Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (5): 529-542.DOI: 10.16819/j.1001-7216.2023.221111
• Research Papers • Previous Articles Next Articles
XIAO Dakang1, HU Ren1, HAN Tianfu2, ZHANG Weifeng3, HOU Jun1,*(), REN Keyu2,*(
)
Received:
2022-11-23
Revised:
2023-02-27
Online:
2023-09-10
Published:
2023-09-13
Contact:
*email:
肖大康1, 胡仁1, 韩天富2, 张卫峰3, 侯俊1,*(), 任科宇2,*(
)
通讯作者:
*email: 基金资助:
XIAO Dakang, HU Ren, HAN Tianfu, ZHANG Weifeng, HOU Jun, REN Keyu. Effects of Nitrogen Fertilizer Consumption and Operation on Rice Yield and Its Components in China:A Meta-analysis[J]. Chinese Journal OF Rice Science, 2023, 37(5): 529-542.
肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.221111
解释变量 Explanatory variables | 分组 Group |
---|---|
施氮量 N application level/(kg·hm−2) | ≤50; (50-100]; (100-150]; (150-200]; (200-250]; (250-300]; (300-350];>350 |
基肥+分蘖肥比例 N ratio of basal+tillering fertilizer/total N/% | ≤30; (30-50]; (50-70];>70 |
穗肥比例 Ratio of topdressing for panicle initiation/% | ≤10; (10-30]; (30-50];>50 |
水稻种植区域 Rice planting area | 长江流域单双季稻区、南方单双季稻区、云贵川湘山地高原单季稻区、东北单季稻区 Single and double cropping rice area in the Yangtze River basin; Single and double cropping rice area in South China; Single-season rice region in Yunnan, Guizhou, Sichuan and Hunan provinces; Single-season rice region in Northease China |
有机质含量 SOM(soil organic matter)/(g·kg−1) | ≤10; 10-20; >20 |
全氮含量 TN(total nitrogen)/(g·kg−1) | ≤1; 1-1.5; >1.5 |
碱解氮含量 AN(available nitrogen)/(mg·kg−1) | ≤90; 90-150; >150 |
速效磷含量 AP(available phosphorus)/(mg·kg−1) | ≤10; 10-20; >20 |
速效钾含量 AK(available potassium)/(mg·kg−1) | ≤80; 80-160; >160 |
Table 1. Classification and grouping of explanatory variables of nitrogen management on rice yield and component factors.
解释变量 Explanatory variables | 分组 Group |
---|---|
施氮量 N application level/(kg·hm−2) | ≤50; (50-100]; (100-150]; (150-200]; (200-250]; (250-300]; (300-350];>350 |
基肥+分蘖肥比例 N ratio of basal+tillering fertilizer/total N/% | ≤30; (30-50]; (50-70];>70 |
穗肥比例 Ratio of topdressing for panicle initiation/% | ≤10; (10-30]; (30-50];>50 |
水稻种植区域 Rice planting area | 长江流域单双季稻区、南方单双季稻区、云贵川湘山地高原单季稻区、东北单季稻区 Single and double cropping rice area in the Yangtze River basin; Single and double cropping rice area in South China; Single-season rice region in Yunnan, Guizhou, Sichuan and Hunan provinces; Single-season rice region in Northease China |
有机质含量 SOM(soil organic matter)/(g·kg−1) | ≤10; 10-20; >20 |
全氮含量 TN(total nitrogen)/(g·kg−1) | ≤1; 1-1.5; >1.5 |
碱解氮含量 AN(available nitrogen)/(mg·kg−1) | ≤90; 90-150; >150 |
速效磷含量 AP(available phosphorus)/(mg·kg−1) | ≤10; 10-20; >20 |
速效钾含量 AK(available potassium)/(mg·kg−1) | ≤80; 80-160; >160 |
Fig. 2. Increase range of actual yield (A), theoretical yield (B), number of effective panicles (C), number of grains per panicle (D), seed setting rate (E) and thousand grain weight (F) of rice under various nitrogen levels. n is the number of samples; The dotted line is the auxiliary line.
Fig. 3. Increase range of actual yield (A), theoretical yield (B), number of effective panicles (C), number of grains per panicle (D), seed setting rate (E) and 1000-grain weight (F) of rice under different basal+tillering fertilizer ratios. n is the number of samples; The dotted line is the auxiliary line.
Fig. 4. Increase range of actual yield (A), theoretical yield (B), number of effective panicles (C), number of grains per panicle (D), seed setting rate (E) and 1000 grain weight (F) of rice under different ratios of topdressing for panicle initiation. n is the number of samples.
Fig. 5. Increase range of actual yield, theoretical yield, effective panicles (A), grains per panicle (B), seed setting rate (C) and 1000 grain weight (D) of rice in different rice areas. YRR, Single and double cropping rice area in the Yangtze River basin; SR, Single and double cropping rice area in South China; YSSR, Yunnan-Guizhou Sichuan-Hunan mountainous plateau single-season rice region; NER, Northeast single-season rice region.
项目 Item | 有效穗数Number of effective panicles | 每穗粒数Number of grains per panicle | 结实率Seed setting rate | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | |||||||||
SOM (g·kg−1) | ≤10 | 35.43 | 31.78, | 39.11 | 111 | 18.72 | 14.58, | 23.01 | 111 | −6.19 | −7.55, | −4.86 | 111 | ||||
10-20 | 26.19 | 22.09, | 29.65 | 226 | 20.83 | 17.93, | 24.00 | 211 | −3.11 | −6.00, | −0.88 | 208 | |||||
>20 | 35.05 | 33.78, | 36.33 | 986 | 11.76 | 10.68, | 12.77 | 986 | −4.07 | −5.13, | −3.38 | 986 | |||||
TN (g·kg−1) | ≤1 | 41.72 | 36.45, | 47.18 | 106 | 14.64 | 11.58, | 17.74 | 88 | −3.05 | −4.70, | −1.46 | 88 | ||||
1-1.5 | 31.59 | 29.18, | 33.75 | 435 | 8.59 | 7.50, | 9.74 | 434 | −5.20 | −6.58, | −4.27 | 435 | |||||
>1.5 | 33.96 | 32.46, | 35.46 | 594 | 14.04 | 12.52, | 15.43 | 584 | −4.16 | −5.87, | −3.13 | 594 | |||||
AN (mg·kg−1) | ≤90 | 38.00 | 36.10, | 39.99 | 309 | 9.97 | 8.56, | 11.34 | 309 | −3.90 | −4.66, | −3.19 | 309 | ||||
90-150 | 32.46 | 30.50, | 34.25 | 485 | 19.34 | 17.59, | 21.17 | 488 | −4.35 | −4.97, | −3.69 | 485 | |||||
>150 | 33.22 | 31.05, | 35.35 | 235 | 6.62 | 3.94, | 8.74 | 235 | −6.42 | −10.27, | −3.99 | 235 | |||||
AP (mg·kg−1) | ≤10 | 29.03 | 23.08, | 33.60 | 148 | 10.62 | 6.52, | 14.00 | 148 | −8.95 | −15.60, | −4.24 | 148 | ||||
10-20 | 35.09 | 33.08, | 37.05 | 388 | 14.20 | 12.61, | 15.84 | 388 | −3.56 | −4.15, | −2.98 | 388 | |||||
>20 | 33.58 | 32.27, | 34.96 | 922 | 15.02 | 13.91, | 16.21 | 907 | −4.07 | −4.52, | −3.59 | 904 | |||||
AK (mg·kg−1) | ≤80 | 35.84 | 33.90, | 37.82 | 357 | 11.39 | 10.31, | 12.55 | 357 | −3.20 | −3.74, | −2.65 | 357 | ||||
80-160 | 33.58 | 32.05, | 35.08 | 920 | 16.77 | 15.49, | 18.13 | 905 | −4.69 | −5.95, | −3.76 | 902 | |||||
>160 | 29.12 | 26.63, | 31.59 | 194 | 7.51 | 5.18, | 9.77 | 194 | −5.51 | −6.76, | −4.30 | 194 | |||||
项目 Item | 千粒重Thousand grain weight | 实际产量Actual yield | 理论产量Theoretical yield | ||||||||||||||
增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | |||||||||
SOM (g·kg−1) | ≤10 | −3.94 | −9.95, | 0.75 | 111 | 43.40 | 38.39, | 48.60 | 111 | 44.89 | 33.55, | 55.35 | 111 | ||||
10-20 | −1.53 | −3.20, | −0.19 | 229 | 39.49 | 33.26, | 44.56 | 223 | 45.15 | 33.38, | 55.01 | 208 | |||||
>20 | −1.30 | −2.11, | −0.42 | 986 | 43.88 | 41.99, | 45.83 | 956 | 42.89 | 40.45, | 45.31 | 986 | |||||
TN (g·kg−1) | ≤1 | −5.12 | −11.28, | −0.35 | 106 | 55.02 | 48.78, | 61.91 | 106 | 51.33 | 37.20, | 64.54 | 88 | ||||
1-1.5 | −0.58 | −2.98, | 2.45 | 435 | 35.66 | 33.43, | 38.15 | 417 | 33.51 | 28.21, | 37.77 | 423 | |||||
>1.5 | −1.93 | −2.78, | −0.91 | 594 | 41.03 | 38.22, | 43.52 | 576 | 43.96 | 40.33, | 47.14 | 594 | |||||
AN (mg·kg−1) | ≤90 | −2.50 | −4.34, | −0.93 | 309 | 47.92 | 44.54, | 51.69 | 309 | 42.19 | 38.56, | 45.56 | 309 | ||||
90-150 | −0.79 | −2.00, | 1.34 | 488 | 41.72 | 38.21, | 44.67 | 458 | 49.17 | 45.73, | 52.79 | 473 | |||||
>150 | 0.53 | −0.78, | 2.83 | 235 | 39.67 | 37.08, | 42.40 | 229 | 33.62 | 26.30, | 40.02 | 235 | |||||
AP (mg·kg−1) | ≤10 | −1.18 | −5.20, | 3.28 | 148 | 31.00 | 21.99, | 38.24 | 148 | 28.42 | 13.03, | 42.28 | 148 | ||||
10-20 | −3.12 | −4.86, | −1.74 | 388 | 42.49 | 40.27, | 44.82 | 379 | 44.14 | 40.17, | 47.73 | 388 | |||||
>20 | −1.25 | −2.22, | 0.02 | 925 | 44.83 | 42.56, | 47.08 | 898 | 45.62 | 42.92, | 48.48 | 904 | |||||
AK (mg·kg−1) | ≤80 | −1.51 | −3.85, | 0.70 | 357 | 44.86 | 40.72, | 49.32 | 336 | 44.27 | 40.02, | 48.16 | 357 | ||||
80-160 | −1.68 | −2.79, | −0.29 | 923 | 42.72 | 40.62, | 44.67 | 908 | 46.24 | 42.36, | 50.10 | 902 | |||||
>160 | −1.66 | −2.34, | −0.97 | 194 | 35.77 | 29.12, | 40.97 | 194 | 28.99 | 25.29, | 32.66 | 194 |
Table 4. Increase range of rice yield and its components under various soil total nitrogen and available nitrogen contents.
项目 Item | 有效穗数Number of effective panicles | 每穗粒数Number of grains per panicle | 结实率Seed setting rate | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | |||||||||
SOM (g·kg−1) | ≤10 | 35.43 | 31.78, | 39.11 | 111 | 18.72 | 14.58, | 23.01 | 111 | −6.19 | −7.55, | −4.86 | 111 | ||||
10-20 | 26.19 | 22.09, | 29.65 | 226 | 20.83 | 17.93, | 24.00 | 211 | −3.11 | −6.00, | −0.88 | 208 | |||||
>20 | 35.05 | 33.78, | 36.33 | 986 | 11.76 | 10.68, | 12.77 | 986 | −4.07 | −5.13, | −3.38 | 986 | |||||
TN (g·kg−1) | ≤1 | 41.72 | 36.45, | 47.18 | 106 | 14.64 | 11.58, | 17.74 | 88 | −3.05 | −4.70, | −1.46 | 88 | ||||
1-1.5 | 31.59 | 29.18, | 33.75 | 435 | 8.59 | 7.50, | 9.74 | 434 | −5.20 | −6.58, | −4.27 | 435 | |||||
>1.5 | 33.96 | 32.46, | 35.46 | 594 | 14.04 | 12.52, | 15.43 | 584 | −4.16 | −5.87, | −3.13 | 594 | |||||
AN (mg·kg−1) | ≤90 | 38.00 | 36.10, | 39.99 | 309 | 9.97 | 8.56, | 11.34 | 309 | −3.90 | −4.66, | −3.19 | 309 | ||||
90-150 | 32.46 | 30.50, | 34.25 | 485 | 19.34 | 17.59, | 21.17 | 488 | −4.35 | −4.97, | −3.69 | 485 | |||||
>150 | 33.22 | 31.05, | 35.35 | 235 | 6.62 | 3.94, | 8.74 | 235 | −6.42 | −10.27, | −3.99 | 235 | |||||
AP (mg·kg−1) | ≤10 | 29.03 | 23.08, | 33.60 | 148 | 10.62 | 6.52, | 14.00 | 148 | −8.95 | −15.60, | −4.24 | 148 | ||||
10-20 | 35.09 | 33.08, | 37.05 | 388 | 14.20 | 12.61, | 15.84 | 388 | −3.56 | −4.15, | −2.98 | 388 | |||||
>20 | 33.58 | 32.27, | 34.96 | 922 | 15.02 | 13.91, | 16.21 | 907 | −4.07 | −4.52, | −3.59 | 904 | |||||
AK (mg·kg−1) | ≤80 | 35.84 | 33.90, | 37.82 | 357 | 11.39 | 10.31, | 12.55 | 357 | −3.20 | −3.74, | −2.65 | 357 | ||||
80-160 | 33.58 | 32.05, | 35.08 | 920 | 16.77 | 15.49, | 18.13 | 905 | −4.69 | −5.95, | −3.76 | 902 | |||||
>160 | 29.12 | 26.63, | 31.59 | 194 | 7.51 | 5.18, | 9.77 | 194 | −5.51 | −6.76, | −4.30 | 194 | |||||
项目 Item | 千粒重Thousand grain weight | 实际产量Actual yield | 理论产量Theoretical yield | ||||||||||||||
增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | 增幅Increase/% | Bootstrap CI/% | n | |||||||||
SOM (g·kg−1) | ≤10 | −3.94 | −9.95, | 0.75 | 111 | 43.40 | 38.39, | 48.60 | 111 | 44.89 | 33.55, | 55.35 | 111 | ||||
10-20 | −1.53 | −3.20, | −0.19 | 229 | 39.49 | 33.26, | 44.56 | 223 | 45.15 | 33.38, | 55.01 | 208 | |||||
>20 | −1.30 | −2.11, | −0.42 | 986 | 43.88 | 41.99, | 45.83 | 956 | 42.89 | 40.45, | 45.31 | 986 | |||||
TN (g·kg−1) | ≤1 | −5.12 | −11.28, | −0.35 | 106 | 55.02 | 48.78, | 61.91 | 106 | 51.33 | 37.20, | 64.54 | 88 | ||||
1-1.5 | −0.58 | −2.98, | 2.45 | 435 | 35.66 | 33.43, | 38.15 | 417 | 33.51 | 28.21, | 37.77 | 423 | |||||
>1.5 | −1.93 | −2.78, | −0.91 | 594 | 41.03 | 38.22, | 43.52 | 576 | 43.96 | 40.33, | 47.14 | 594 | |||||
AN (mg·kg−1) | ≤90 | −2.50 | −4.34, | −0.93 | 309 | 47.92 | 44.54, | 51.69 | 309 | 42.19 | 38.56, | 45.56 | 309 | ||||
90-150 | −0.79 | −2.00, | 1.34 | 488 | 41.72 | 38.21, | 44.67 | 458 | 49.17 | 45.73, | 52.79 | 473 | |||||
>150 | 0.53 | −0.78, | 2.83 | 235 | 39.67 | 37.08, | 42.40 | 229 | 33.62 | 26.30, | 40.02 | 235 | |||||
AP (mg·kg−1) | ≤10 | −1.18 | −5.20, | 3.28 | 148 | 31.00 | 21.99, | 38.24 | 148 | 28.42 | 13.03, | 42.28 | 148 | ||||
10-20 | −3.12 | −4.86, | −1.74 | 388 | 42.49 | 40.27, | 44.82 | 379 | 44.14 | 40.17, | 47.73 | 388 | |||||
>20 | −1.25 | −2.22, | 0.02 | 925 | 44.83 | 42.56, | 47.08 | 898 | 45.62 | 42.92, | 48.48 | 904 | |||||
AK (mg·kg−1) | ≤80 | −1.51 | −3.85, | 0.70 | 357 | 44.86 | 40.72, | 49.32 | 336 | 44.27 | 40.02, | 48.16 | 357 | ||||
80-160 | −1.68 | −2.79, | −0.29 | 923 | 42.72 | 40.62, | 44.67 | 908 | 46.24 | 42.36, | 50.10 | 902 | |||||
>160 | −1.66 | −2.34, | −0.97 | 194 | 35.77 | 29.12, | 40.97 | 194 | 28.99 | 25.29, | 32.66 | 194 |
[1] | FAOSTAT, 2018. Food and agriculture organization of the united nations Statistics Division. |
[2] | 李辛一. 长期化肥投入对我国粮食产量影响的实证[J]. 中国国际财经, 2016(21): 61-67. |
Li X Y. Empirical study on the impact of long-term fertilizer input on China's grain output[J]. China International Finance, 2016 (21): 61-67. (in Chinese with English abstract) | |
[3] | Grassini P, Eskridge K M, Cassman K G. Distinguishing between yield advances and yield plateaus in historical crop production trends[J]. Nature Communications, 2013, 4: 1-11. |
[4] | Sun Y J, Ma J, Sun, Y Y, Xu H, Yang Z Y, Liu S J, Jia X W, Zheng H Z. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2012, 127: 85-98. |
[5] | Yi J, Gao J P, Zhang W Z, Zhao Y Z, Zhao C, Zhao Y, Li Z A, Xin W. Delayed timing of tillering fertilizer improved grain yield and nitrogen use efficiency in japonica rice[J]. Crop Science, 2020, 60(2): 1021-1033. |
[6] | 吕小红, 付立东, 宋玉婷, 陈温福. 施氮量对不同株型水稻产量及穗部性状的影响[J]. 江苏农业学报, 2016, 32(3): 542-547. |
Lv X H, Fu L D, Song Y T, Chen W F. Effects of nitrogen application on yield and panicle traits of rice with different plant types[J]. Jiangsu Agricultural Journal, 2016, 32 (3): 542-547. (in Chinese with English abstract) | |
[7] | 王琳, 谢树果, 竭润生, 杜晓秋, 何平, 彭伟. 不同施氮量对川东北地区水稻产量及氮肥利用率的影响[J]. 耕作与栽培, 2014(6): 12-16. |
Wang L, Xie S G, Jie R S, Du X Q, He P, Peng W. Effects of different nitrogen application rates on rice yield and nitrogen use efficiency in Northeast Sichuan[J]. Tillage and Cultivation, 2014(6): 12-16. (in Chinese with English abstract) | |
[8] | 石丽红, 纪雄辉, 朱校奇, 李洪顺, 彭华, 刘昭兵. 提高超级杂交稻库容量的施氮数量和时期运筹[J]. 中国农业科学, 2010, 43(6): 1274-1281. |
Shi L H, Ji X H, Zhu X Q, Li H S, Peng H, Liu Z B. Research on the amount and period of nitrogen application to improve the storage capacity of super hybrid rice[J]. Scientia Agricultura Sinica, 2010, 43 (6): 1274-1281. | |
[9] | 陈桂芬, 黄雁飞, 刘斌, 刘淑仪, 黄玉溢, 林昔香, 唐其展. 广西稻区不同水稻品种对氮肥施用量的响应差异[J]. 南方农业学报, 2021, 52(1): 137-144. |
Chen G F, Huang Y F, Liu B, Liu S Y, Huang Y Y, Lin X X, Tang Q Z. Response differences of different rice varieties to nitrogen fertilizer application in Guangxi rice region[J]. Southern Agricultural Journal, 2021, 52(1): 137-144. (in Chinese with English abstract) | |
[10] | 孙志广, 王宝祥, 杨波, 徐波, 邢运高, 刘艳, Kazeem B B, 徐大勇. 施氮量对不同水稻品种氮肥利用率和农艺性状的影响[J]. 江西农业学报, 2019, 31(12): 23-28. |
Sun Z G, Wang B X, Yang B, Xu B, Xing Y G, Liu Y, Bello B K, Xu D Y. Effects of nitrogen application rate on nitrogen use efficiency and agronomic traits of different rice varieties[J]. Jiangxi Agricultural Journal, 2019, 31 (12): 23-28. (in Chinese with English abstract) | |
[11] | 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018(4): 69-78. |
Zhang X C, Huang W X, Zhu K Y, Wang Z Q, Effects of nitrogen application rate on nitrogen use efficiency and agronomic traits of different rice varieties[J]. Crop Journal, 2018(4): 69-78. (in Chinese with English abstract) | |
[12] | 覃夏, 王绍华, 薛利红. 江西鹰潭地区早稻氮素营养光谱诊断模型的构建与应用[J]. 中国农业科学, 2011, 44(4): 691-698. |
Qin X, Wang S H, Xue L H. Construction and application of nitrogen nutrition spectral diagnostic model for early rice in Yingtan area of Jiangxi Province[J]. Chinese Agricultural Sciences, 2011, 44 (4): 691-698. (in Chinese with English abstract) | |
[13] | 薛利红, 覃夏, 李刚华, 杨林章. 基蘖肥氮不同比例对直播早稻群体动态、氮素吸收利用及产量形成的影响[J]. 土壤, 2010, 42(5): 815-821. |
Xue L H, Qin X, Li G H, Yang L Z. Effects of different ratios of basal tiller fertilizer and nitrogen on population dynamics, nitrogen absorption and utilization and yield formation of direct seeding early rice[J]. Soil, 2010, 42 (5): 815-821. (in Chinese with English abstract) | |
[14] | 王艳, 易军, 高继平, 张丽娜, 杨继芬, 赵艳泽, 辛威, 甄晓溪, 张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(1): 102-116. |
Wang Y, Yi J, Gao J P, Zhang L N, Yang J F, Zhao Y Z, Xin W, Zhen X X, Zhang W Z. Effects of different combinations of nitrogen fertilizer on yield and nitrogen utilization of japonica rice[J]. Acta Agronomica Sinica, 2020, 46(1): 102-116. (in Chinese with English abstract) | |
[15] | 武良. 基于总量控制的中国农业氮肥需求及温室气体减排潜力研究[D]. 北京: 中国农业大学, 2014. |
Wu L. Research on China's agricultural nitrogen fertilizer demand and greenhouse gas emission reduction potential based on total amount control[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
[16] | 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998: 356. |
National Soil Census Office. China Soil[M]. Beijing: China Agriculture Press, 1998: 356. (in Chinese) | |
[17] | 蔡岸冬, 张文菊, 杨品品, 韩天富, 徐明岗. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响[J]. 中国农业科学, 2015, 48(15): 2995-3004. |
Cai A D, Zhang W J, Yang P P, Han T F, Xu M G. Effects of fertilization on farmland soil organic carbon and its components in China based on Meta-Analysis[J]. Scientia Agricultura Sinica, 2015, 48(15): 2995-3004. (in Chinese with English abstract) | |
[18] | Zhang X Y, Fang Q C, Zhang T, Ma W Q, Gerard L,. Velthof, Hou Y, Oenema O, Zhang F S. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis[J]. Global Change Biology, 2019, 00: 1-13. |
[19] | Lam S K, Chen D, Norton R, Armstrong R, Mosier A R. Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A meta‐analysis[J]. Global Change Biology, 2012, 18: 2853-2859. |
[20] | 韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta分析中国水稻产量对施肥的响应特征[J]. 中国农业科学, 2019, 52(11): 1918-1929. |
Han T F, Ma C B, Huang J, Liu K L, Xue Y D, Li D C, Liu L S, Zhang L, Liu S J, Zhang H M. Meta-analysis of the response characteristics of rice yield in China to fertilization[J]. Scientia Agrialltura Sinica, 2019, 52(11): 1918-1929. (in Chinese with English abstract) | |
[21] | Liu C, Lu M, Cui J, Li B, Fang C M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381. |
[22] | 任科宇, 陆东明, 邹洪琴, 王慧颖, 许发辉, 卢昌艾, 段英华. 有机替代对长江流域水稻产量和籽粒含氮量的影响[J]. 农业资源与环境学报, 2022, 39(4): 716-725. |
Ren K Y, Lu D M, Zou H Q, Wang H Y, Xu F H, Lu C A, Duan Y H. Effects of organic substitution on rice yield and grain nitrogen content in the Yangtze River Basin[J]. Journal of Agricultural Resources and Environment, 2022, 39(4): 716-725. (in Chinese with English abstract) | |
[23] | Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80 (4): 1150-1156. |
[24] | Wang W N, Lu J W, Ren T, Li X K, Su W, Lu M X. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production[J]. Field Crop Research. 2013, 137, 37-48. |
[25] | 胡群, 曹利强, 夏敏, 张洪程, 陈厚存, 郭保卫, 魏海燕. 不同施氮量对钵苗机插水稻产量形成及氮素利用率的影响[J]. 安徽农业科学, 2016, 44(8): 34-37. |
Hu Q, Cao L Q, Xia M, Zhang H C, Chen H C, Guo B W, Wei H Y. Effects of different nitrogen application rates on Yield Formation and nitrogen use efficiency of pot seedling machine transplanted rice[J]. Anhui Agricultural Science, 2016, 44 (8): 34-37. (in Chinese with English abstract) | |
[26] | 李木英, 石庆华, 方慧铃, 潘晓华, 谭雪明, 曾勇军. 淦鑫688氮素营养特性及其与群体发育和产量形成的关系[J]. 江西农业大学学报, 2009, 31(2): 183-193. |
Li M Y, Shi Q H, Fang H L, Pan X H, Tan X M, Zeng Y J. Relationship between characteristics of N nutrition, population development and yield formation of Ganxin 688[J]. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(2): 183-193. (in Chinese) | |
[27] | 张四海, 吴文革, 李泽福, 王元垒, 黄义德, 赵决建, 方文杰. 氮肥运筹对双季晚稻产量和品质的影响[J]. 中国土壤与肥料, 2008(3): 28-31. |
Zhang S H, Wu W G, Li Z F, Wang Y L, Huang Y D, Zhao J J, Fang W J. Effects of nitrogen fertilizer management on the yield and quality of double cropping late rice[J]. China Soil and Fertilizer, 2008(3): 28-31. | |
[28] | 王秀斌, 徐新朋, 孙静文, 梁国庆, 刘光荣, 周卫. 氮肥运筹对机插双季稻产量、氮肥利用率及经济效益的影响[J]. 植物营养与肥料学报, 2016, 22(5): 1167-1176. |
Wang X B, Xu X P, Sun J W, Liang G Q, Liu G R, Zhou W. Effects of nitrogen fertilizer operation research on yield, nitrogen fertilizer utilization and economic benefits of machine transplanted double cropping rice[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1167-1176 | |
[29] | 杨晓龙, 方建军, 汪本福, 王红波, 程建平, 周厚财, 周黎, 徐得泽. 不同施氮量对桃优香占产量及农艺性状的影响[J]. 湖北农业科学, 2021, 60(15): 34-37. |
Yang X L, Fang J J, Wang B F, Wang H B, Cheng J P, Zhou H C, Zhou L, Xu D Z. Effects of different nitrogen application rates on Yield and agronomic characters of peach Youxiang[J]. Hubei Agricultural Science, 2021, 60 (15): 34-37. (in Chinese with English abstract) | |
[30] | Zakari S A, Asad M A U, Han Z Y, Guan X Y, Zaidi S H R, Gang P, Cheng F M. Senescence-related translocation of nonstructural carbohydrate in rice leaf sheaths under different nitrogen supply[J]. Agronomy Journal, 2020 112(3): 1601-1616. |
[31] | Yang D Q, Cai T, Luo Y L, Wang Z L. Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat[J]. Peer J, 2019, 7, e6484. |
[32] | 王博博. 不同施氮量对豫南稻区超级杂交稻产量、品质及群体质量的影响研究[D]. 郑州: 河南农业大学, 2016. |
Wang B B. Study on the effect of different nitrogen application rates on the yield, quality and population quality of super hybrid rice in the southern Henan rice region[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese with English abstract) | |
[33] | Zhou W, Lv T F, Yang Z P, Wang T, Fu Y, Chen Y, Hu B H, Ren W J. Morphophysiological mechanism of rice yield increase in response to optimized nitrogen management[J]. Scientific Reports, 2017, 7: 17226. |
[34] | Deng F, Wang L, Ren W J, Mei X F, Li S X. Optimized nitrogen managements and poly aspartic acid urea improved dry matter production and yield of indica hybrid rice[J]. Soil & Tillage Research, 2015, 145: 1-9. |
[35] | Kamiji Y H, Yoshida J A, Palta T, Sakuratani T, Shiraiwa T N. Applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice[J]. Field Crops Research, 2011 122: 242-247. |
[36] | Shiratsuchi H Y, Ohdaira J, Takanashi[J] . Relationship between dry weight at heading and the number of spikelets on individual rice tillers[J]. Plant Production Science, 2007, 10: 430-441. |
[37] | 朱莉, 李贵勇, 周伟, 朱世林, 李珍珍, 夏海晓, 陶有凤, 任万军, 胡剑锋. 不同生态条件下氮高效水稻品种干物质积累和产量特性[J]. 植物营养与肥料学报, 2022, 28(6): 1015-1028. |
Zhu L, Li G Y, Zhou W, Zhu S L, Li Z Z, Xia H X, Tao Y F, Ren W J, Hu J F. Dry matter accumulation and yield characteristics of nitrogen efficient rice varieties under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1015-1028. (in Chinese with English abstract) | |
[38] | 徐富贤, 熊洪, 张林, 郭晓艺, 朱永川, 刘茂, 周兴兵. 西南稻区杂交中稻产量的地域差异及其高效施氮量研究[J]. 植物营养与肥料学报, 2012, 18(2): 273-282. |
Xu F X, Xiong H, Zhang L, Guo X Y, Zhu Y C, Liu M, Zhou X B. Study on regional differences in hybrid rice yield and its high-efficiency nitrogen application in southwest rice region[J]. Journal of Plant Nutrition and Fertilizer, 2012, 18(2): 273-282. (in Chinese with English abstract) | |
[39] | 蒋聪, 段玉云, 杨旭昆, 吴志刚, 邹茜. 云南省高原粳稻主要农艺性状与产量的多重分析[J]. 江苏农业科学, 2020, 48(21): 74-83. |
Jiang C, Duan Y Y, Yang X K, Wu Z G, Zou Q. Multiple analysis of main agronomic characters and yield of plateau Japonica rice in Yunnan Province[J]. Jiangsu Agricultural Science, 2020, 48(21): 74-83. (in Chinese with English abstract) | |
[40] | 付景, 王越涛, 尹海庆, 王生轩, 王付华, 陈献功, 王亚, 杨文博, 白涛. 施氮量对沿黄粳稻根系形态、生理特性及产量的影响[J]. 河南农业科学, 2017, 46(7): 18-25. |
Fu J, Wang Y T, Yin H Q, Wang S X, Wang F H, Chen X G, Wang Y, Yang W B, Bai T. Effects of Nitrogen Application on root morphology, physiological characteristics and yield of japonica rice along the Yellow River[J]. Henan Agricultural Science, 2017, 46 (7): 18-25. (in Chinese with English abstract) | |
[41] | 李晓峰, 程金秋, 梁健, 陈梦云, 任红茹, 张洪程, 霍中洋, 戴其根, 许轲, 魏海燕, 郭保卫. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响[J]. 作物学报, 2017, 43(6): 912-924. |
Li X F, Cheng J Q, Liang J, Chen M Y, Ren H R, Zhang H C, Huo Z Y, Dai Q G, Xu K, Wei H Y, Guo B B. Effects of full straw returning and nitrogen fertilizer management on yield and nitrogen absorption and utilization of machine- transplanted japonica rice[J]. Chinese Journal of Crops, 2017, 43(6): 912-924. (in Chinese with English abstract) | |
[42] | 赵建红, 李玥, 孙永健, 李应洪, 孙加威, 代邹, 谢华英, 徐徽, 马均. 灌溉方式和氮肥运筹对免耕厢沟栽培杂交稻氮素利用及产量的影响[J]. 植物营养与肥料学报, 2016, 22(3): 609-617. |
Zhao J H, Li Y, Sun Y J, Li Y H, Sun J W, Dai Z, Xie H Y, Xu H, Ma J. Effects of irrigation methods and nitrogen fertilizer management on nitrogen utilization and yield of hybrid rice cultivated in no-till Xianggou[J]. Journal of Nutrition and Fertilizers, 2016, 22(3): 609-617. (in Chinese with English abstract) | |
[43] | 曹小闯, 刘晓霞, 马超, 田仓, 朱练峰, 吴龙龙, 张均华, 金千瑜, 朱春权, 孔亚丽, 虞轶俊. 干湿交替灌溉改善稻田根际氧环境进而促进氮素转化和水稻氮素吸收[J]. 植物营养与肥料学报, 2022, 28(1): 1-14. |
Cao X C, Liu X X, Ma C, Tian C, Zhu L F, Wu L L, Zhang J H, Jin Q Y, Zhu C Q, Kong Y L, Yu Y J. Alternate wet and dry irrigation improves the rhizosphere oxygen environment of rice fields, thereby promoting nitrogen transformation and rice nitrogen absorption[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 1-14. (in Chinese with English abstract) | |
[44] | 何军, 何天楷, 张宇航, 钟盛建, 高明利, 赵树君, 陈扬, 朱子荣, 陈莹. 不同水肥处理水稻氮磷吸收利用及产量试验研究[J]. 灌溉排水学报, 2020, 39(6): 67-72. |
He J, He T K, Zhang Y H, Zhong S J, Gao M L, Zhao S J, Chen Y, Zhu Z R, Chen Y,. Experimental study on nitrogen and phosphorus absorption and utilization and yield of rice under different water and fertilizer treatments[J]. Journal of Irrigation and Drainage, 2020, 39(6): 67-72. (in Chinese with English abstract) | |
[45] | 陈海飞, 冯洋, 蔡红梅, 徐芳森, 周卫, 刘芳, 庞再明, 李登荣. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1319-1328. |
Chen H F, Feng Y, Cai H M, Xu F S, Zhou W, Liu F, Pang Z M, Li D R. Effects of interaction between nitrogen fertilizer and transplanting density on population structure and yield of rice in low yield fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20 (6): 1319-1328. (in Chinese with English abstract) | |
[46] | 袁帅, 苏雨婷, 王晓玉, 陈平平, 易镇邪. 氮肥运筹与化学调控对湘南超级杂交早稻茎蘖利用特征和产量的影响[J]. 杂交水稻, 2021, 36(5): 79-88. |
Yuan S, Su Y T, Wang X Y, Chen P P, Yi Z X. Effects of nitrogen fertilizer management and chemical regulation on stem and tiller utilization characteristics and yield of super hybrid early hybrid rice in southern Hunan[J]. Hybrid Rice, 2021, 36(5): 79-88. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||