearson D, Lee H W, Kim S. Nonenzymatic acetylation of histones with acetyl-CoA[J]. Biochimica et Biophysica Acta, 1970, 213(2): 513-522. |
[38] | de Ruijter A J M, van Gennip A H, Caron H N, Kemp S, van Kuilenburg A B P. Histone deacetylases (HDACs): Characterization of the classical HDAC family[J]. The Biochemical Journal, 2003, 370(Pt 3): 737-749. |
[39] | Saha R N, Pahan K. HATs and HDACs in neurodegeneration: A tale of disconcerted acetylation homeostasis[J]. Cell Death and Differentiation, 2006, 13(4): 539-550. |
[40] | Yang X J, Seto E. HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention[J]. Oncogene, 2007, 26(37): 5310-5318. |
[41] | Dyda F, Klein D C, Hickman A B. GCN5-related N-acetyltransferases: A structural overview[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29: 81-103. |
[42] | Avvakumov N, Côté J. The MYST family of histone acetyltransferases and their intimate links to cancer[J]. Oncogene, 2007, 26(37): 5395-5407. |
[43] | Roth S Y, Denu J M, Allis C D. Histone acetyltransferases[J]. Annual Review of Biochemistry, 2001, 70: 81-120. |
[44] | Chen Q, Yang B, Liu X, Zhang X D, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents[J]. Theranostics, 2022, 12(11): 4935-4948. |
[45] | 薛超. 水稻盐胁迫下组蛋白乙酰化修饰特征及HATs相关基因的功能研究[D]. 扬州: 扬州大学, 2019. |
Xue C. Characteristics of histone acetylation modifications and functional study of HATs-related genes in rice under salt stress[D]. Yangzhou: Yangzhou University, 2019. (in Chinese with English abstract) | |
[46] | Yang X J, Seto E. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men[J]. Nature Reviews Molecular Cell Biology, 2008, 9(3): 206-218. |
[47] | Fu W, Wu K, Duan J. Sequence and expression analysis of histone deacetylases in rice[J]. Biochemical and Biophysical Research Communications, 2007, 356(4): 843-850. |
[48] | Pandey R, Müller A, Napoli C A, Selinger D A, Pikaard C S, Richards E J, Bender J, Mount D W, Jorgensen R A. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes[J]. Nucleic Acids Research, 2002, 30(23): 5036-5055. |
[49] | Lusser A, Brosch G, Loidl A, Haas H, Loidl P. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein[J]. Science, 1997, 277(5322): 88-91. |
[50] | Narita T, Weinert B T, Choudhary C. Functions and mechanisms of non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 2019, 20(3): 156-174. |
[51] | Liu K, Chen J, Sun S, Chen X, Zhao X, Hu Y, Qi G, Li X, Xu B, Miao J, Xue C, Zhou Y, Gong Z. Histone deacetylase OsHDA706 increases salt tolerance via H4K5/K8 deacetylation of OsPP2C49 in rice[J]. Journal of Integrative Plant Biology, 2023, 65(6): 1394-1407. |
[52] | 秦付军. 水稻组蛋白甲基转移酶和去乙酰化酶基因的功能研究[D]. 武汉: 华中农业大学, 2010. |
Qin F J. Study on the functions of histone methyltransferase and deacetylase genes in rice[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract) | |
[53] | Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2021, 40(3): e105086. |
[54] | Guo Y, Tan Y, Qu M, Hong K, Zeng L, Wang L, Zhuang C, Qian Q, Hu J, Xiong G. OsWR2 recruits HDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress[J]. Journal of Integrative Plant Biology, 2023, 65(7): 1651-1669. |
[55] | Li S, He X, Gao Y, Zhou C, Chiang V L, Li W. Histone acetylation changes in plant response to drought stress[J]. Genes, 2021, 12(9): 1409. |
[56] | Chen Z, Xu Q, Wang J, Zhao H, Yue Y, Liu B, Xiong L, Zhao Y, Zhou D X. A histone deacetylase confers plant tolerance to heat stress by controlling protein lysine deacetylation and stress granule formation in rice[J]. Cell Reports, 2024, 43(9): 114642. |
[57] | Sun Y, Xie Z, Jin L, Qin T, Zhan C, Huang J. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability[J]. The Plant Cell, 2024, 36(5): 1913-1936. |
[58] | Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1755-1768. |
[59] | Zhang H, Zhou J F, Kan Y, Shan J X, Ye W W, Dong N Q, Guo T, Xiang Y H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Guo S Q, Lei J J, Liao B, Mu X R, Cao Y J, Yu J J, Lin Y, Lin H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1293-1300. |
[60] | Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events[J]. Epigenetics, 2012, 7(10): 1098-1108. |
[61] | Callis J. The ubiquitination machinery of the ubiquitin system[J]. The Arabidopsis Book, 2014, 12: e0174. |
[62] | Shukla A, Chaurasia P, Bhaumik S R. Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability[J]. Cellular and Molecular Life Sciences, 2009, 66(8): 1419-1433. |
[63] | Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation[J]. Molecular and Cellular Biology, 2011, 31(24): 4858-4873. |
[64] | Loury R, Sassone-Corsi P. Histone phosphorylation: How to proceed[J]. Methods, 2003, 31(1): 40-48. |
[65] | Ma S, Tang N, Li X, Xie Y, Xiang D, Fu J, Shen J, Yang J, Tu H, Li X, Hu H, Xiong L. Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice[J]. Molecular Plant, 2019, 12(2): 263-277. |
[66] | Xu L, Yang L, Li A, Guo J, Wang H, Qi H, Li M, Yang P, Song S. An AP2/ERF transcription factor confers chilling tolerance in rice[J]. Science Advances, 2024, 10(35): eado4788. |
[67] | Wang J, Ren Y, Liu X, Luo S, Zhang X, Liu X, Lin Q, Zhu S, Wan H, Yang Y, Zhang Y, Lei B, Zhou C, Pan T, Wang Y, Wu M, jing R, Xu Y, Han M, Wu F, Lei C, Guo X, Cheng Z, Zheng X, Wang Y, Zhao Z, Jiang L, Zhang X, Wang Y F, Wang H, Wan J. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice[J]. Molecular Plant, 2021, 14(2): 315-329. |
[68] | Taverna S D, Coyne R S, Allis C D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena[J]. Cell, 2002, 110(6): 701-711. |
[69] | Lv H, Dao F Y, Guan Z X, Yang H, Li Y W, Lin H. Deep-Kcr: Accurate detection of lysine crotonylation sites using deep learning method[J]. Briefings in Bioinformatics, 2021, 22(4): bbaa255. |
[70] | Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases[J]. Genes & Diseases, 2023, 10(6): 2479-2490. |
[71] | Abu-Zhayia E R, Machour F E, Ayoub N. HDAC-dependent decrease in histone crotonylation during DNA damage[J]. Journal of Molecular Cell Biology, 2019, 11(9): 804-806. |
[72] | Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2021, 40(3): e105086. |
[73] | Sabari B R, Zhang D, Allis C D, Zhao Y. Metabolic regulation of gene expression through histone acylations[J]. Nature Reviews Molecular Cell Biology, 2017, 18(2): 90-101. |
[74] | Liu X, Zhou S, Wang W, Ye Y, Zhao Y, Xu Q, Zhou C, Tan F, Cheng S, Zhou D X. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem[J]. The Plant Cell, 2015, 27(5): 1428-1444. |
[75] | Liu X, Zhou C, Zhao Y, Zhou S, Wang W, Zhou D X. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time[J]. Frontiers in Plant Science, 2014, 5: 591. |
[76] | Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, Chu C. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice[J]. The Plant Cell, 2012, 24(8): 3235-3247. |
[77] | Liu B, Liu Y, Wang B, Luo Q, Shi J, Gan J, Shen W H, Yu Y, Dong A. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment[J]. Nature Communications, 2019, 10(1): 2999. |
[78] | Zong W, Yang J, Fu J, Xiong L. Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice[J]. Journal of Integrative Plant Biology, 2020, 62(6): 723-729. |
[79] | Liu Y, Chen X, Xue S, Quan T, Cui D, Han L, Cong W, Li M, Yun D J, Liu B, Xu Z Y. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake[J]. Plant Biotechnology Journal, 2021, 19(12): 2576-2588. |
[80] | Jiang P, Wang S, Ikram A U, Xu Z, Jiang H, Cheng B, Ding Y. SDG721 and SDG705 are required for rice growth[J]. Journal of Integrative Plant Biology, 2018, 60(7): 530-535. |
[81] | Liu K, Yu Y, Dong A, Shen W H. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development[J]. New Phytologist, 2017, 215(2): 609-623. |
[82] | Qin F J, Sun Q W, Huang L M, Chen X S, Zhou D X. Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression[J]. Molecular Plant, 2010, 3(4): 773-782. |
[83] | Shahid S. A DNA methylation reader with an affinity for salt stress[J]. The Plant Cell, 2020, 32(11): 3380-3381. |
[84] | 龚世诚. 水稻组蛋白甲基转移酶SDG703和SDG715在生殖发育和热胁迫中的功能研究[D]. 武汉: 华中农业大学, 2024. |
Gong S C. Function of rice histone methyltransferases SDG703 and SDG715 in reproductive development and heat stress[D]. Wuhan: Huazhong Agricultural University, 2024. (in Chinese with English abstract) | |
[85] | Zhang S, Hao H, Liu X, Li Y, Ma X, Liu W, Zheng R, Liang S, Luan W. SDG712 a putative H3K9-specific methyltransferase encoding gene, delays flowering through repressing the expression of florigen genes in rice[J]. Rice, 2021, 14(1): 73. |
[86] | Zhang S, Deng L, Cheng R, Hu J, Wu C Y. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722[J]. Journal of Integrative Plant Biology, 2022, 64(1): 149-165. |
[87] | Ahmad A, Dong Y, Cao X. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation[J]. PLoS One, 2011, 6(8): e22664. |
[88] | Dong K, Wu F, Cheng S, Li S, Zhang F, Xing X, Jin X, Luo S, Feng M, Miao R, Chang Y, Zhang S, You X, Wang P, Zhang X, Lei C, Ren Y, Zhu S, Guo X, Wu C, Yang D L, Lin Q, Cheng Z, Wan J. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice[J]. Molecular Plant, 2024, 17(6): 900-919. |
[89] | Chai J, Gu X, Song P, Zhao X, Gao Y, Wang H, Zhang Q, Cai T, Liu Y, Li X, Song T, Zhu Z. Histone demethylase JMJ713 interaction with JMJ708 modulating H3K36me2, enhances rice heat tolerance through promoting hydrogen peroxide scavenging[J]. Plant Physiology and Biochemistry, 2024, 217: 109284. |
[90] | Xuan H, Shi N, Chen J, Jiang Y, Zhang H, Chu C, Li S, Chen X, Yang H. Physical coupling of H3K4me3 demethylases and Polycomb repressive complex 2 to accelerate flowering in rice[J]. Plant Physiology, 2024, 195(3): 1802-1806. |
[91] | 刘涛. 水稻表观遗传学相关基因受镉胁迫表达分析[D]. 南京: 南京农业大学, 2016. |
Liu T. Expression analysis of epigenetic related genes in rice under cadmium stress[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract) | |
[92] | Yin B L, Guo L, Zhang D F, Terzaghi W, Wang X F, Liu T T, He H, Cheng Z K, Deng X W. Integration of cytological features with molecular and epigenetic properties of rice chromosome 4[J]. Molecular Plant, 2008, 1(5): 816-829. |
[93] | 张嫚嫚, 郑青松, 李霞, 谭明谱. DNA甲基化在植物响应胁迫中的研究进展[J]. 植物生理学报, 2021, 57(4): 780-792. |
Zhang M M, Zheng Q S, Li X, Tan M P. Research progress on DNA methylation in plant stress responses[J]. Plant Physiology Journal, 2021, 57(4): 780-792. | |
[94] | 李萌. 转录因子PtrVCS2调控毛果杨适应干旱环境的机制研究[D]. 哈尔滨: 东北林业大学, 2024. |
Li M. Mechanism of transcription factor PtrVCS2 in regulating populus trichocarpa adaptation to drought stress[D]. Harbin: Northeast Forestry University, 2024. (in Chinese with English abstract) | |
[95] | 王小东. 玉米ZmHDT103,ZmERF018和ZmCDPK5调控玉米苗期耐旱性的功能研究[D]. 兰州: 甘肃农业大学, 2024. |
Wang X D. Functional study of ZmHDT103, ZmERF018, and ZmCDPK5 in regulating drought tolerance during maize seedling stage[D]. Lanzhou: Gansu Agricultural University, 2024. (in Chinese with English abstract) | |
[96] | Xu Q, Ma X, Wei X, Chen Z, Duan Y, Ju Y, Wang Z, Chen J, Zheng L, Chen X, Huang J, Zhang J, Chen X. Histone H4K8hib modification promotes gene expression and regulates rice immunity[J]. Molecular Plant, 2025, 18(1): 9-13. |
[97] | 刘帅. 水稻组蛋白Kcr/Kbu修饰特征分析及HDACs相关基因功能研究[D]. 扬州: 扬州大学, 2020. |
Liu S. Characteristics analysis of histone Kcr/Kbu modifications and functional study of HDACs-related genes in rice[D]. Yangzhou: Yangzhou University, 2020. | |
[98] | 方紫薇, 唐冉, 隆林芳, 陈艳. OsHDA703互作蛋白的筛选及其抗RSV的机制[J]. 北京农学院学报, 2022, 37(2): 1-6. |
Fang Z W, Tang R, Long LF, Chen Y. Screening of OsHDA703-interacting Proteins and Its Mechanism Against RSV[J]. Journal of Beijing University of Agriculture, 2022, 37(02): 1-6. | |
[99] | 董亚茹, 杜建勋, 陈传杰, 赵东晓, 王照红. 组蛋白去乙酰化酶(HDACs)及其在植物中的作用[J]. 生物技术通报, 2016, 32(9): 44-49. |
Dong Y R, Du J X, Chen C J, Zhao D X, Wang Z H. Histone deacetylases (HDACs) and their roles in plants[J]. Biotechnology Bulletin, 2016, 32(9): 44-49. | |
[100] | Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou D X. Down-regulation of a silent information regulator2- related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice[J]. Plant Physiology, 2007, 144(3): 1508-1519. |
[101] | Zhong X, Zhang H, Zhao Y, Sun Q, Hu Y, Peng H, Zhou D X. The rice NAD(+)-dependent histone deacetylase OsSRT 1 targets preferentially to stress- and metabolism- related genes and transposable elements[J]. PLoS One, 2013, 8(6): e66807. |
[1] | 王镜博, 苏畅, 冯晶, 姜思旭, 徐海, 崔志波, 赵明辉. 水稻OsAlR1基因耐铝性功能研究[J]. 中国水稻科学, 2025, 39(5): 615-623. |
[2] | 韶也, 胡远艺, 彭彦, 毛毕刚, 刘慧敏, 唐婵娟, 雷斌, 唐丽, 余丽霞, 李文建, 罗武中, 罗治斌, 袁远涛, 李曜魁, 张丹, 周利斌, 柏连阳, 唐文帮, 赵炳然. 基于M1TDS靶向筛选技术的重离子束诱变定向改良杂交水稻卓两优1126性状的研究[J]. 中国水稻科学, 2025, 39(5): 615-623. |
[3] | 张海鹏, 李莞意, 廖福兴, 马美子, 张洪程, 杨艳菊. 纳米钼对水稻根系形态生理和硝态氮吸收的影响[J]. 中国水稻科学, 2025, 39(5): 650-664. |
[4] | 刘钰婷, 周星, 何辰延, 李秋萍, 艾小凤, 袁玉洁, 刘睿, 杨景文, 刘婷婷, 王丽, 程红, 黄蓉, 李奥运, 胡文, 胡忠, 任万军, 邓飞. 不同光照条件下减穴稳苗配置对水稻茎鞘干物质积累转运 特性的影响[J]. 中国水稻科学, 2025, 39(5): 665-678. |
[5] | 杨行洲, 崔苗苗, 魏利辉, 顾爱国, 李东霞, 乐秀虎, 冯辉. 外源miR3979处理水稻对拟禾本科根结线虫趋性、侵染和发育的影响[J]. 中国水稻科学, 2025, 39(5): 703-710. |
[6] | 朱鹏, 凌溪铁, 王金彦, 张保龙, 杨郁文, 许轲, 裘实. 机直播条件下不同控草方式对抗除草剂水稻产量和品质差异性研究[J]. 中国水稻科学, 2025, 39(4): 501-515. |
[7] | 董立强, 张义凯, 杨铁鑫, 冯莹莹, 马亮, 梁潇, 张玉屏, 李跃东. 北方粳稻密苗机插育秧对秧苗素质及取秧特性的影响[J]. 中国水稻科学, 2025, 39(4): 516-528. |
[8] | 周洋, 叶凡, 刘立军. 典型促生微生物提高盐胁迫水稻抗性的研究进展[J]. 中国水稻科学, 2025, 39(4): 529-542. |
[9] | 朱建平, 李霞, 李文奇, 许扬, 王芳权, 陶亚军, 蒋彦婕, 陈智慧, 范方军, 杨杰. 水稻粉质胚乳突变体we1的表型分析与基因定位[J]. 中国水稻科学, 2025, 39(4): 543-551. |
[10] | 黄福灯, 吴春艳, 郝媛媛, 韩一飞, 张小斌, 孙会锋, 潘刚. 不同氮肥水平下水稻倒二叶叶鞘的转录组分析[J]. 中国水稻科学, 2025, 39(4): 563-574. |
[11] | 卢椰子, 邱结华, 蒋楠, 寇艳君, 时焕斌. 稻瘟病菌效应子研究进展[J]. 中国水稻科学, 2025, 39(3): 287-294. |
[12] | 王超瑞, 周宇琨, 温雅, 张瑛, 法晓彤, 肖治林, 张耗. 秸秆还田方式对稻田土壤特性和温室气体排放的影响及其水肥互作调控[J]. 中国水稻科学, 2025, 39(3): 295-305. |
[13] | 王雅宣, 王新峰, 杨后红, 刘芳, 肖晶, 蔡玉彪, 魏琪, 傅强, 万品俊. 稻飞虱适应水稻抗性机制的研究进展[J]. 中国水稻科学, 2025, 39(3): 306-321. |
[14] | 黄涛, 魏兆根, 陈玘, 程泽, 刘欣, 王广达, 胡珂鸣, 谢文亚, 陈宗祥, 冯志明, 左示敏. 水稻类病斑突变体lm52的基因克隆及其广谱抗病性分析[J]. 中国水稻科学, 2025, 39(3): 322-330. |
[15] | 马顺婷, 胡运高, 高方远, 刘利平, 牟昌铃, 吕建群, 苏相文, 刘松, 梁毓玉, 任光俊, 郭鸿鸣. 水稻真核翻译起始因子OseIF6.2调控粒型的功能研究[J]. 中国水稻科学, 2025, 39(3): 331-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||