Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (3): 277-289.DOI: 10.16819/j.1001-7216.2024.231110
• Research Papers • Previous Articles Next Articles
ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui*()
Received:
2023-11-15
Revised:
2024-01-22
Online:
2024-05-10
Published:
2024-05-13
Contact:
*email:cuikehui@mail.hzau.edu.cn
通讯作者:
*email:cuikehui@mail.hzau.edu.cn
基金资助:
ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice[J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289.
赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.231110
Fig. 1. Soil water potential during drought priming treatment Data are shown as mean ± SE (n=3). LYPJ, Liangyoupeijiu; SY63, Shanyou 63. W1, Flooding irrigation; W2, Drought priming. The same as below.
Fig. 2. Average daytime temperature and relative humidity in the greenhouse during high temperature treatment The data at each point-in-time are the average values over the duration of the high temperature treatment ± SE (n=4). T1, Normal temperature; T2, High temperature.
品种 Variety | 处理 Treatment | 产量 Yield(g/plant) | 单株穗数 Panicles per plant | 每穗粒数 Grains per panicle | 结实率 Seed setting rate(%) | 千粒重 1000-grain weight(g) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 24.6±0.1 a | 11.4±0.6 a | 133.7±2.8 a | 69.0±1.7 a | 23.6±0.1 a |
Liangyoupeijiu | W2T1 | 24.4±1.0 a | 11.9±0.5 a | 133.2±2.0 a | 64.7±2.1 a | 23.9±0.3 a |
W1T2 | 15.5±1.1 b | 11.0±0.2 a | 131.6±5.6 a | 48.5±3.1 b | 22.3±0.2 b | |
W2T2 | 23.9±1.6 a | 12.0±0.7 a | 131.9±11.6 a | 66.2±1.8 a | 23.3±0.3 a | |
汕优63 | W1T1 | 35.5±0.4 a* | 12.3±0.4 a | 133.9±5.8 ab | 84.6±3.5 a* | 25.6±0.1 a* |
Shanyou 63 | W2T1 | 34.6±1.9 a* | 13.3±0.2 a | 142.5±8.3 a | 73.4±1.5 b* | 25.2±0.1 a* |
W1T2 | 25.9±1.2 b* | 12.3±0.4 a | 119.7±3.1 b | 78.7±3.5 ab* | 22.6±0.1 c | |
W2T2 | 31.2±1.2 a* | 13.4±0.6 a | 128.1±2.3 ab | 78.4±1.4 ab* | 23.5±0.2 b | |
ANOVA | ||||||
品种 Variety(V) | ++ | ns | ns | ++ | ++ | |
温度 Temperature(T) | ++ | ns | ns | ns | ++ | |
水分 Water content(W) | + | ++ | ns | ns | + | |
V×T | ns | ns | ns | ns | ++ | |
V×W | ns | ns | ns | ++ | ns | |
T×W | ++ | ns | ns | ++ | + | |
V×T×W | ns | ns | ns | ns | ns |
Table 1. Effects of drought priming on rice yield under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 产量 Yield(g/plant) | 单株穗数 Panicles per plant | 每穗粒数 Grains per panicle | 结实率 Seed setting rate(%) | 千粒重 1000-grain weight(g) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 24.6±0.1 a | 11.4±0.6 a | 133.7±2.8 a | 69.0±1.7 a | 23.6±0.1 a |
Liangyoupeijiu | W2T1 | 24.4±1.0 a | 11.9±0.5 a | 133.2±2.0 a | 64.7±2.1 a | 23.9±0.3 a |
W1T2 | 15.5±1.1 b | 11.0±0.2 a | 131.6±5.6 a | 48.5±3.1 b | 22.3±0.2 b | |
W2T2 | 23.9±1.6 a | 12.0±0.7 a | 131.9±11.6 a | 66.2±1.8 a | 23.3±0.3 a | |
汕优63 | W1T1 | 35.5±0.4 a* | 12.3±0.4 a | 133.9±5.8 ab | 84.6±3.5 a* | 25.6±0.1 a* |
Shanyou 63 | W2T1 | 34.6±1.9 a* | 13.3±0.2 a | 142.5±8.3 a | 73.4±1.5 b* | 25.2±0.1 a* |
W1T2 | 25.9±1.2 b* | 12.3±0.4 a | 119.7±3.1 b | 78.7±3.5 ab* | 22.6±0.1 c | |
W2T2 | 31.2±1.2 a* | 13.4±0.6 a | 128.1±2.3 ab | 78.4±1.4 ab* | 23.5±0.2 b | |
ANOVA | ||||||
品种 Variety(V) | ++ | ns | ns | ++ | ++ | |
温度 Temperature(T) | ++ | ns | ns | ns | ++ | |
水分 Water content(W) | + | ++ | ns | ns | + | |
V×T | ns | ns | ns | ns | ++ | |
V×W | ns | ns | ns | ++ | ns | |
T×W | ++ | ns | ns | ++ | + | |
V×T×W | ns | ns | ns | ns | ns |
Fig. 3. Effects of drought priming on rice pollen viability and spikelet fertility under high temperature during panicle initiation stage Data are shown as mean ± SE (n=3). Different lowercase letters indicate significant difference for a given trait among the four water and temperature treatment combinations for the same variety at P<0.05 (LSD test). * indicates the significant difference for a given trait between two varieties in the same combination of water and temperature treatment at P<0.05. V indicates variety, T indicates temperature, and W indicates water. + and ++ indicate significant difference at P <0.05 and P <0.01, respectively, while ns indicates no significant difference at P <0.05. W1T1 indicates flooded irrigation and normal temperature, W2T1 indicates drought priming and normal temperature, W1T2 indicates flooded irrigation and high temperature, and W2T2 indicates drought priming and high temperature.
品种 Variety | 处理 Treatment | 抽穗期Heading stage | 成熟期Mature stage | |||
---|---|---|---|---|---|---|
颖花长 Spikelet length(mm) | 颖花宽 Spikelet width(mm) | 籽粒长 Grain length(mm) | 籽粒宽 Grain width(mm) | |||
两优培九 | W1T1 | 9.07±0.02 a* | 3.00±0.03 a | 8.85±0.05 a* | 2.62±0.05 b | |
Liangyoupeijiu | W2T1 | 8.97±0.00 a* | 2.98±0.04 a | 8.82±0.02 ab* | 2.69±0.02 a | |
W1T2 | 8.77±0.07 b* | 2.82±0.02 b | 8.72±0.03 b* | 2.54±0.03 c | ||
W2T2 | 9.00±0.13 a* | 2.96±0.07 a | 8.80±0.08 ab* | 2.63±0.02 b | ||
汕优63 | W1T1 | 8.40±0.11 a | 3.28±0.04 a* | 8.44±0.06 a | 2.96±0.00 a* | |
Shanyou 63 | W2T1 | 8.37±0.02 a | 3.22±0.01 a* | 8.48±0.04 a | 2.94±0.02 a* | |
W1T2 | 7.98±0.01 b | 2.97±0.02 c* | 8.15±0.07 c | 2.78±0.01 c* | ||
W2T2 | 8.28±0.03 a | 3.09±0.01 b* | 8.32±0.09 b | 2.87±0.01 b* | ||
ANOVA | ||||||
品种 Variety(V) | ++ | ++ | ++ | ++ | ||
温度 Temperature(T) | + | ++ | + | + | ||
水分 Water content(W) | ns | ns | ns | ++ | ||
V×T | ns | ns | ns | ns | ||
V×W | ns | ns | ns | + | ||
T×W | + | + | ns | ++ | ||
V×T×W | ns | ns | ns | + |
Table 2. Effects of drought priming on rice spikelet size and grain size under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 抽穗期Heading stage | 成熟期Mature stage | |||
---|---|---|---|---|---|---|
颖花长 Spikelet length(mm) | 颖花宽 Spikelet width(mm) | 籽粒长 Grain length(mm) | 籽粒宽 Grain width(mm) | |||
两优培九 | W1T1 | 9.07±0.02 a* | 3.00±0.03 a | 8.85±0.05 a* | 2.62±0.05 b | |
Liangyoupeijiu | W2T1 | 8.97±0.00 a* | 2.98±0.04 a | 8.82±0.02 ab* | 2.69±0.02 a | |
W1T2 | 8.77±0.07 b* | 2.82±0.02 b | 8.72±0.03 b* | 2.54±0.03 c | ||
W2T2 | 9.00±0.13 a* | 2.96±0.07 a | 8.80±0.08 ab* | 2.63±0.02 b | ||
汕优63 | W1T1 | 8.40±0.11 a | 3.28±0.04 a* | 8.44±0.06 a | 2.96±0.00 a* | |
Shanyou 63 | W2T1 | 8.37±0.02 a | 3.22±0.01 a* | 8.48±0.04 a | 2.94±0.02 a* | |
W1T2 | 7.98±0.01 b | 2.97±0.02 c* | 8.15±0.07 c | 2.78±0.01 c* | ||
W2T2 | 8.28±0.03 a | 3.09±0.01 b* | 8.32±0.09 b | 2.87±0.01 b* | ||
ANOVA | ||||||
品种 Variety(V) | ++ | ++ | ++ | ++ | ||
温度 Temperature(T) | + | ++ | + | + | ||
水分 Water content(W) | ns | ns | ns | ++ | ||
V×T | ns | ns | ns | ns | ||
V×W | ns | ns | ns | + | ||
T×W | + | + | ns | ++ | ||
V×T×W | ns | ns | ns | + |
品种 Variety | 处理 Treatment | 总枝梗分化数 NBD (No./panicle) | 一次枝梗分化数 NPBD (No./panicle) | 二次枝梗分化数 NSBD (No./panicle) | 一次枝梗退化数 NPBG (No./panicle) | 二次枝梗退化数 NSBG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 73.7±2.3 a | 12.8±0.4 a | 60.9±1.9 a | 0.0±0.0 a | 22.3±2.3 ab |
Liangyoupeijiu | W2T1 | 68.0±1.6 a | 12.3±0.2 a | 55.7±1.5 a | 0.0±0.0 a | 18.9±1.6 ab |
W1T2 | 66.8±1.5 a | 12.1±0.1 a | 54.7±1.4 a | 0.0±0.0 a | 23.8±1.7 a | |
W2T2 | 68.0±1.9 a | 12.2±0.1 a | 55.8±1.8 a | 0.0±0.0 a | 18.6±1.1 b | |
汕优63 | W1T1 | 67.3±0.7 a | 14.0±0.3 a | 53.3±1.0 a* | 0.0±0.0 a | 17.7±1.2 a |
Shanyou 63 | W2T1 | 67.0±2.1 a | 13.2±0.7 a | 53.8±1.5 a | 0.0±0.0 a | 17.2±3.6 a |
W1T2 | 64.4±0.2 a | 13.4±0.1 a* | 51.0±0.3 a | 0.0±0.0 a | 22.4±1.3 a | |
W2T2 | 65.8±1.0 a | 13.1±0.1 a* | 52.7±1.1 a | 0.0±0.0 a | 17.9±0.9 a | |
ANOVA | ||||||
品种 Variety(V) | ns | ns | + | ns | ns | |
温度 Temperature(T) | + | ns | + | ns | ns | |
水分 Water content(W) | ns | ns | ns | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ns | ns | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
Table 3. Effects of drought priming on the number of rachis branches per panicle under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 总枝梗分化数 NBD (No./panicle) | 一次枝梗分化数 NPBD (No./panicle) | 二次枝梗分化数 NSBD (No./panicle) | 一次枝梗退化数 NPBG (No./panicle) | 二次枝梗退化数 NSBG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 73.7±2.3 a | 12.8±0.4 a | 60.9±1.9 a | 0.0±0.0 a | 22.3±2.3 ab |
Liangyoupeijiu | W2T1 | 68.0±1.6 a | 12.3±0.2 a | 55.7±1.5 a | 0.0±0.0 a | 18.9±1.6 ab |
W1T2 | 66.8±1.5 a | 12.1±0.1 a | 54.7±1.4 a | 0.0±0.0 a | 23.8±1.7 a | |
W2T2 | 68.0±1.9 a | 12.2±0.1 a | 55.8±1.8 a | 0.0±0.0 a | 18.6±1.1 b | |
汕优63 | W1T1 | 67.3±0.7 a | 14.0±0.3 a | 53.3±1.0 a* | 0.0±0.0 a | 17.7±1.2 a |
Shanyou 63 | W2T1 | 67.0±2.1 a | 13.2±0.7 a | 53.8±1.5 a | 0.0±0.0 a | 17.2±3.6 a |
W1T2 | 64.4±0.2 a | 13.4±0.1 a* | 51.0±0.3 a | 0.0±0.0 a | 22.4±1.3 a | |
W2T2 | 65.8±1.0 a | 13.1±0.1 a* | 52.7±1.1 a | 0.0±0.0 a | 17.9±0.9 a | |
ANOVA | ||||||
品种 Variety(V) | ns | ns | + | ns | ns | |
温度 Temperature(T) | + | ns | + | ns | ns | |
水分 Water content(W) | ns | ns | ns | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ns | ns | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
品种 Variety | 处理 Treatment | 总颖花分化数 NSD (No./panicle) | 一次颖花分化数 NPSD (No./panicle) | 二次颖花分化数 NSSD (No./panicle) | 一次颖花退化数 NPSG (No./panicle) | 二次颖花退化数 NSSG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 189.4±5.5 a | 69.6±2.9 a | 119.9±4.1 a | 0.0±0.0 a | 7.4±0.9 b* |
Liangyoupeijiu | W2T1 | 187.7±1.3 a | 69.6±1.7 a | 118.1±2.1 a | 0.0±0.0 a | 7.6±3.9 b |
W1T2 | 162.3±1.9 b | 66.0±0.8 a | 96.3±2.2 b* | 0.1±0.1 a | 16.4±3.5 a* | |
W2T2 | 182.9±3.2 a | 67.0±1.3 a | 115.9±2.5 a | 0.1±0.1 a | 8.0±1.8 b | |
汕优63 | W1T1 | 197.0±5.3 a | 80.7±3.3 a | 116.3±7.3 a | 0.1±0.1 a | 3.0±1.0 b |
Shanyou 63 | W2T1 | 193.2±0.8 a | 80.6±3.6 a | 112.7±3.8 a | 0.0±0.0 a | 3.4±0.7 b |
W1T2 | 160.3±3.7 b | 74.0±2.0 a* | 86.3±2.8 b | 0.3±0.3 a | 8.0±1.0 a | |
W2T2 | 188.2±4.0 a | 75.3±1.8 a* | 112.9±5.1 a | 0.0±0.0 a | 4.7±0.9 ab | |
ANOVA | ||||||
品种 Variety (V) | ns | ns | + | ns | ns | |
温度 Temperature (T) | ++ | ns | ++ | ns | + | |
水分 Water content (W) | ++ | ns | ++ | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ++ | ns | ++ | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
Table 4. Effects of drought priming on spikelets per panicle under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 总颖花分化数 NSD (No./panicle) | 一次颖花分化数 NPSD (No./panicle) | 二次颖花分化数 NSSD (No./panicle) | 一次颖花退化数 NPSG (No./panicle) | 二次颖花退化数 NSSG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 189.4±5.5 a | 69.6±2.9 a | 119.9±4.1 a | 0.0±0.0 a | 7.4±0.9 b* |
Liangyoupeijiu | W2T1 | 187.7±1.3 a | 69.6±1.7 a | 118.1±2.1 a | 0.0±0.0 a | 7.6±3.9 b |
W1T2 | 162.3±1.9 b | 66.0±0.8 a | 96.3±2.2 b* | 0.1±0.1 a | 16.4±3.5 a* | |
W2T2 | 182.9±3.2 a | 67.0±1.3 a | 115.9±2.5 a | 0.1±0.1 a | 8.0±1.8 b | |
汕优63 | W1T1 | 197.0±5.3 a | 80.7±3.3 a | 116.3±7.3 a | 0.1±0.1 a | 3.0±1.0 b |
Shanyou 63 | W2T1 | 193.2±0.8 a | 80.6±3.6 a | 112.7±3.8 a | 0.0±0.0 a | 3.4±0.7 b |
W1T2 | 160.3±3.7 b | 74.0±2.0 a* | 86.3±2.8 b | 0.3±0.3 a | 8.0±1.0 a | |
W2T2 | 188.2±4.0 a | 75.3±1.8 a* | 112.9±5.1 a | 0.0±0.0 a | 4.7±0.9 ab | |
ANOVA | ||||||
品种 Variety (V) | ns | ns | + | ns | ns | |
温度 Temperature (T) | ++ | ns | ++ | ns | + | |
水分 Water content (W) | ++ | ns | ++ | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ++ | ns | ++ | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
Fig. 4. Effects of drought priming on non-structural carbohydrate contents in panicle under high temperature during panicle initiation stage Data are shown as mean ± SE (n=3). Different lowercase letters indicate significant difference for a given trait among the four water and temperature treatment combinations for the same variety at P<0.05 (LSD test). * indicates significant difference for a given trait between two varieties in the same combination of water and temperature treatment at P<0.05. V indicates variety, T indicates temperature, and W indicates water. + indicates significant difference at P <0.05, and ns indicates no significant difference at P <0.05. W1T1 indicates flooded irrigation and normal temperature, W2T1 indicates drought priming and normal temperature, W1T2 indicates flooded irrigation and high temperature, and W2T2 indicates drought priming and high temperature.
Fig. 5. Effects of drought priming on MDA content and antioxidant enzyme activities in spikelet under high temperature during panicle initiation stage Data are shown as mean ± SE (n=3). Different lowercase letters indicate significant difference for a given trait among the four water and temperature treatment combinations for the same variety at P<0.05 (LSD test). * indicates significant difference for a given trait between two varieties in the same combination of water and temperature treatment at P<0.05. V indicates variety, T indicates temperature, and W indicates water. + and ++ indicate significant difference at P <0.05 and P <0.01, respectively, while ns indicates no significant difference at P <0.05. W1T1 indicates flooded irrigation and normal temperature, W2T1 indicates drought priming and normal temperature, W1T2 indicates flooded irrigation and high temperature, and W2T2 indicates drought priming and high temperature.
品种 Variety | 处理 Treatment | 活性细胞 分裂素总量 aCTKs(ng/g) | 反式玉米素含量 tZ(ng/g) | 反式玉米素 核苷含量 tZR(ng/g) | 异戊烯腺嘌呤含量 iP(ng/g) | 异戊烯腺苷含量 iPA(ng/g) | 异戊烯腺苷 磷酸含量 iPMP(ng/g) |
---|---|---|---|---|---|---|---|
两优培九 | W1T1 | 19.38±0.97 a | 0.70±0.01 a | 1.41±0.08 a | 1.90±0.09 a | 1.32±0.06 a* | 14.05±1.11 a |
Liangyoupeijiu | W2T1 | 19.54±1.34 a | 0.69±0.02 a | 1.55±0.09 a | 1.74±0.07 a* | 1.23±0.06 a* | 14.33±1.16 a |
W1T2 | 15.05±0.53 c | 0.11±0.00 c | 0.69±0.02 b | 2.01±0.06 a* | 1.35±0.08 a | 10.89±0.44 b | |
W2T2 | 17.18±0.95 b | 0.15±0.00 b | 1.41±0.06 a | 1.89±0.08 a | 1.33±0.11 a | 12.40±0.82 ab | |
汕优63 | W1T1 | 19.43±0.73 a | 0.64±0.06 a | 1.71±0.14 a* | 1.70±0.21 a | 1.17±0.08 a | 14.23±0.27 a |
Shanyou 63 | W2T1 | 19.56±0.97 a | 0.65±0.07 a | 1.69±0.11 a | 1.58±0.07 a | 1.09±0.08 a | 14.54±0.77 a |
W1T2 | 18.59±0.65 a* | 0.64±0.02 a* | 1.36±0.03 b* | 1.80±0.06 a | 1.29±0.05 a | 13.50±0.63 a* | |
W2T2 | 19.29±1.12 a* | 0.71±0.03 a* | 1.65±0.07 a* | 1.80±0.01 a | 1.30±0.10 a | 13.84±1.03 a | |
ANOVA | |||||||
品种 Variety(V) | + | ++ | ns | + | ns | ns | |
温度 Temperature(T) | + | ++ | ++ | ns | ns | ns | |
水分 Water content(W) | ns | ns | ++ | ns | ns | ns | |
V×T | ns | ++ | ns | ns | ns | ns | |
V×W | ns | ns | ++ | ns | ns | ns | |
T×W | ns | ns | ++ | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns | ns |
Table 5. Effects of drought priming on cytokinin contents in spikelet under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 活性细胞 分裂素总量 aCTKs(ng/g) | 反式玉米素含量 tZ(ng/g) | 反式玉米素 核苷含量 tZR(ng/g) | 异戊烯腺嘌呤含量 iP(ng/g) | 异戊烯腺苷含量 iPA(ng/g) | 异戊烯腺苷 磷酸含量 iPMP(ng/g) |
---|---|---|---|---|---|---|---|
两优培九 | W1T1 | 19.38±0.97 a | 0.70±0.01 a | 1.41±0.08 a | 1.90±0.09 a | 1.32±0.06 a* | 14.05±1.11 a |
Liangyoupeijiu | W2T1 | 19.54±1.34 a | 0.69±0.02 a | 1.55±0.09 a | 1.74±0.07 a* | 1.23±0.06 a* | 14.33±1.16 a |
W1T2 | 15.05±0.53 c | 0.11±0.00 c | 0.69±0.02 b | 2.01±0.06 a* | 1.35±0.08 a | 10.89±0.44 b | |
W2T2 | 17.18±0.95 b | 0.15±0.00 b | 1.41±0.06 a | 1.89±0.08 a | 1.33±0.11 a | 12.40±0.82 ab | |
汕优63 | W1T1 | 19.43±0.73 a | 0.64±0.06 a | 1.71±0.14 a* | 1.70±0.21 a | 1.17±0.08 a | 14.23±0.27 a |
Shanyou 63 | W2T1 | 19.56±0.97 a | 0.65±0.07 a | 1.69±0.11 a | 1.58±0.07 a | 1.09±0.08 a | 14.54±0.77 a |
W1T2 | 18.59±0.65 a* | 0.64±0.02 a* | 1.36±0.03 b* | 1.80±0.06 a | 1.29±0.05 a | 13.50±0.63 a* | |
W2T2 | 19.29±1.12 a* | 0.71±0.03 a* | 1.65±0.07 a* | 1.80±0.01 a | 1.30±0.10 a | 13.84±1.03 a | |
ANOVA | |||||||
品种 Variety(V) | + | ++ | ns | + | ns | ns | |
温度 Temperature(T) | + | ++ | ++ | ns | ns | ns | |
水分 Water content(W) | ns | ns | ++ | ns | ns | ns | |
V×T | ns | ++ | ns | ns | ns | ns | |
V×W | ns | ns | ++ | ns | ns | ns | |
T×W | ns | ns | ++ | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns | ns |
[1] | IPCC. Climate change 2021: The Physical Science Basis. Contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Combridge University Press, 2021: 3949. |
[2] | 中华人民共和国农业行业标准. NY/T 2915-2016. 水稻高温热害鉴定与分级[S]. 武汉: 中国农业出版社, 2016. |
Agricultural Industry Standard of the People's Republic of China. NY/T 2915-2016. Identification and classification of heat injury of rice[S]. Beijing: China Agriculture Press, 2016. (in Chinese with English abstract) | |
[3] | Iovane M, Aronne G. High temperatures during microsporogenesis fatally shorten pollen lifespan[J]. Plant Reproduction, 2022, 35(1): 9-17. |
[4] | 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024(1): 8-15. |
Xie K Z, Gao T, Cui K H. Research progress of potassium fertilizer controlling rice yield under high temperature[J]. Crops, 2024(1): 8-15. (in Chinese with English abstract) | |
[5] | Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice[J]. Journal of Integrative Agriculture, 2018, 17(7): 1475-1481. |
[6] | Liu X L, Ji P, Yang H T, Jiang C J, Liang Z W, Chen Q Z, Lu F, Chen X, Yang Y Y, Zhang X B. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes[J]. Plant Growth Regulation, 2022, 98(1): 23-38. |
[7] | Kumar S, Thakur M, Mitra R, Basu S, Anand A. Sugar metabolism during pre- and post-fertilization events in plants under high temperature stress[J]. Plant Cell Reports, 2022, 41(3): 655-673. |
[8] | 王亚梁, 张玉屏, 朱德峰, 向镜, 陈惠哲, 张义凯. 水稻器官形态和干物质积累对穗分化不同时期高温的响应[J]. 中国水稻科学, 2016, 30(2): 161-169. |
Wang Y L, Zhang Y P, Zhu D F, Xiang J, Chen H Z, Zhang Y K. Response of rice organ morphology and dry matter accumulation to high temperature at different panicle initiation stages[J]. Chinese Journal of Rice Science, 2016, 30(2): 161-169. (in Chinese with English abstract) | |
[9] | Zhang C X, Feng B H, Chen T T, Fu W M, Li H B, Li G Y, Jin Q Y, Tao L X, Fu G F. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation[J]. Environmental and Experimental Botany, 2018, 155: 718-733. |
[10] | Yi J, Moon S, Lee Y S, Zhu L, Liang W, Zhang D, Jung K H, An G. Defective Tapetum Cell Death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology, 2016, 170(3): 1611-1623. |
[11] | Zhao Q, Zhou L J, Liu J C, Du X X, Asad M A U, Huang F D, Pan G, Cheng F M. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122: 90-101. |
[12] | Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regulation, 2017, 83(2): 313-323. |
[13] | Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
[14] | Zhang C X, Fu G F, Yang X Q, Yang Y J, Zhao X, Chen T T, Zhang X F, Jin Q Y, Tao L X. Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity[J]. Journal of Agronomy and Crop Science, 2016, 202(5): 394-408. |
[15] | Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature, 2007, 445(7128): 652-655. |
[16] | Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Mohapatra P K, Peng S B. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice[J]. Frontiers in Plant Science, 2017, 8: 371. |
[17] | Bruce T J A, Matthes M C, Napier J A, Pickett J A. Stressful “memories” of plants: Evidence and possible mechanisms[J]. Plant Science, 2007, 173(6): 603-608. |
[18] | Zhang X X, Wang X Y, Zhuang L L, Gao Y L, Huang B R. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis[J]. Physiologia Plantarum, 2019, 167(4): 488-501. |
[19] | Sintaha M, Man C K, Yung W S, Duan S, Li M W, Lam H M. Drought stress priming improved the drought tolerance of soybean[J]. Plants-Basel, 2022, 11(21): 2954. |
[20] | Zhang X X, Wang X L, Zhong J W, Zhou Q, Wang X, Cai J, Dai T B, Cao W X, Jiang D. Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat[J]. Environmental and Experimental Botany, 2016, 127: 26-36. |
[21] | Liu S, Li X, Larsen D H, Zhu X, Song F, Liu F. Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat[J]. Journal of Agronomy and Crop Science, 2017, 203(1): 29-40. |
[22] | Tankari M, Wang C, Ma H Y, Li X N, Li L, Soothar R K, Cui N B, Zaman-Allah M, Hao W P, Liu F L, Wang Y S. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress[J]. Agricultural Water Management, 2021, 245: 106565. |
[23] | Gunawardena T A, Fukai S, Blamey F P C. Low temperature induced spikelet sterility in rice: I. Nitrogen fertilisation and sensitive reproductive period[J]. Australian Journal of Agricultural Research, 2003, 54(10): 937-946. |
[24] | 王亚梁, 张玉屏, 曾研华, 武辉, 向镜, 陈惠哲, 张义凯, 朱德峰. 水稻穗分化期高温对颖花分化及退化的影响[J]. 中国农业气象, 2015, 36(6): 724-731. |
Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang J, Chen H Z, Zhang Y K, Zhu D F. Effect of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 724-731. (in Chinese with English abstract) | |
[25] | Cock J H, Yoshida S. Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant[J]. Japanese Journal of Crop Science, 1972, 41(2): 226-234. |
[26] | Pucher G W, Leavenworth C S, Vickery H B. Determination of starch in plant tissues[J]. Analytical Chemistry, 1948, 20: 850-853. |
[27] | Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines[J]. Frontiers Plant Science, 2017, 8: 1369. |
[28] | Heath R L, Packer L. Photoperoxidation in isolated chloroplasts I. kinetics and stoichiometry of fatty acid peroxidation[J]. Archives Biochemistry Biophysics, 1968, 125(1): 189-198. |
[29] | Dhindsa R S, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany, 1981, 32(1): 79-91. |
[30] | Maehly A C, Chance B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 1954, 1: 357-424. |
[31] | Aebi H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105: 121-126. |
[32] | Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2): 248-254. |
[33] | 何爱斌. 头季源库调节对再生稻再生力的影响及其机理探究[D]. 武汉: 华中农业大学图书馆, 2022. |
He A B. Effect of source-sink regulation at main season on the regeneration ability of ratoon rice and its mechanism[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[34] | Wu C, Cui K H, Fahad S. Heat stress decreases rice grain weight: Evidence and physiological mechanisms of heat effects prior to flowering[J]. International Journal of Molecular Sciences, 2022, 23(18): 10922. |
[35] | Jagadish S V K, Craufurd P Q, Wheeler T R. Phenotyping parents of mapping populations of rice for heat tolerance during anthesis[J]. Crop Science, 2008, 48(3): 1140-1146. |
[36] | Cheabu S, Panichawong N, Rattanametta P, Wasuri B, Kasemsap P, Arikit S, Vanavichit A, Malumpong C. Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population[J]. Rice Science, 2019, 26(4): 229-238. |
[37] | Saini R, Das R, Adhikary A, Kumar R, Singh I, Nayyar H, Kumar S. Drought priming induces chilling tolerance and improves reproductive functioning in chickpea (Cicer arietinum L.)[J]. Plant Cell Reports, 2022, 41(10): 2005-2022. |
[38] | Giorno F, Wolters-Arts M, Mariani C, Rieu I. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development[J]. Plants, 2013, 2(3): 489-506. |
[39] | Hasanuzzaman M, Nahar K, Alam M M, Fujita M. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress[J]. Biological Trace Element Research, 2014, 161(3): 297-307. |
[40] | Abid M, Tian Z W, Ata-Ul-Karim S T, Liu Y, Cui Y K, Zahoor R, Jiang D, Dai T B. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars[J]. Plant Physiology and Biochemistry, 2016, 106: 218-227. |
[41] | Ru C, Hu X T, Chen D Y, Wang W E. Droughts and thermo-priming enhance acclimation to later drought and heat stress in maize seedlings by improving leaf physiological activity[J]. Agronomy, 2023, 13(4): 1124. |
[42] | Saini R, Adhikary A, Juneja S, Kumar R, Singh I, Nayyar H, Kumar S. Drought priming triggers diverse metabolic adjustments and induces chilling tolerance in chickpea (Cicer arietinum L.)[J]. Plant Physiology and Biochemistry, 2023, 194: 418-439. |
[43] | Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants[J]. Biologia, 2022, 77(11): 3037-3058. |
[44] | Ru C, Hu X T, Chen D Y, Wang W, Song T Y. Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis, root morphology, and antioxidant defense in maize seedlings[J]. Environmental and Experimental Botany, 2022, 202: 105010. |
[45] | Abid M, Shao Y H, Liu S X, Wang F, Gao J W, Jiang D, Tian Z W, Dai T B. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.)[J]. Planta, 2017, 246(3): 509-524. |
[46] | Wang Y L, Zhang K, Shi Q H, Chen H Z, Xiang J, Hu G H, Chen Y H, Wang X D, Wang J K, Yi Z H, Zhu D F, Zhang Y P. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction[J]. Rice Science, 2020, 27(1): 44-45. |
[47] | Bahuguna R N, Tamilselvan A, Muthurajan R, Solis C A, Jagadish S V K. Mild preflowering drought priming improves stress defences, assimilation and sink strength in rice under severe terminal drought[J]. Functional Plant Biology, 2018, 45(8): 27-839. |
[48] | Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Peng S B. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice[J]. Scientific Reports, 2016, 6: 34978. |
[49] | Wang X L, Wang J J, Sun R H, Hou X G, Zhao W, Shi J, Zhang Y F, Qi L, Li X L, Dong P H, Zhang L X, Xu G W, Gan H B. Correlation of the corn compensatory growth mechanism after post-drought rewatering with cytokinin induced by root nitrate absorption[J]. Agricultural Water Management, 2016, 166: 77-85. |
[50] | Hirose N, Take K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation[J]. Journal of experimental Botany, 2008, 59(1): 75-83. |
[51] | Zhang Y J, Du H, Gui Y, Xu F Y, Liu J P, Zhang J H, Xu W F. Moderate water stress in rice induces rhizosheath formation associated with abscisic acid and auxin responses[J]. Journal of Experimental Botany, 2020, 71(9): 2740-2751. |
[52] | Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice[J]. Field Crops Research, 2020, 258: 107946. |
[1] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | ZHU Wang, ZHANG Xiang, GENG Xiaoyu, ZHANG Zhe, CHEN Yinglong, WEI Huanhe, DAI Qigen, XU Ke, ZHU Guanglong, ZHOU Guisheng, MENG Tianyao. Morphological and Physiological Characteristics of Rice Roots Under Combined Salinity-Drought Stress and Their Relationships with Yield Formation [J]. Chinese Journal OF Rice Science, 2023, 37(6): 617-627. |
[4] | PEI Feng, WANG Guangda, GAO Peng, FENG Zhiming, HU Keming, CHEN Zongxiang, CHEN Hongqi, CUI Ao, ZUO Shimin. Evaluation of New japonica Rice Lines with Low Cadmium Accumulation and Good Quality Generated by Knocking Out OsNramp5 [J]. Chinese Journal OF Rice Science, 2023, 37(1): 16-28. |
[5] | REN Weichen, CHANG Qingxia, ZHANG Yajun, ZHU Kuanyu, WANG Zhiqin, YANG Jianchang. Characteristics and Physiological Mechanism of Carbon and Nitrogen Accumulation and Translocation of japonica Rice Varieties Differing in Nitrogen Use Efficiency [J]. Chinese Journal OF Rice Science, 2022, 36(6): 586-600. |
[6] | CHEN Yun, LIU Kun, LI Tingting, LI Siyu, LI Guoming, ZHANG Weiyang, ZHANG Hao, GU Junfei, LIU Lijun, YANG Jianchang. Effects of Alternate Wetting and Moderate Soil Drying Irrigation on Root Traits, Grain Yield and Soil Properties in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(3): 269-277. |
[7] | YANG Chen, ZHENG Chang, YUAN Shen, XU Le, PENG Shaobing. Effect of Fertilizer Management on the Yield and Quality of Different Rice Varieties in Ratoon Rice [J]. Chinese Journal OF Rice Science, 2022, 36(1): 65-76. |
[8] | Guang CHU, Ran XU, Song CHEN, Chunmei XU, Yuanhui LIU, Xiufu ZHANG, Danying WANG. Effects of Improved Crop Management on Growth Characteristic of Root and Shoot, Water and Nitrogen Use Efficiency, and Grain Yield in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(6): 586-594. |
[9] | Kailou LIU, Tianfu HAN, Wenjun LI, Xichu YU, Zhihua HU, Huicai YE, Dandan HU, Huijie SONG, Daming LI, Qinghai HUANG. Analysis on the Key Factors of Soil Physicochemical Properties Responsible for Changes in Rice Yield with Chinese Milk Vetch Turned over for Different Years [J]. Chinese Journal OF Rice Science, 2021, 35(3): 291-302. |
[10] | Youjin SONG, Chao WU, Ziyu LI, She TANG, Ganghua LI, Shaohua WANG, Yanfeng DING. Differential Responses of Grain Yields to High Temperature in Different Stages of Reproductive Growth in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(2): 177-186. |
[11] | Yun CHEN, Yajun ZHANG, Honglu ZHANG, An ZHU, Jian HUANG, Hao ZHANG, Junfei GU, Lijun LIU, Jianchang YANG. Effects of Plant Spacing on Grain Yield and Population Quality in Mechanically-transplantedRice with Good Tasting Quality [J]. Chinese Journal OF Rice Science, 2020, 34(6): 550-560. |
[12] | Juan ZHOU, Xiaowei SHU, Shangkun LAI, Gaoping XU, Jianye HUANG, Youli YAO, Lianxin Yang, Guichun DONG, Yulong WANG. Differences in Response of Grain Yield, Nitrogen Absorption and Utilization to Elevated CO2Concentration in Different Rice Varieties [J]. Chinese Journal OF Rice Science, 2020, 34(6): 561-573. |
[13] | Qiongmei XIA, Jiaquan HU, Linbo DONG, Wenjuan QIAN, Yongfu HE, Guiyong LI, Ruiping LONG, Haiping ZHU, Congdang YANG. Effects of Reducing and Postponing Nitrogen Application on Population Quality and Grain Yield of japonica Rice Under Paddy-upland Crop Rotations in Yunnan Plateau [J]. Chinese Journal OF Rice Science, 2020, 34(3): 266-277. |
[14] | Wenxia WANG, Yanzhi ZHOU, Yongjun ZENG, Ziming WU, Xueming TAN, Xiaohua PAN, Qinghua SHI, Yanhua ZENG. Effects of Different Mechanical Direct Seeding Patterns on Yield and Lodging Resistance of High-Quality Late indica Rice in South China [J]. Chinese Journal OF Rice Science, 2020, 34(1): 46-56. |
[15] | Hua DUAN, Hui TONG, Yanqing LIU, Qingfen XU, Jun MA, Chunmin WANG. Research Advances in the Effect of Heat and Drought on Rice and Its Mechanism [J]. Chinese Journal OF Rice Science, 2019, 33(3): 206-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||