Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (4): 388-398.DOI: 10.16819/j.1001-7216.2022.210803
• Research Papers • Previous Articles Next Articles
ZHANG Yujie, WANG Zhiqiang, MA Peng, YANG Zhiyuan, SUN Yongjian, MA Jun()
Received:
2021-08-09
Revised:
2022-01-25
Online:
2022-07-10
Published:
2022-07-12
Contact:
MA Jun
通讯作者:
马均
基金资助:
ZHANG Yujie, WANG Zhiqiang, MA Peng, YANG Zhiyuan, SUN Yongjian, MA Jun. Effects of Water-nitrogen Coupling on Nitrogen Uptake, Utilization and Yield of Rice Under Wheat Straw Returning[J]. Chinese Journal OF Rice Science, 2022, 36(4): 388-398.
张宇杰, 王志强, 马鹏, 杨志远, 孙永健, 马均. 麦秆还田下水氮耦合对水稻氮素吸收利用及产量的影响[J]. 中国水稻科学, 2022, 36(4): 388-398.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.210803
年份 Year | 全氮 Total N/(g·kg−1) | 有机质 Organic matter/(g·kg−1) | 速效养分 Available nutrient/(mg·kg−1) | pH值 pH value | ||
---|---|---|---|---|---|---|
N | P | K | ||||
2019 | 1.95 | 15.56 | 129.31 | 32.48 | 96.27 | 6.23 |
2020 | 2.04 | 22.31 | 116.42 | 23.35 | 78.81 | 5.98 |
Table 1. Basic physicochemical properties of topsoil (0-20 cm).
年份 Year | 全氮 Total N/(g·kg−1) | 有机质 Organic matter/(g·kg−1) | 速效养分 Available nutrient/(mg·kg−1) | pH值 pH value | ||
---|---|---|---|---|---|---|
N | P | K | ||||
2019 | 1.95 | 15.56 | 129.31 | 32.48 | 96.27 | 6.23 |
2020 | 2.04 | 22.31 | 116.42 | 23.35 | 78.81 | 5.98 |
年份 Year | 播栽方式 Transplanting method | 播种时间 Sowing date (Month-day) | 移栽时间 Transplanting date (Month-day) | 主要生育时期 Main growth stage | |||
---|---|---|---|---|---|---|---|
分蘖盛期 Active tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturing stage | ||||
2019 | 人工移栽Artificial transplanting | 04-16 | 05-20 | 06-11 | 06-26 | 07-30 | 09-09 |
2020 | 人工移栽Artificial transplanting | 04-16 | 05-20 | 06-12 | 06-25 | 07-27 | 09-07 |
Table 2. Main growth stages of rice.
年份 Year | 播栽方式 Transplanting method | 播种时间 Sowing date (Month-day) | 移栽时间 Transplanting date (Month-day) | 主要生育时期 Main growth stage | |||
---|---|---|---|---|---|---|---|
分蘖盛期 Active tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturing stage | ||||
2019 | 人工移栽Artificial transplanting | 04-16 | 05-20 | 06-11 | 06-26 | 07-30 | 09-09 |
2020 | 人工移栽Artificial transplanting | 04-16 | 05-20 | 06-12 | 06-25 | 07-27 | 09-07 |
处理 Treatment | 水分管理模式 Water management | 氮肥施用模式 Nitrogen fertilizer | 秸秆还田方式 Straw returning |
---|---|---|---|
W1N1S1 | 干湿交替灌溉W1 | 优化施氮模式N1 | 全量翻埋还田S1 |
W1N0S1 | 干湿交替灌溉W1 | 不施氮N0 | 全量翻埋还田S1 |
W1N0S0 | 干湿交替灌溉W1 | 不施氮N0 | 不还田S0 |
W2N2S1 | 淹水灌溉W2 | 传统施氮模式N2 | 全量翻埋还田S1 |
W2N0S1 | 淹水灌溉W2 | 不施氮N0 | 全量翻埋还田S1 |
W2N0S0 | 淹水灌溉W2 | 不施氮N0 | 不还田S0 |
Table 3. Experimental design.
处理 Treatment | 水分管理模式 Water management | 氮肥施用模式 Nitrogen fertilizer | 秸秆还田方式 Straw returning |
---|---|---|---|
W1N1S1 | 干湿交替灌溉W1 | 优化施氮模式N1 | 全量翻埋还田S1 |
W1N0S1 | 干湿交替灌溉W1 | 不施氮N0 | 全量翻埋还田S1 |
W1N0S0 | 干湿交替灌溉W1 | 不施氮N0 | 不还田S0 |
W2N2S1 | 淹水灌溉W2 | 传统施氮模式N2 | 全量翻埋还田S1 |
W2N0S1 | 淹水灌溉W2 | 不施氮N0 | 全量翻埋还田S1 |
W2N0S0 | 淹水灌溉W2 | 不施氮N0 | 不还田S0 |
年份/处理 Year/Treatment | 有效穗数 Effective panicle number/(×104·hm−2) | 每穗实粒数 Spikelets per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 实际产量 Grain yield/(t·hm−2) |
---|---|---|---|---|---|
2019 | |||||
W1N1S1 | 175.50±1.94 a | 194.70±7.18 b | 92.73±0.35 ab | 33.61±0.36 a | 9.05±0.57 a |
W1N0S1 | 115.50±1.12 b | 197.57±4.80 b | 94.28±0.71 a | 31.84±0.50 b | 7.49±0.18 b |
W1N0S0 | 127.50±3.70 b | 215.99±4.14 a | 94.08±0.88 a | 31.69±0.18 b | 6.33±0.29 c |
W2N2S1 | 184.05±4.04 a | 195.43±0.09 b | 89.41±0.27 d | 31.96±0.22 b | 9.02±0.12 a |
W2N0S1 | 120.30±1.85 b | 214.89±1.90 a | 89.87±0.68 cd | 32.08±0.32 b | 7.03±0.23 bc |
W2N0S0 | 93.15±5.51 c | 217.17±3.47 a | 91.77±0.25 bc | 31.51±0.14 b | 6.10±0.11 c |
2020 | |||||
W1N1S1 | 169.44±2.90 b | 224.19±3.39 a | 81.86±0.89 c | 30.56±0.40 a | 9.47±0.35 a |
W1N0S1 | 141.36±1.49 c | 211.17±13.07 ab | 88.33±0.37 a | 30.77±0.52 a | 8.09±0.44 b |
W1N0S0 | 145.44±3.84 c | 202.22±11.95 ab | 82.52±0.65 bc | 30.43±0.50 a | 7.38±0.45 b |
W2N2S1 | 197.28±6.47 a | 193.51±1.28 b | 82.56±2.02 bc | 30.85±0.36 a | 9.32±0.34 a |
W2N0S1 | 152.88±8.44 c | 191.56±8.92 b | 83.92±0.81 bc | 30.51±0.56 a | 8.02±0.14 b |
W2N0S0 | 135.60±2.89 d | 196.17±8.49 ab | 86.25±1.50 ab | 30.51±0.28 a | 7.20±0.18 b |
Table 4. Effects of different water-nitrogen coupling and straw returning on rice yield and its composition.
年份/处理 Year/Treatment | 有效穗数 Effective panicle number/(×104·hm−2) | 每穗实粒数 Spikelets per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 实际产量 Grain yield/(t·hm−2) |
---|---|---|---|---|---|
2019 | |||||
W1N1S1 | 175.50±1.94 a | 194.70±7.18 b | 92.73±0.35 ab | 33.61±0.36 a | 9.05±0.57 a |
W1N0S1 | 115.50±1.12 b | 197.57±4.80 b | 94.28±0.71 a | 31.84±0.50 b | 7.49±0.18 b |
W1N0S0 | 127.50±3.70 b | 215.99±4.14 a | 94.08±0.88 a | 31.69±0.18 b | 6.33±0.29 c |
W2N2S1 | 184.05±4.04 a | 195.43±0.09 b | 89.41±0.27 d | 31.96±0.22 b | 9.02±0.12 a |
W2N0S1 | 120.30±1.85 b | 214.89±1.90 a | 89.87±0.68 cd | 32.08±0.32 b | 7.03±0.23 bc |
W2N0S0 | 93.15±5.51 c | 217.17±3.47 a | 91.77±0.25 bc | 31.51±0.14 b | 6.10±0.11 c |
2020 | |||||
W1N1S1 | 169.44±2.90 b | 224.19±3.39 a | 81.86±0.89 c | 30.56±0.40 a | 9.47±0.35 a |
W1N0S1 | 141.36±1.49 c | 211.17±13.07 ab | 88.33±0.37 a | 30.77±0.52 a | 8.09±0.44 b |
W1N0S0 | 145.44±3.84 c | 202.22±11.95 ab | 82.52±0.65 bc | 30.43±0.50 a | 7.38±0.45 b |
W2N2S1 | 197.28±6.47 a | 193.51±1.28 b | 82.56±2.02 bc | 30.85±0.36 a | 9.32±0.34 a |
W2N0S1 | 152.88±8.44 c | 191.56±8.92 b | 83.92±0.81 bc | 30.51±0.56 a | 8.02±0.14 b |
W2N0S0 | 135.60±2.89 d | 196.17±8.49 ab | 86.25±1.50 ab | 30.51±0.28 a | 7.20±0.18 b |
Fig. 2. Effects of different water-nitrogen coupling on the nitrogen release rate of wheat straw. Different letters mean significant difference at the 0.05 level by the Tukey test(n=12, df=11). W1 and W2 are alternating dry-wet irrigation and submerged irrigation, respectively. N0, N1 and N2 are non-nitrogen application, optimized nitrogen application mode and traditional fertilization model, respectively. S1 is straw returning. T-10d, AS, JS, JS-10d, HS and MS are 10 days after transplanting stage, full-tillering stage, jointing stage, 10 days after jointing stage, heading stage and maturity stage, respectively.
Fig. 3. Michaelis-Menten equation fitting of straw nitrogen release rate with changing return days. W1 and W2 are alternating dry-wet irrigation and submerged irrigation, respectively. N0, N1 and N2 are non-nitrogen application, optimized nitrogen application mode and traditional fertilization model, respectively. S1, Straw returning.
Fig. 4. Effects of different management patterns of water and fertilizer and straw returning on N accumulation of aboveground part of rice. Different letters mean significant difference at the 0.05 level by the Tukey test(n=18, df=17). W1 and W2 are alternating dry-wet irrigation and submerged irrigation, respectively. N0, N1 and N2 are non-nitrogen application, optimized nitrogen application mode and traditional fertilization model, respectively. S1 and S0 are straw returning and no-straw returning, respectively. JS, HS and MS are jointing stage, heading stage and maturity stage, respectively.
年份/处理 Year/Treatment | 茎鞘 Stem and sheath | 叶片 Leaf | 穗氮吸收量NUP/(kg·hm−2) | 氮素收获指数HNI/% | 氮-稻谷生产效率 PRFN/(kg·kg−1) | ||||
---|---|---|---|---|---|---|---|---|---|
转运量 Translocation /(kg·hm−2) | 贡献率 Contribution rate/% | 转运量 Translocation /(kg·hm−2) | 贡献率 Contribution rate/% | ||||||
2019 | |||||||||
W1N1S1 | 19.00±0.51 a | 22.42±0.56 a | 31.38±1.87 a | 37.92±1.30 a | 86.09±3.68 a | 75.35±1.40 ab | 64.53±1.06 d | ||
W1N0S1 | 7.49±0.18 c | 15.18±0.55 c | 16.18±0.68 c | 33.97±1.28 b | 49.27±1.87 b | 72.19±1.90 b | 85.96±1.92 b | ||
W1N0S0 | 4.82±0.05 d | 11.84±0.51 d | 9.53±0.23 d | 19.99±0.81 d | 46.96±0.92 bc | 71.16±2.62 b | 77.72±1.43 c | ||
W2N2S1 | 15.42±0.26 b | 17.70±0.57 b | 26.70±0.16 b | 35.31±0.45 ab | 85.49±1.11 a | 75.21±1.26 ab | 64.90±1.43 d | ||
W2N0S1 | 3.72±0.09 e | 8.13±0.20 e | 15.07±0.62 c | 30.46±1.12 c | 49.27±0.96 b | 75.43±0.59 ab | 84.79±1.18 b | ||
W2N0S0 | 3.30±0.05 e | 7.68±0.17 e | 9.90±0.36 d | 22.41±1.07 d | 42.41±1.01 c | 77.83±0.79 a | 94.41±2.67 a | ||
2020 | |||||||||
W1N1S1 | 30.46±0.31 a | 29.59±0.45 a | 58.07±1.19 a | 59.36±2.65 a | 106.17±1.76 a | 82.55±0.52 a | 61.68±0.94 c | ||
W1N0S1 | 13.63±0.44 d | 21.13±0.42 e | 21.01±0.83 c | 32.34±0.69 c | 63.93±0.95 d | 77.80±0.44 bc | 75.84±0.23 b | ||
W1N0S0 | 15.75±0.36 c | 26.72±0.33 b | 16.02±0.55 d | 29.32±0.86 c | 59.77±1.52 d | 75.60±1.02 cd | 81.32±1.08 a | ||
W2N2S1 | 21.56±0.34 b | 24.28±0.45 c | 39.37±1.15 b | 42.97±1.36 b | 92.94±0.89 b | 74.42±0.96 d | 63.65±0.45 c | ||
W2N0S1 | 7.31±0.21 f | 10.06±0.09 f | 16.15±0.34 d | 25.05±0.37 d | 73.89±2.66 c | 77.63±1.5 bcd | 73.89±1.63 b | ||
W2N0S0 | 11.99±0.20 e | 23.22±0.26 d | 13.04±0.28 e | 22.62±0.47 d | 51.34±0.74 e | 79.15±1.90 b | 81.51±1.18 a |
Table 5. Effects of different management patterns of water and fertilizer and straw returning on rice N translocation and N use efficiency.
年份/处理 Year/Treatment | 茎鞘 Stem and sheath | 叶片 Leaf | 穗氮吸收量NUP/(kg·hm−2) | 氮素收获指数HNI/% | 氮-稻谷生产效率 PRFN/(kg·kg−1) | ||||
---|---|---|---|---|---|---|---|---|---|
转运量 Translocation /(kg·hm−2) | 贡献率 Contribution rate/% | 转运量 Translocation /(kg·hm−2) | 贡献率 Contribution rate/% | ||||||
2019 | |||||||||
W1N1S1 | 19.00±0.51 a | 22.42±0.56 a | 31.38±1.87 a | 37.92±1.30 a | 86.09±3.68 a | 75.35±1.40 ab | 64.53±1.06 d | ||
W1N0S1 | 7.49±0.18 c | 15.18±0.55 c | 16.18±0.68 c | 33.97±1.28 b | 49.27±1.87 b | 72.19±1.90 b | 85.96±1.92 b | ||
W1N0S0 | 4.82±0.05 d | 11.84±0.51 d | 9.53±0.23 d | 19.99±0.81 d | 46.96±0.92 bc | 71.16±2.62 b | 77.72±1.43 c | ||
W2N2S1 | 15.42±0.26 b | 17.70±0.57 b | 26.70±0.16 b | 35.31±0.45 ab | 85.49±1.11 a | 75.21±1.26 ab | 64.90±1.43 d | ||
W2N0S1 | 3.72±0.09 e | 8.13±0.20 e | 15.07±0.62 c | 30.46±1.12 c | 49.27±0.96 b | 75.43±0.59 ab | 84.79±1.18 b | ||
W2N0S0 | 3.30±0.05 e | 7.68±0.17 e | 9.90±0.36 d | 22.41±1.07 d | 42.41±1.01 c | 77.83±0.79 a | 94.41±2.67 a | ||
2020 | |||||||||
W1N1S1 | 30.46±0.31 a | 29.59±0.45 a | 58.07±1.19 a | 59.36±2.65 a | 106.17±1.76 a | 82.55±0.52 a | 61.68±0.94 c | ||
W1N0S1 | 13.63±0.44 d | 21.13±0.42 e | 21.01±0.83 c | 32.34±0.69 c | 63.93±0.95 d | 77.80±0.44 bc | 75.84±0.23 b | ||
W1N0S0 | 15.75±0.36 c | 26.72±0.33 b | 16.02±0.55 d | 29.32±0.86 c | 59.77±1.52 d | 75.60±1.02 cd | 81.32±1.08 a | ||
W2N2S1 | 21.56±0.34 b | 24.28±0.45 c | 39.37±1.15 b | 42.97±1.36 b | 92.94±0.89 b | 74.42±0.96 d | 63.65±0.45 c | ||
W2N0S1 | 7.31±0.21 f | 10.06±0.09 f | 16.15±0.34 d | 25.05±0.37 d | 73.89±2.66 c | 77.63±1.5 bcd | 73.89±1.63 b | ||
W2N0S0 | 11.99±0.20 e | 23.22±0.26 d | 13.04±0.28 e | 22.62±0.47 d | 51.34±0.74 e | 79.15±1.90 b | 81.51±1.18 a |
年份 Year | 处理 Treatment | 氮肥回收利用率 NUE/% | 氮肥生理利用率 NPE/(kg·kg−1) | 氮肥农学利用率 NAE/(kg·kg−1) |
---|---|---|---|---|
2019 | W1N1S1 | 37.75±0.46 a | 27.57±0.32 b | 10.35±0.43 b |
W2N2S1 | 35.19±0.36 b | 36.11±0.56 a | 12.97±0.27 a | |
2020 | W1N1S1 | 29.46±0.35 a | 30.26±0.47 b | 9.13±0.09 a |
W2N2S1 | 23.37±0.23 b | 37.76±0.78 a | 8.50±0.19 b |
Table 6. Effects of different management patterns of water and fertilizer and straw returning on rice N use efficiency.
年份 Year | 处理 Treatment | 氮肥回收利用率 NUE/% | 氮肥生理利用率 NPE/(kg·kg−1) | 氮肥农学利用率 NAE/(kg·kg−1) |
---|---|---|---|---|
2019 | W1N1S1 | 37.75±0.46 a | 27.57±0.32 b | 10.35±0.43 b |
W2N2S1 | 35.19±0.36 b | 36.11±0.56 a | 12.97±0.27 a | |
2020 | W1N1S1 | 29.46±0.35 a | 30.26±0.47 b | 9.13±0.09 a |
W2N2S1 | 23.37±0.23 b | 37.76±0.78 a | 8.50±0.19 b |
[1] | 侯萌瑶, 张丽, 王知文, 杨殿林, 王丽丽, 修伟明, 赵建宁. 中国主要农作物化肥用量估算[J]. 农业资源与环境学报, 2017, 34(4): 360-367. |
Hou M Y, Zhang L, Wang Z W, Yang D L, Wang L L, Xiu W M, Zhao J L. Estimation of fertilizer usage from main crops in China[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 360-367. (in Chinese with English abstract) | |
[2] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783-795. |
Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 34(4): 783-795. (in Chinese with English abstract) | |
[3] | 中华人民共和国水利部. 2020年中国水资源公报[R]. 北京: 水利部水利信息中心, 2021. |
Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin of 2020[R]. Beijing: Water Resources Information Center of the Ministry of Water Resources, 2021. (in Chinese) | |
[4] | 王浩, 汪林, 杨贵羽, 贾玲, 姚懿真, 张瑀桐, 我国农业水资源形势与高效利用战略举措[J]. 中国工程科学, 2018, 20(5): 9-15. |
Wang H, Wang L, Yang G Y, Jia L, Yao Y Z, Zhang Y T. Agricultural water resource in China and strategic measures for its efficient utilization[J]. Strategic Study of CAE, 2018, 20(5): 9-15. (in Chinese with English abstract) | |
[5] | Marie-Soleil T, Alicia S, Frédéric B, Nele V, Bram G. Crop residue management and soil health: A systems analysis[J]. Agricultural Systems, 2015, 134: 6-16. |
[6] | 刘宇峰. 不同灌溉方式与施肥下水稻生理、生长和土壤微生物生态研究[D]. 南宁: 广西大学, 2012. |
Liu Y F. Rice physiology and yield and microbial ecology in paddy soil under different irrigation methods and fertilization[D]. Nanning: Guangxi University, 2012. (in Chinese with English abstract) | |
[7] | Lin X Q, Zhou W J, Zhu D F, Chen H Z, Zhang Y P. Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice[J]. Field Crops Research, 2005, 96: 448-454. |
[8] | Belder P, Bouman B A M, Cabangon R, Lu G, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia[J]. Agricultural Water Management, 2004, 65(3): 193-210. |
[9] | Liu L J, Chen T T, Wang Z Q, Zhang H, Yang J C, Zhang J H. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013, 154: 226-235. |
[10] | Wang Z Q, Zhang W Y, Beebout S.S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crops Research, 2016, 193(4): 54-69. |
[11] | 程建平, 曹凑贵, 蔡明历, 袁保忠, 翟晶. 不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响[J]. 植物营养与肥料学报, 2008(2): 199-206. |
Cheng J P, Cao C G, Cai M L, Yuan B Z, Zhai J. Effect of different nitrogen nutrition and soil water potential on physiological parameters and yield of hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 2008(2): 199-206. (in Chinese with English abstract) | |
[12] | 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J]. 中国农业科学, 1996(4): 59-67. |
Yang J C, Wang Z Q, Zhu Q S. Effects of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture[J]. Scientia Agricultura Sinica, 1996(4): 59-67. (in Chinese with English abstract) | |
[13] | Wang J Y, Jia J X, Xiong Z Q, Khalil M.A.K, Xing G X. Water regime-nitrogen fertilizer-straw incorporation interaction: Field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China[J]. Agricultural, Ecosystems&Environment, 2011, 141(3-4): 437-446. |
[14] | 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响[J]. 作物学报, 2014, 40(9): 1639-1649. |
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies[J]. Acta Agronomica Sinica, 2014, 40(9): 1639-1649. (in Chinese with English abstract) | |
[15] | 张自常, 李鸿伟, 曹转勤, 王志琴, 杨建昌. 施氮量和灌溉方式的交互作用对水稻产量和品质影响[J]. 作物学报, 2013, 39(1): 84-92. |
Zhang Z C, Li H W, Cao Z Q, Wang Z Q, Yang J C. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice[J]. Acta Agronomica Sinica, 2013, 39(1): 84-92. (in Chinese with English abstract) | |
[16] | 赵建红, 李玥, 孙永健, 李应洪, 孙加威, 代邹, 谢华英, 徐徽, 马均. 灌溉方式和氮肥运筹对免耕厢沟栽培杂交稻氮素利用及产量的影响[J]. 植物营养与肥料学报, 2016, 22(3): 609-617. |
Zhao J H, Li Y, Sun Y J, Li Y H, Sun J W, Dai Z, Xie H Y, Xu H, Ma J. Effects of irrigation and nitrogen management on nitrogen use efficiency and yield of hybrid rice cultivated in ditches under no-tillage[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 609-617. (in Chinese with English abstract) | |
[17] | 叶文培, 谢小立, 王凯荣, 李志国. 不同时期秸秆还田对水稻生长发育及产量的影响[J]. 中国水稻科学, 2008(1): 65-70. |
Ye W P, Xie X L, Wang K R, Li Z G. Effects of rice straw manuring in different periods on growth and yield of rice[J]. Chinese Journal of Rice Science, 2008(1): 65-70. (in Chinese with English abstract) | |
[18] | 汪军, 王德建, 张刚. 太湖地区稻麦轮作体系下秸秆还田配施氮肥对水稻产量及经济效益的影响[J]. 中国生态农业学报, 2011, 19(2): 265-270. |
Wang J, Wang D J, Zhang G. Effects of different N-fertlizer rates with straw incorporation on rice yield and economic benefit of rice-wheat rotation system in Taihu Lake region[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 265-270. (in Chinese with English abstract) | |
[19] | 陈立冬, 杨夏威, 陈伟, 周明耀. 秸秆还田条件水肥耦合对水稻产量与品质的影响[J]. 排灌机械工程学报, 2018, 36(11): 1152-1156. |
Chen L D, Yang X W, Chen W, Zhou M Y. Effects of water-fertilizer coupling with straw returning on yield and quality of rice[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(11): 1152-1156. (in Chinese with English abstract) | |
[20] | 孙永健. 水氮互作对水稻产量形成和氮素利用特征的影响及其生理基础[D]. 雅安: 四川农业大学, 2010. |
Sun Y J. Effects of water-nitrogen interaction on yield formation and characteristics of nitrogen utilization in rice and its physiological basis[D]. Ya’an: Sichuan Agricultural University, 2010. (in Chinese with English abstract) | |
[21] | 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J]. 农业工程学报, 2015, 31(10): 132-141. |
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132-141. (in Chinese with English abstract) | |
[22] | Zhang B, Pang C, Qin J, Liu K, Li H. Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field[J]. Biology and Fertility of Soils, 2013, 49(8): 1039-1052. |
[23] | 严奉君, 孙永健, 马均, 徐徽, 李玥, 杨志远, 蒋明金, 吕腾飞. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响[J]. 植物营养与肥料学报, 2015, 21(1): 23-35. |
Yan F J, Sun Y J, Ma J, Xu H, Li Y, Yang Z Y, Jiang M J, Lü T F. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 23-35. (in Chinese with English abstract) | |
[24] | 王建明, 杨建忠, 何晓艳, 毛华方, 石世杰. 小麦秸秆还田条件下氮肥运筹对水稻产量、品质和氮素利用的影响[J]. 江苏农业科学, 2010(6): 124-126. |
Wang J M, Yang J Z, He X Y, Mao H F, Shi S J. Effects of nitrogen management on rice yield, quality and nitrogen utilization under the condition of returning wheat straw[J]. Jiangsu Agricultural Sciences, 2010(6): 124-126. (in Chinese with English abstract) | |
[25] | 戴志刚, 鲁剑巍, 李小坤, 鲁明星, 杨文兵, 高祥照. 不同作物还田秸秆的养分释放特征试验[J]. 农业工程学报, 2010, 26(6): 272-276. |
Dai Z G, Lu J W, Li X K, Lu M X, Yang W B, Gao X Z. Nutrient release characteristic of different crop straws manure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 272-276. (in Chinese with English abstract) | |
[26] | 代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律[J]. 中国生态农业学报, 2017, 25(2): 188-199. |
Dai W C, Gao M, Lan M L, Huang R, Wang J Z, Wang Z F, Han X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199. (in Chinese with English abstract) | |
[27] | 李廷亮, 王宇峰, 王嘉豪, 栗丽, 谢钧宇, 李丽娜, 黄晓磊, 谢英荷. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示[J]. 中国农业科学, 2020, 53(23): 4835-4854. |
Li T L, Wang Y F, Wang J H, Li L, Xie J Y, Li L N, Huang X L, Xie Y H. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China[J]. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854. (in Chinese with English abstract) | |
[28] | Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles[J]. Plant and Soil, 1997, 191(1): 77-87. |
[29] | 赵娜, 赵护兵, 鱼昌为, 曹群虎, 李敏, 曹卫东, 高亚军. 旱地豆科绿肥腐解及养分释放动态研究[J]. 植物营养与肥料学报, 2011, 17(5): 1179-1187. |
Zhao N, Zhao H B, Yu C W,. Cao Q H, Li M, Cao W D, Gao Y J. Nutrient releases of leguminous green manures in rainfed lands[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(5): 1179-1187. (in Chinese with English abstract) | |
[30] | 李昌明, 王晓玥, 孙波. 不同气候和土壤条件下秸秆腐解过程中养分的释放特征及其影响因素[J]. 土壤学报, 2017, 54(5): 1206-1217. |
Li C M, Wang X Y, Sun B. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions[J]. Acta Pedologica Sinica, 2017, 54(5): 1206-1217. (in Chinese with English abstract) | |
[31] | 李晓峰, 程金秋, 梁健, 陈梦云, 任红茹, 张洪程, 霍中洋, 戴其根, 许轲, 魏海燕, 郭保卫. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响[J]. 作物学报, 2017, 43(6): 912-924. |
Li X F, Cheng J Q, Liang B, Chen M Y, Ren H R, Zhang H C, Huo Z Y, Dai Q G, Xu K, Wei H Y, Guo B W. Effects of total straw returning and nitrogen application on grain yield and nitrogen absorption and utilization of machine transplanted japonica rice[J]. Acta Agronomica Sinica, 2017, 43(6): 912-924. (in Chinese with English abstract) | |
[32] | van Asten P J A, van Bodegom P M, Mulder L M, Kropff M J. Effect of straw application on rice yields and nutrient availability on an alkaline and a pH-neutral soil in a Sahelian Irrigation Scheme[J]. Nutrient Cycling in Agroecosystems, 2005, 72(3): 255-266. |
[33] | Liang X Q, Chen Y X, Nie Z Y, Ye Y S, Tuong T P. Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices[J]. Environmental Science and Pollution Research, 2013, 20(10): 6980-6991. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[4] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
[5] | ZHOU Tian, WU Shaohua, KANG Jianhong, WU Hongliang, YANG Shenglong, WANG Xingqiang, LI Yu, HUANG Yufeng. Effects of Planting Patterns on Starch Content and Activities of Key Starch Enzymes in Rice Grains [J]. Chinese Journal OF Rice Science, 2024, 38(3): 303-315. |
[6] | LIU Huimin, ZHOU Jieqiang, HU Yuanyi, TIAN Yan, LEI Bin, LI Jianwu, WEI Zhongwei, TANG Wenbang. Super-high Yield Characteristics of Two-line Hybrid Rice Zhuoliangyou 1126 [J]. Chinese Journal OF Rice Science, 2024, 38(2): 160-171. |
[7] | PENG Xianlong, DONG Qiang, ZHANG Chen, LI Pengfei, LI Bolin, LIU Zhilei, YU Cailian. Effects of Straw Return Rate on Soil Reducing Substances and Rice Growth Under Different Soil Conditions [J]. Chinese Journal OF Rice Science, 2024, 38(2): 198-210. |
[8] | ZHU Wang, ZHANG Xiang, GENG Xiaoyu, ZHANG Zhe, CHEN Yinglong, WEI Huanhe, DAI Qigen, XU Ke, ZHU Guanglong, ZHOU Guisheng, MENG Tianyao. Morphological and Physiological Characteristics of Rice Roots Under Combined Salinity-Drought Stress and Their Relationships with Yield Formation [J]. Chinese Journal OF Rice Science, 2023, 37(6): 617-627. |
[9] | ZOU Yuao, WU Qixia, ZHOU Qianshun, ZHU Jianqiang, YAN Jun. Response of Middle-season Hybrid Rice to Flooding Stress at the Booting Stage [J]. Chinese Journal OF Rice Science, 2023, 37(6): 642-656. |
[10] | YUAN Pei, ZHOU Xuan, YANG Wei, YIN Lingjie, JIN Tuo, PENG Jianwei, RONG Xiangmin, TIAN Chang. Effects of Combined Application of Chemical Fertilizers and Nitrogen Reduction on the Yield of Double-cropping Rice and the Risk of Nitrogen and Phosphorus Loss in Field Water in Dongting Lake Area [J]. Chinese Journal OF Rice Science, 2023, 37(5): 518-528. |
[11] | XIAO Dakang, HU Ren, HAN Tianfu, ZHANG Weifeng, HOU Jun, REN Keyu. Effects of Nitrogen Fertilizer Consumption and Operation on Rice Yield and Its Components in China:A Meta-analysis [J]. Chinese Journal OF Rice Science, 2023, 37(5): 529-542. |
[12] | HUANG Yaru, XU Peng, WANG Lele, HE Yizhe, WANG Hui, KE Jian, HE Haibing, WU Liquan, YOU Cuicui. Effects of Exogenous Trehalose on Grain Filling Characteristics and Yield Formation of japonica Rice Cultivar W1844 [J]. Chinese Journal OF Rice Science, 2023, 37(4): 379-391. |
[13] | DONG Liqiang, YANG Tiexin, LI Rui, SHANG Wenqi, MA Liang, LI Yuedong, SUI Guomin. Effect of Plant-row Spacing on Rice Yield and Root Morphological and Physiological Characteristics in Super High Yield Field [J]. Chinese Journal OF Rice Science, 2023, 37(4): 392-404. |
[14] | HUANG Jinwen, LI Rikun, CHEN Zhicheng, ZHANG Bianhong, LEI Han, PAN Ruixin, YANG Mingyu, PAN Meiqing, TANG Lina. Effects of Straw Returning Techniques on Soil Nutrients, Organic Carbon and Microbial Diversity in Tobacco-rice Rotation System [J]. Chinese Journal OF Rice Science, 2023, 37(4): 415-426. |
[15] | WANG Wenting, MA Jiaying, LI Guangyan, FU Weimeng, LI Hubo, LIN Jie, CHEN Tingting, FENG Baohua, TAO Longxing, FU Guanfu, QIN Yebo. Effect of Different Fertilizer Application Rates on Rice Yield and Quality Formation and Its Relationship with Energy Metabolism at High Temperature [J]. Chinese Journal OF Rice Science, 2023, 37(3): 253-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||