Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (4): 377-387.DOI: 10.16819/j.1001-7216.2022.210413
• Research Papers • Previous Articles Next Articles
SHEN Hong1,#, YAO Dongping1,2,#, WU Jun1, LUO Qiuhong2, WU Zhipeng3, LEI Dongyang2, DENG Qiyun1, BAI Bin1,*()
Received:
2021-04-22
Revised:
2021-08-24
Online:
2022-07-10
Published:
2022-07-12
Contact:
BAI Bin
About author:
First author contact:# These authors contributed equally to this work
沈泓1,#, 姚栋萍1,2,#, 吴俊1, 罗秋红2, 吴志鹏3, 雷东阳2, 邓启云1, 柏斌1,*()
通讯作者:
柏斌
作者简介:
第一联系人:#共同第一作者
基金资助:
SHEN Hong, YAO Dongping, WU Jun, LUO Qiuhong, WU Zhipeng, LEI Dongyang, DENG Qiyun, BAI Bin. Effects of High Temperature in Various Phases of Grain Filling on Rice Starch Physicochemical Properties[J]. Chinese Journal OF Rice Science, 2022, 36(4): 377-387.
沈泓, 姚栋萍, 吴俊, 罗秋红, 吴志鹏, 雷东阳, 邓启云, 柏斌. 灌浆期不同时段高温对稻米淀粉理化特性的影响[J]. 中国水稻科学, 2022, 36(4): 377-387.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.210413
品种 Variety | 处理时段 Treatment period | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 长宽比 Length-to-width ratio | 垩白度 Chalkiness/% | 垩白粒率 Chalky grain rate/% |
---|---|---|---|---|---|---|---|
黄华占Huanghuazhan | CT | 83.49±0.35 a | 75.28±0.30 a | 64.44±1.65 a | 3.42±0.03 a | 0.80±0.32 c | 3.67±0.58 c |
QD | 78.61±0.71 b | 70.06±0.17 b | 29.74±0.51 c | 3.19±0.17 a | 67.47±0.80 a | 93.33±3.51 a | |
HD | 83.47±1.03 a | 75.25±1.25 a | 46.65±5.84 b | 3.37±0.03 a | 13.06±3.17 b | 24.20±9.73 b | |
9311近等基因系9311N | CT | 80.70±0.56 a | 71.84±1.30 a | 68.89±0.76 a | 2.81±0.05 a | 0.62±0.11 c | 3.33±1.53 c |
QD | 74.12±0.90 b | 65.83±0.64 b | 25.26±0.83 c | 2.67±0.07 b | 75.36±2.19 a | 98.33±1.53 a | |
HD | 80.53±0.60 a | 70.63±0.54 a | 56.21±1.64 b | 2.75±0.05 ab | 14.52±0.53 b | 28.00±2.00 b |
Table 1. Effects of high temperature at different times during grain filling on processing quality and appearance quality.
品种 Variety | 处理时段 Treatment period | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 长宽比 Length-to-width ratio | 垩白度 Chalkiness/% | 垩白粒率 Chalky grain rate/% |
---|---|---|---|---|---|---|---|
黄华占Huanghuazhan | CT | 83.49±0.35 a | 75.28±0.30 a | 64.44±1.65 a | 3.42±0.03 a | 0.80±0.32 c | 3.67±0.58 c |
QD | 78.61±0.71 b | 70.06±0.17 b | 29.74±0.51 c | 3.19±0.17 a | 67.47±0.80 a | 93.33±3.51 a | |
HD | 83.47±1.03 a | 75.25±1.25 a | 46.65±5.84 b | 3.37±0.03 a | 13.06±3.17 b | 24.20±9.73 b | |
9311近等基因系9311N | CT | 80.70±0.56 a | 71.84±1.30 a | 68.89±0.76 a | 2.81±0.05 a | 0.62±0.11 c | 3.33±1.53 c |
QD | 74.12±0.90 b | 65.83±0.64 b | 25.26±0.83 c | 2.67±0.07 b | 75.36±2.19 a | 98.33±1.53 a | |
HD | 80.53±0.60 a | 70.63±0.54 a | 56.21±1.64 b | 2.75±0.05 ab | 14.52±0.53 b | 28.00±2.00 b |
品种 Variety | 处理时段 Treatment period | 总淀粉含量 Total starch contents/% | 直链淀粉含量 Amylose content/% | 支链淀粉含量 Amylopectin content/% | 直/支链淀粉比 Amylose/Amylopectin ratio | 胶稠度 Gel consistency /mm |
---|---|---|---|---|---|---|
黄华占Huanghuazhan | CT | 75.12±1.86 a | 17.03±0.25 a | 58.09±2.00 a | 0.29±0.01 a | 62.25±5.32 a |
QD | 70.55±0.31 b | 12.73±0.10 c | 57.82±0.37 a | 0.22±0 c | 52.50±3.51 b | |
HD | 75.44±3.95 a | 15.63±0.57 b | 59.82±3.64 a | 0.26±0.01 b | 53.25±2.63 b | |
9311近等基因系9311N | CT | 75.57±0.56 a | 12.15±0.37 a | 63.42±0.51 b | 0.19±0.01 a | 70.75±1.71 a |
QD | 72.15±0.86 b | 7.60±0.26 b | 64.55±1.10 a | 0.12±0 b | 60.75±1.71 b | |
HD | 71.73±0.37 b | 11.88±0.67 a | 59.85±0.73 c | 0.20±0.01 a | 60.00±2.16 b |
Table 2. Effects of high temperature at different phases of grain filling on starch composition and gel consistency.
品种 Variety | 处理时段 Treatment period | 总淀粉含量 Total starch contents/% | 直链淀粉含量 Amylose content/% | 支链淀粉含量 Amylopectin content/% | 直/支链淀粉比 Amylose/Amylopectin ratio | 胶稠度 Gel consistency /mm |
---|---|---|---|---|---|---|
黄华占Huanghuazhan | CT | 75.12±1.86 a | 17.03±0.25 a | 58.09±2.00 a | 0.29±0.01 a | 62.25±5.32 a |
QD | 70.55±0.31 b | 12.73±0.10 c | 57.82±0.37 a | 0.22±0 c | 52.50±3.51 b | |
HD | 75.44±3.95 a | 15.63±0.57 b | 59.82±3.64 a | 0.26±0.01 b | 53.25±2.63 b | |
9311近等基因系9311N | CT | 75.57±0.56 a | 12.15±0.37 a | 63.42±0.51 b | 0.19±0.01 a | 70.75±1.71 a |
QD | 72.15±0.86 b | 7.60±0.26 b | 64.55±1.10 a | 0.12±0 b | 60.75±1.71 b | |
HD | 71.73±0.37 b | 11.88±0.67 a | 59.85±0.73 c | 0.20±0.01 a | 60.00±2.16 b |
Fig. 1. Effect of high temperature at different phases of grain filling on amylopectin chain distribution of heat tolerant variety Huanghuazhan(A) and heat sensitive near-isogenic lines derived from 9311 (B).
品种 Variety | 处理时段 Treatment period | 聚合度Degree of polymerization | |||
---|---|---|---|---|---|
A(6≤DP≤12) | B1(12<DP≤24) | B2(24<DP≤36) | B3(36<DP≤76) | ||
黄华占 Huanghuazhan | CT | 29.90±0.75 a | 49.13±0.60 a | 10.81±0.06 c | 10.17±0.12 c |
QD | 27.45±0.27 b | 47.59±0.02 c | 11.99±0.17 a | 12.97±0.09 a | |
HD | 28.21±0.75 b | 48.52±0.20 b | 11.59±0.34 b | 11.68±0.57 b | |
9311近等基因系 9311N | CT | 24.41±0.12 a | 54.04±0.01 a | 11.05±0.06 b | 10.49±0.06 b |
QD | 21.37±0.34 b | 54.42±0.20 a | 11.72±0.11 a | 12.50±0.43 a | |
HD | 24.13±0.36 a | 53.58±0.12 b | 11.25±0.10 b | 11.04±0.13 b |
Table 3. Effects of high temperature at different phases of grain filling on A, B1, B2, B3 chain of amylopectin. %
品种 Variety | 处理时段 Treatment period | 聚合度Degree of polymerization | |||
---|---|---|---|---|---|
A(6≤DP≤12) | B1(12<DP≤24) | B2(24<DP≤36) | B3(36<DP≤76) | ||
黄华占 Huanghuazhan | CT | 29.90±0.75 a | 49.13±0.60 a | 10.81±0.06 c | 10.17±0.12 c |
QD | 27.45±0.27 b | 47.59±0.02 c | 11.99±0.17 a | 12.97±0.09 a | |
HD | 28.21±0.75 b | 48.52±0.20 b | 11.59±0.34 b | 11.68±0.57 b | |
9311近等基因系 9311N | CT | 24.41±0.12 a | 54.04±0.01 a | 11.05±0.06 b | 10.49±0.06 b |
QD | 21.37±0.34 b | 54.42±0.20 a | 11.72±0.11 a | 12.50±0.43 a | |
HD | 24.13±0.36 a | 53.58±0.12 b | 11.25±0.10 b | 11.04±0.13 b |
品种 Variety | 处理时间 Treatment period | 起始糊化温度 To/℃ | 峰值糊化温度 Tp/℃ | 终止糊化温度 Tc/℃ | 糊化焓 ΔH/(J·g−1) |
---|---|---|---|---|---|
黄华占 Huanghuazhan | CT | 61.91±0.36 c | 67.24±0.56 c | 72.97±0.43 b | 4.34±0.12 b |
QD | 73.53±0.05 a | 80.54±0.36 a | 84.94±0.48 a | 5.53±0.23 a | |
HD | 64.21±0.10 b | 68.85±0.18 b | 74.09±0.11 b | 4.24±0.66 b | |
9311近等基因系9311N | CT | 71.64±0.17 c | 76.13±0.30 c | 81.64±0.30 b | 6.75±0.04 b |
QD | 82.08±0.34 a | 87.87±0.39 a | 91.56±0.46 a | 8.40±0.26 a | |
HD | 73.66±0.15 b | 77.67±0.06 b | 81.87±0.21 b | 5.61±0.31 b |
Table 4. Effect of high temperature at different times of grain filling on gelatinization property.
品种 Variety | 处理时间 Treatment period | 起始糊化温度 To/℃ | 峰值糊化温度 Tp/℃ | 终止糊化温度 Tc/℃ | 糊化焓 ΔH/(J·g−1) |
---|---|---|---|---|---|
黄华占 Huanghuazhan | CT | 61.91±0.36 c | 67.24±0.56 c | 72.97±0.43 b | 4.34±0.12 b |
QD | 73.53±0.05 a | 80.54±0.36 a | 84.94±0.48 a | 5.53±0.23 a | |
HD | 64.21±0.10 b | 68.85±0.18 b | 74.09±0.11 b | 4.24±0.66 b | |
9311近等基因系9311N | CT | 71.64±0.17 c | 76.13±0.30 c | 81.64±0.30 b | 6.75±0.04 b |
QD | 82.08±0.34 a | 87.87±0.39 a | 91.56±0.46 a | 8.40±0.26 a | |
HD | 73.66±0.15 b | 77.67±0.06 b | 81.87±0.21 b | 5.61±0.31 b |
品种 Variety | 处理时段 Treatment period | 峰值黏度 Peak viscosity | 谷值黏度 Trough viscosity | 崩解值 Breakdown | 最终黏度 Cool paste viscosity | 消减值 Setback |
---|---|---|---|---|---|---|
黄华占 Huanghuazhan | CT | 1893±85 c | 1198±11 c | 695±74 b | 2497±14 b | 604±98 b |
QD | 2427±88 a | 1735±40 a | 692±48 b | 3357±47 a | 930±41 a | |
HD | 2028±121 b | 1245±75 b | 782±21 a | 2424±141 b | 396±148 c | |
9311近等基因系 9311N | CT | 2064±22 b | 1430±13 b | 634±11 b | 2733±19 b | 669±4 b |
QD | 2071±13 a | 1613±5 a | 458±10 c | 2945±19 a | 874±8 a | |
HD | 2073±22 a | 1323±11 c | 750±21 a | 2618±16 c | 545±24 c |
Table 5. Effect of high temperature at different times of grain filling on pasting property. cP
品种 Variety | 处理时段 Treatment period | 峰值黏度 Peak viscosity | 谷值黏度 Trough viscosity | 崩解值 Breakdown | 最终黏度 Cool paste viscosity | 消减值 Setback |
---|---|---|---|---|---|---|
黄华占 Huanghuazhan | CT | 1893±85 c | 1198±11 c | 695±74 b | 2497±14 b | 604±98 b |
QD | 2427±88 a | 1735±40 a | 692±48 b | 3357±47 a | 930±41 a | |
HD | 2028±121 b | 1245±75 b | 782±21 a | 2424±141 b | 396±148 c | |
9311近等基因系 9311N | CT | 2064±22 b | 1430±13 b | 634±11 b | 2733±19 b | 669±4 b |
QD | 2071±13 a | 1613±5 a | 458±10 c | 2945±19 a | 874±8 a | |
HD | 2073±22 a | 1323±11 c | 750±21 a | 2618±16 c | 545±24 c |
Fig. 2. Effect of high temperature at different times of grain filling on starch crystal structure of heat tolerant variety Huanghuazhan(A) and heat sensitive near-isogenic lines derived from 9311N (B).
品种 Variety | 处理时段 Treatment period | 结晶度 Degree of crystallinity /% | 结晶类型Crystal pattern | 体积占比 Volume percentage/% | 表面积占比 Surface area percentage/% | 数量占比 Number percentage/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
d<10 μm | d>10 μm | d<10 μm | d>10 μm | d<10 μm | d>10 μm | ||||||
黄华占Huanghuazhan | CT | 43.06 | A | 14.49±0.81 b | 85.51±0.81 b | 27.66±1.18 b | 72.34±1.18 a | 61.33±1.35 b | 38.67±1.35 a | ||
QD | 40.13 | A | 16.93±0.66 a | 83.07±0.66 c | 33.90±0.90 a | 66.10±0.90 b | 71.87±0.75 a | 28.13±0.75 b | |||
HD | 37.94 | A | 12.57±0.33 c | 87.43±0.33 a | 26.18±0.42 b | 73.82±0.42 a | 63.42±0.52 b | 36.58±0.52 a | |||
9311近等基因系9311N | CT | 36.35 | A | 8.21±0.38 c | 91.79±0.38 a | 18.77±0.66 c | 81.23±0.66 a | 51.26±0.93 c | 48.74±0.93 a | ||
QD | 37.48 | A | 19.96±0.47 a | 80.04±0.47 c | 37.89±0.56 a | 62.11±0.56 c | 73.25±0.44 a | 26.75±0.44 c | |||
HD | 33.77 | A | 14.69±0.36 b | 85.31±0.36 b | 29.55±0.54 b | 70.45±0.54 b | 65.11±0.55 b | 34.98±0.55 b |
Table 6. Effects of high temperature at different times of grain filling on crystallinity and starch granule size distribution.
品种 Variety | 处理时段 Treatment period | 结晶度 Degree of crystallinity /% | 结晶类型Crystal pattern | 体积占比 Volume percentage/% | 表面积占比 Surface area percentage/% | 数量占比 Number percentage/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
d<10 μm | d>10 μm | d<10 μm | d>10 μm | d<10 μm | d>10 μm | ||||||
黄华占Huanghuazhan | CT | 43.06 | A | 14.49±0.81 b | 85.51±0.81 b | 27.66±1.18 b | 72.34±1.18 a | 61.33±1.35 b | 38.67±1.35 a | ||
QD | 40.13 | A | 16.93±0.66 a | 83.07±0.66 c | 33.90±0.90 a | 66.10±0.90 b | 71.87±0.75 a | 28.13±0.75 b | |||
HD | 37.94 | A | 12.57±0.33 c | 87.43±0.33 a | 26.18±0.42 b | 73.82±0.42 a | 63.42±0.52 b | 36.58±0.52 a | |||
9311近等基因系9311N | CT | 36.35 | A | 8.21±0.38 c | 91.79±0.38 a | 18.77±0.66 c | 81.23±0.66 a | 51.26±0.93 c | 48.74±0.93 a | ||
QD | 37.48 | A | 19.96±0.47 a | 80.04±0.47 c | 37.89±0.56 a | 62.11±0.56 c | 73.25±0.44 a | 26.75±0.44 c | |||
HD | 33.77 | A | 14.69±0.36 b | 85.31±0.36 b | 29.55±0.54 b | 70.45±0.54 b | 65.11±0.55 b | 34.98±0.55 b |
Fig. 3. Scanning electron photomicrographs of rice starch from heat tolerant variety Huanghuazhan(A) and heat sensitive near-isogenic lines derived from 9311N (B) as affected by high temperature at various parts of grain-filling.
[1] | 刘鑫燕, 李娟, 刘雪菊, 张昌泉, 顾铭洪, 刘巧泉. 可溶性淀粉合成酶与稻米淀粉精细结构关系的研究进展[J]. 植物生理学报, 2014, 50(10): 1453-1458. |
Liu X Y, Li J, Liu X J, Zhang C Q, Gu M H, Liu Q Q. Progress in the relationship between soluble starch synthases and starch fine structure in rice[J]. Plant Physiology Journal, 2014, 50 (10): 1453-1458. (in Chinese with English abstract) | |
[2] | Thitisaksakul M, Jimenez R C, Arias M C, Beckles D M. Effects of environmental factors on cereal starch biosynthesis and composition[J]. Journal of Cereal Science, 2012, 56(1): 67-80. |
[3] | Chun A, Lee H J, Hamaker B R, Janaswamy S. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3085-3093. |
[4] | Zhang C Q, Zhou L H, Zhu Z B, Lu H W, Zhou X Z, Qian Y T, Li Q F, Lu Y, Gu M H, Liu Q Q. Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) cultivars with good sensory properties at different temperatures during the filling stage[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4048-4057. |
[5] | 张桂莲, 张顺堂, 王力, 肖应辉, 唐文帮, 陈光辉, 陈立云. 抽穗结实期不同时段高温对稻米品质的影响[J]. 中国农业科学, 2013, 46(14): 2869-2879. |
Zhang G L, Zhang S T, Wang L, Xiao Y H, Tang W B, Chen G H, Chen L Y. Effects of high temperature at different times during the heading and filling periods on rice quality[J]. Scientia Agricultura Sinica, 2013, 46(14): 2869-2879. (in Chinese with English abstract) | |
[6] | Zhang G L, Liao B, Li B, Cai Z H. The effect of high temperature after anthesis on rice quality and starch granule structure of endosperm[J]. Meteorological and Environmental Research, 2016, 7(3): 72-75. |
[7] | Dou Z, Tang S, Li G H, Ding C Q, Chen L, Wang S H, Ding Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage[J]. Crop Science, 2017, 57(4): 1-10. |
[8] | Mitsui T, Shiraya T, Kaneko K, Wada K. Proteomics of rice grain under high temperature stress[J]. Frontiers in Plant Science, 2013, 4: 36. |
[9] | Ahmed N, Tetlow I J, Nawaz S, Iqbal A, Mubin M, Rehman S, Butt A, Lightfoot D A, Maekawa M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice[J]. Journal of the Science of Food and Agriculture, 2015, 95(11): 2237-2243. |
[10] | Kong X L, Zhu P, Sui Z Q, Bao J S. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations[J]. Food Chemistry, 2015, 172: 433-440. |
[11] | Jiang H, Dian W, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme[J]. Phytochemistry, 2003, 63(1): 53-59. |
[12] | Gunaratne A, Sirisena N, Ratnayaka U K, Ratnayaka J, Kong X L, Arachchi L P V, Corke H. Effect of fertiliser on functional properties of flour from four rice varieties grown in Sri Lanka[J]. Journal of the Science of Food and Agriculture, 2011, 91(7): 1271-1276. |
[13] | Lin C J, Li C Y, Lin S K, Yang F H, Huang J J, Liu Y H, Lur H S. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10545-10552. |
[14] | Umemoto T, Terashima K. Research note: Activity of granule-bound starch synthase is an important determinant of amylose content in rice endosperm[J]. Functional Plant Biology, 2002, 29(9): 1121-1124. |
[15] | 张桂莲, 廖斌, 李博, 蔡志欢. 花后高温对稻米品质及胚乳淀粉粒结构的影响[J]. 中国农学通报, 2016, 32(9): 10-14. |
Zhang G L, Liao B, Li B, Cai Z H. Effect of high temperature after anthesis on rice quality and starch granule structure of endosperm[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 10-14. (in Chinese with English abstract) | |
[16] | Zhong L J, Cheng F M, Wen X, Sun Z X, Zhang G P. The deterioration of eating and cooking quality caused by high temperature during grain filling in early-season indica rice cultivars[J]. Journal of Agronomy and Crop Science, 2005, 191(3): 218-225. |
[17] | 徐富贤, 郑家奎, 朱永川, 王贵雄. 灌浆期气象因子对杂交中籼稻米碾米品质和外观品质的影响[J]. 植物生态学报, 2003, 27(1): 73-77. |
Xu F X, Zheng J K, Zhu Y C, Wang G X. Effect of atmospheric phenomena factors on the milling quality and the appearance quality of medium indica hybrid rice during the period from full heading to maturity[J]. Acta Phytoecologica Sinica, 2003, 27(1): 73-77. (in Chinese with English abstract) | |
[18] | 程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系[J], 生态学报, 2000, 20(4): 646-652. |
Cheng F M, Ding Y S, Zhu B Y. The formation of amylose content in rice grain and its relation with field temperature[J]. Acta Ecologica Sinica, 2000, 20(4): 646-652. (in Chinese with English abstract) | |
[19] | Lanning S B, Siebenmorgen T J, Counce P A, Ambardekar A A. Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality[J]. Field Crops Research, 2011, 124(1): 132-136. |
[20] | Ambardekar A A, Siebenmorgen T J, Counce P A, Lanning S B, Mauromoustakos A. Impact of field-scale nighttime air temperatures during kernel development on rice milling quality[J]. Field Crops Research, 2011, 122(3): 179-185. |
[21] | 邓化冰, 邓启云, 陈立云, 杨益善, 庄文, 熊跃东. 野生稻增产QTL导入9311之近等基因系的构建[J]. 杂交水稻, 2005, 20(6): 52-56. |
Deng H B, Deng Q Y, Chen L Y, Yang Y S, Zhuang W, Xiong Y D. Development of Near-isogenic Lines with Yield-enhancing Genes from O. rufipogon by MAS in 9311[J]. Hybrid Rice, 20(6): 52-56. (in Chinese with English abstract) | |
[22] | Yao D P, Wu J, Luo Q H, Li J W, Zhuang W, Xiao G, Deng Q Y, Lei D Y, Bai B. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch[J]. Food Chemistry, 2020, 310: 125817. 1-125817.7. |
[23] | Xiong R Y, Xie J X, Chen L M, Yang T T, Tan X M, Zhou Y J, Pan X H, Zeng Y J, Shi Q H, Zhang J, Zeng Y H. Water irrigation management affects starch structure and physicochemical properties of indica rice with different grain quality[J]. Food Chemistry, 2021, 347(3): 129045. |
[24] | 李健陵, 张晓艳, 吴艳飞, 吴丽姬, 杜尧东, 胡飞. 灌浆结实期高温对早稻产量和品质的影响[J]. 中国稻米, 2013, 19(4):50-55. |
Li J L, Zhang X Y, Wu Y F, Wu L J, Du Y D, Hu F. Effects of high temperature during grain filling stage on yield and quality of early rice[J]. China Rice, 2013, 19(4): 50-55. (in Chinese with English abstract) | |
[25] | 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响[J]. 中国水稻科学, 2007, 21(4): 396-402. |
Sheng J, Tao H J, Chen L G. Response of seed setting and grain quality of rice to temperature at different time during grain filling period[J]. Chinese Journal of Rice Science, 2007, 21(4): 396-402. (in Chinese with English abstract) | |
[26] | 沈鹏, 金正勋, 罗秋香, 金学泳, 孙艳丽. 水稻灌浆过程中籽粒淀粉合成关键酶活性与蒸煮食味品质的关系[J]. 中国水稻科学, 2006, 20(1): 58-64. |
Shen P, Jin Z X, Luo Q X, Jin X Y, Sun Y L. Relationship between activity of key starch synthetic enzymes during grain filling and quality of eating and cooking in rice[J]. Chinese Journal of Rice Science, 2006, 20(1):58-64. (in Chinese with English abstract) | |
[27] | Dou Z, Tang S, Chen W Z, Zhang H X, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Zhang H C, Ding Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta[J]. Journal of Cereal Science, 2018, 81: 118-126. |
[28] | Rehmani M I A, Wei G B, Hussain N, Ding C Q, Li G H, Liu Z H, Wang S H, Ding Y F. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta[J]. Field Crops Research, 2014, 156: 231-241. |
[29] | 王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12): 774-784. |
Wang J K, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Zhu D F, Zhang Y P. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling[J]. Chinese Journal of Agrometeorology, 2020, 41(12): 774-784. (in Chinese with English abstract) | |
[30] | 李天. 温光对水稻籽粒碳水化合物代谢及品质的影响[D]. 雅安: 四川农业大学, 2005. |
Li T. Effects of temperature and light on carbohydrate metabolism and quality in rice grain[D]. Ya’an: Sichuan Agricultural University, 2005. (in Chinese with English abstract) | |
[31] | 张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控[D]. 北京: 中国农业科学院, 2018. |
Zhang C X. The mechanism and regulation underlying the inhibition on the assimilates transport and metabolism in phloem of rice caused by heat stress[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract) | |
[32] | Bao J S, Ying Y, Zhou X, Xu Y, Wu P, Xu F, Pang Y. Relationships among starch biosynthesizing protein content, fine structure and functionality in rice. Carbohydrate Polymers, 2020, 237: 116118. |
[33] | 闫素辉, 王振林, 尹燕枰, 李文阳, 梁太波, 李勇, 邬云海, 王平, 耿庆辉, 戴忠民. 灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响[J]. 作物学报, 2008, 34(6): 1092-1096. |
Yan S H, Wang Z L, Yin Y P, Li W Y, Liang T B, Li Y, Wu Y H, Wang P, Geng Q H, Dai Z M. Effect of high temperature during grain filling on starch accumulation, starch granule distribution, and activities of related enzymes in wheat grains[J]. Acta Agronomica Sinica, 2008, 34(6): 1092-1096. (in Chinese with English abstract) | |
[34] | 莫文伟, 旷娜, 郑华斌, 王晓敏, 周蔚, 唐启源. 再生稻与晚稻常规米质及RVA谱特征的对比研究[J]. 湖南农业大学学报: 自然科学版, 2020, 46(3): 271-277. |
Mo W W, Kuang N, Zheng H B, Wang X M, Zhou W, Tang Q Y. Comparative study on quality and RVA profile parameters of ratoon rice and late rice[J]. Journal of Hunan Agricultural University: Natural Sciences, 2020, 46(3): 271-277. (in Chinese with English abstract) | |
[35] | Bao J S. Towards understanding of the genetic and molecular basis of eating and cooking quality of rice[J]. Cereal Foods World, 2012, 57: 148-156. |
[36] | Tong C, Chen Y L, Tang F F, Xu F F, Huang Y, Chen H, Bao J S. Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China[J]. Food Chemistry, 2014, 161(11): 239-245. |
[37] | Peng Y, Mao B, Zhang C. Correlations between parental lines and indica hybrid rice in terms of eating quality traits[J]. Frontiers in Nutrition, 2021, 8: 663504. |
[38] | 成臣, 曾勇军, 程慧煌, 谭雪明, 商庆银, 曾研华, 石庆华. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响[J]. 中国水稻科学, 2019, 33(1): 57-67. |
Cheng C, Zeng Y J, Cheng H H, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108[J]. Chinese Journal of Rice Science, 2019, 33(1): 57-67. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||