Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (4): 409-421.DOI: 10.16819/j.1001-7216.2024.240307
• Research Papers • Previous Articles Next Articles
HOU Xiaoqin1,2,#, WANG Ying3,#, YU Bei1,4,#, FU Weimeng1, FENG Baohua1, SHEN Yichao2, XIE Hangjun1, WANG Huanran1,4, XU Yongqiang1, WU Zhihai4, WANG Jianjun2, TAO Longxing1, FU Guanfu1,4,*()
Received:
2024-03-11
Revised:
2024-05-13
Online:
2024-07-10
Published:
2024-07-11
Contact:
*email: fuguanfu@caas.cn
About author:
#These authors contributed equally to this work
候小琴1,2,#, 王莹3,#, 余贝1,4,#, 符卫蒙1, 奉保华1, 沈煜潮2, 谢杭军1, 王焕然1,4, 许用强1, 武志海4, 王建军2, 陶龙兴1, 符冠富1,4,*()
通讯作者:
*email: fuguanfu@caas.cn
作者简介:
#共同第一作者
基金资助:
HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings[J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421.
候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.240307
Fig. 1. Effect of PFV on plant morphology of rice seedlings under salt stress H2O,Distilled water;PFA,Potassium fulvic acid. The same lowercase letters above the bars represent no significant difference at 0.05 leve1. The same below.
Fig. 9. Descriptive model of potassium fulvic acid (PFA) conferring salt tolerance in rice seedlings H2O, Distilled water; PFV, Potassium fulvic acid; PN,Net photosynthetic rate; TAC, Total antioxidant capacity; ROS, Reactive oxygen. Salt stress significantly decreases photosynthesis, disturb energy metabolism, and thus impair the antioxidant capacity, leading to the excess accumulation of ROS and Na+ in rice, which could hamper the plant growth and development, and even result in death. Under such conditions, potassium fulvic acid could improve photosynthesis and energy status, enhance the antioxidant capacity to maintain ROS and Na+/K+ homeostasis, and thus increase the salt tolerance of rice seedlings.
[1] | 余贝, 武志海, 符冠富. 盐胁迫影响水稻生理特性及其调控机理研究进展[J]. 作物研究, 2023, 37(2): 189-198. |
Yu B, Wu Z H, Fu G F. Advanced on salt stress affecting rice plants growth development and its regulating mechanisms[J]. Crop Research, 2023, 37(2): 189-198. (in Chinese with English abstract) | |
[2] | Hernández J A. Salinity tolerance in plants: Trends and perspectives[J]. International Journal of Molecular Science, 2019, 20(10): 2408. |
[3] | Melino V, Tester M. Salt-tolerant crops: Time to deliver[J]. Annual Review of Plant Biology, 2023, 74: 671-696. |
[4] | 黄洁, 白志刚, 钟楚, 金千瑜, 朱练峰, 曹小闯, 朱春权, 张均华. 水稻耐盐生理及分子调节机制[J]. 核农学报, 2020, 34(6): 1359-1367. |
Huang J, Bai Z G, Zhong C, Qian J Y, Zhu L F, Cao X C, Zhu C Q, Zhang J H. Physiological and molecular mechanisms of salt stress tolerance in rice[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(6): 1359-1367. (in Chinese with English abstract) | |
[5] | 冷春旭, 郑福余, 赵北平, 刘海英, 王玉杰. 水稻耐碱性研究进展[J]. 生物技术通报, 2020, 36(11): 103-111. |
Leng C X, Zheng F Y, Zhao B P, Liu H Y, Wang Y J. Advances on alkaline tolerance of rice[J]. Biotechnology Bulletin, 2020, 36(11): 103-111. (in Chinese with English abstract) | |
[6] | Rasool S, Hameed A, Azooz M M, Muneeb-u-Rehman, Siddiqi T O, Ahmad P. Salt stress: Causes, types and responses of plants// Ahmad P, Azooz M, Prasad M. ed. Ecophysiology and responses of plants under salt stress, New York: Springer, 2013, 1-24. https://doi.org/10.1007/978-1-4614-4747-4_1. |
[7] | 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾骏飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制[J]. 中国水稻科学, 2023, 37(2): 153-165. |
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms[J]. Chinese Journal of Rice Science, 2023, 37(2): 153-165. (in Chinese with English abstract) | |
[8] | 王爱斌, 柯维忠, 彭永明. 氯化钙浸种和水杨酸浇灌复配处理对水稻幼苗抗盐性的影响[J]. 广东农业科学, 2010, 37(7): 18-19. |
Wang A B, Ke W Z, Peng Y M. Effects of complex treatment with CaCl2 soaking and SA watering on rice seedling growth[J]. Guangdong Agricultural Sciences, 2010, 37(7): 18-19. (in Chinese with English abstract) | |
[9] | 王雅倩. 黄腐酸钾对梨组培苗耐盐生理特性的影响[D]. 泰安: 山东农业大学, 2022. |
Wang Y Q. Effects of potassium Fulvic acid on physiological characteristics of salt tolerance in pear tissue culture seedlings[D]. Tai’an: Shandong Agricultural University, 2022. | |
[10] | 宋挚, 郭新送, 范仲卿, 高涵, 陈卫民, 侯文聪, 丁方军. 叶面喷施黄腐酸钾对水稻产量及品质的影响[J]. 腐植酸, 2022, 204(1): 52-55. |
Song Z, Guo X S, Fan Z Q, Gao H, Chen W M, Hou W C, Ding F J. Effects of foliar spraying potassium fulvate on yield and quality of rice[J]. Humic Acid, 2022, 204(1): 52-55. (in Chinese with English abstract) | |
[11] | 赵旺辉, 祝海竣, 李丹妮, 王学华. 抗盐碱剂对盐碱胁迫条件下水稻生长发育的影响[J]. 湖南农业科学, 2021(11): 29-33. |
Zhao D H, Zhu H J, Li D N, Wang X H. Effects of four salt-alkali resistant agents on rice growth and development in salt-alkali stress condition. Hunan Agricultural Sciences, 2021(11): 29-33. (in Chinese with English abstract) | |
[12] | 刘晓涵. 外源添加生物炭和黄腐酸钾缓解烟草盐胁迫机理研究[D]. 郑州: 河南农业大学, 2020. |
Liu X H. The study on relieving response mechanism of tobacco in salt stress by exogenous biochar and potassium fulvic acid[D]. Zhengzhou: Henan Agricultural University, 2020. | |
[13] | 杨小奎. 黄腐酸钾对草莓氮素吸收分配及产量品质的影响[D]. 泰安: 山东农业大学, 2018. |
Yang X K. Effects of fulvic acid potassium on nitrogen absorption and distribution and fruit yield and quality of strawberry[D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese with English abstract) | |
[14] | 宋挚, 郭新送, 范仲卿, 高涵, 陈卫民, 侯文聪, 丁方军. 叶面喷施黄腐酸钾对水稻产量及品质的影响[J]. 腐植酸, 2022, 204(1): 52-55. |
Song Z, Guo X S, Fan Z Q, Gao H, Chen W M, Hou W C, Ding F J. Effects of foliar spraying potassium fulvate on yield and quality of rice[J]. Humic Acid, 2022, 204(1): 52-55. (in Chinese with English abstract) | |
[15] | 王安东, 萧长亮, 那永光. 配施含钾黄腐酸对寒地水稻产量的影响[J]. 安徽农业科学, 2019, 47(13): 143-145. |
Wang A D, Xiao C L, Na Y G. Effects of potassium-containing fulvic acid on rice yield in cold regions[J]. Journal of Anhui Agricultural Sciences, 2019, 47(13): 143-145. (in Chinese with English abstract) | |
[16] | Xiong J, Zhang L, Fu G F, Yang Y Y, Zhu C, Tao L X. Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice[J]. Journal of Plant Research, 2012, 125(1): 155-164. |
[17] | Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear[J]. Plant Physiology, 1977, 59(3): 411-416. |
[18] | Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 32: 93-101. |
[19] | Giannopolitis C N, Ries S K. Superoxide dismutases: I occurrence in higher[J]. Plant Physiology, 1977, 59(2): 309-314. |
[20] | Maehly. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 1954, 1: 357-424. |
[21] | Aebi H. Catalase//Bergmeyer H U. Ed. Methods of Enzymatic Analysis[M]. New York: Academic Press, 1983: 273-288. |
[22] | Bonnecarrère V, Borsani O, Díaz P, Capdevielle F, Blanco P, Monza J. Response to photoxidative stress induced by cold in japonica rice is genotype dependent[J]. Plant Science, 2011, 180(5): 726-732. |
[23] | DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry 1956, 28: 350-356 |
[24] | Li H B, Feng B H, Li J C, Fu W M, Wang W T, Chen T T, Liu L M, Wu Z H, Peng S B, Tao L X, Fu G F. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy[J]. Plant Cell &Environment, 2023, 46(4): 1363-1383. |
[25] | Ma J Y, Chen T T, Lin J, Fu W M, Feng B H, Li G Y, Li H B, Li J C, Wu Z H, Tao L X, Fu G F. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development[J]. Rice Science, 2022, 29(2): 166-178. |
[26] | Zhao X, Chen T T, Feng B H, Zhang C X, Peng S B, Zhang X F, Fu G F, Tao L X. Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color[J]. Frontiers in Plant Science, 2017, 7: 1968. |
[27] | 鲁如坤. 土壤农业化学分析方法[M]. 南京: 河海大学出版社, 2000: 308-315. |
Lu R K. Methods for agrochemical analysis of soil[M]. Nanjing: Hehai University Press, 2000: 308-315. (in Chinese) | |
[28] | 李放, 宋东涛, 王丹丹, 孟泽凤, 刘晓丽, 刘怀龙, 王红. 黄腐酸钾和黄腐酸锌对夏玉米的增产效果[J]. 河北农业科学, 2014, 18(4): 64-68. |
Li F, Song D T, Wang D D, Meng Z F, Liu X L, Liu H L, Wang H. The effects of potassium fulvate and zinc fulvate on increasing yield of summer maize[J]. Journal of Hebei Agricultural Sciences, 2014, 18(4): 64-8. | |
[29] | 高伟, 李明悦, 杨军, 冯海娟, 张善平, 郑春莲. 黄腐酸钾不同用量对番茄产量、品质及土壤理化性质的影响[J]. 中国农学通报, 2017, 33(33): 46-49. |
Gao W, Li M Y, Yang J. Feng H J, Zhang S P, Zheng C L. Effect of different application amounts of potassium fulvate on yield and quality of tomato and soil physical and chemical properties[J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 46-49. | |
[30] | 周毅, 王传江, 曹一平. 两种黄腐酸钾对增强冬小麦抗旱性状的效果与评价[J]. 腐植酸, 2003(2): 24-28. |
Zhou Y, Wang C J, Cao Y P. Appraising effect of two potassium fulvate samples as anti-transpirant for winter wheat[J]. Humic Acid, 2003(2): 24-28. (in Chinese with English abstract) | |
[31] | 张茜, 宋昕, 高中超, 王中业, 黄文功, 王艳, 宋柏权. 叶喷黄腐酸钾对甜菜幼苗生理指标和光合特性的影响[J]. 中国糖料, 2022, 44(3): 41-46. |
Zhang Q, Song X, Gao Z C, Wang Z Y, Huang W G, Wang Y, Song B Q. Effects of spraying fulvic acid potassium on physiological indexes and photosynthetic characteristics of sugar beet seedlings[J]. Sugar Crops of China, 2022, 44(3): 41-46. | |
[32] | 周海涛, 张艳阳, 赵孟圆, 李天亮, 曹丽霞, 张新军. S-诱抗素和黄腐酸对干旱胁迫下皮燕麦光合特性及产量的影响[J]. 农学学报, 2021, 11(2): 30-34. |
Zhou H T, Zhang Y Y, Zhao M Y, Li T L, Cao L X, Zhang X J. S-ABA and fulvic acid: Effect on physiological characteristics and yield of oats under drought stress[J]. Journal of Agriculture, 2021, 11(2): 30-34. (in Chinese with English abstract) | |
[33] | 李俊材. 耐热及强再生力水稻品种筛选鉴定及其生理机理研究[D]. 长春: 吉林农业大学, 2023. |
Li J C. Screening and identification of heat-tolerant and highly regenerative rice varieties and their physiological mechanisms[D]. Changchun: Jilin Agricultural University, 2023. | |
[34] | 陈环宇, 何苏南, 汤康, 董正中, 卢明海, 郁凯, 刘冲, 王凯, 赵小慧, 邢锦城. 叶面喷施黄腐酸钾对玉米幼苗光合特性的影响[J]. 大麦与谷类科学, 2024, 41(1): 43-48. |
Chen H Y, He S N, Yang K, Dong Z Z, Lu M H, Yu K, Liu C, Wang K, Zhao X H, Xing J C. Effect of foliar spraying of potassium fulvic acid on photosynthetic characteristics of maize seedlings[J]. Barley and Cereal Sciences, 2024, 41(1): 43-48. (in Chinese with English abstract) | |
[35] | Zhang M M, Li X Y, Wang X L, Feng J P, Zhu S P. Potassium fulvic acid alleviates salt stress of citrus by regulating rhizosphere microbial community, osmotic substances and enzyme activities[J]. Frontiers in Plant Science, 2023, 14: 1161469. |
[36] | Wen F T, Gao Y, Zeng Y X, Li G Y, Feng B H, Li H B, Chen T T, Wang D Y, Tao L X, Xiong J, Fu G F. MiR408 balances plant growth and heat response in rice[J]. Environmental and Experimental Botany, 2024, 221: 105717.https://doi.org/10.1016/j.envexpbot.2024.105717. |
[37] | Reddy I N B L, Kim B K, Yoon I, Kim K H, Kwon T R. Salt tolerance in rice: Focus on mechanisms and approaches[J]. Rice Science, 2017, 24(3): 123-144. |
[38] | Ashraf M, Akram N A, Arteca R N, Foolad M R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance[J]. Critical Reviews in Plant Sciences, 2010, 29(3): 162-190. |
[39] | Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291. |
[40] | 熊静, 高杰云, 刘伟, 谭钧, 邢文军, 陈清. 腐植酸钾对设施番茄苗期高盐和低温胁迫的缓解作用[J]. 腐植酸, 2015(4): 9-14. |
Xiong J, Gao J Y, Liu W, Tan J, Xing W J, Chen Q. Alleviation of potassium humate on protected cultivated tomato at seedling stage under high salinity and low temperature stress[J]. Humic Acid, 2015(4): 9-14. (in Chinese with English abstract) | |
[41] | 张梅, 李泽剑, 唐诚, 褚贵新. 硅、硒、黄腐酸、氯甲基吡啶组合对棉花生长及抗盐生理特性的影响[J]. 生态环境学报, 2016, 25(10): 1671-1677. |
Zhang M, Li Z J, Tang C, Chu X G. Influences of the combination using of silicon, selenium, fulvic acid, nitrapyrin on cotton growth and cotton plant salt-resistant physiological characteristics[J]. Ecology and Environmental Sciences, 2016, 25(10): 1671-1677. (in Chinese with English abstract) | |
[42] | Nowicka B, Ciura J, Szymańska R, Kruk J. Improving photosynthesis, plant productivity and abiotic stress tolerance: Current trends and future perspectives[J]. Journal of Plant Physiology, 2018, 231: 415-433. |
[43] | 赵永长, 宋文静, 邱春丽, 董建新, 李磊磊, 管恩娜, 陈向东, 宋科. 黄腐酸钾对渗透胁迫下烤烟幼苗生长和光合荧光特性的影响[J]. 中国烟草学报, 2016, 22(4): 98-106. |
Zhao Y C, Song W J, Qiu C L, Dong J X, Li L L, Guan E N, Chen X D, Song K. Effects of fulvic acid potassium on growth and photosynthetic fluorescence characteristics of flue-cured tobacco seedlings under osmotic stress[J]. Acta Tabacaria Sinica, 2016, 22(4): 98-106. (in Chinese with English abstract) | |
[44] | 沈伟, 岑湘涛, 李玥莹. 黄腐酸钾对高温胁迫下田七生理特性的影响[J]. 农业与技术, 2022, 42(6): 10-13. |
Shen W, Cen X T, Li Y Y. Effects of potassium fulvic acid on physiological characteristics of Panax notoginseng under high temperature stress[J]. Agriculture and Technology, 2022, 42(6): 10-13. (in Chinese with English abstract) | |
[45] | Chen T T, Ma J Y, Xu C M, Jiang N, Li G Y, Fu W M, Feng B H, Wang D Y, Wu Z H, Tao L X, Fu G F. Increased ATPase activity promotes heat-resistance, high-yield, and high-quality traits in rice by improving energy status[J]. Frontiers in Plant Science, 2022, 13: 1035027. |
[46] | 王文婷, 马佳颖, 李光彦, 符卫蒙, 李沪波, 林洁, 陈婷婷, 奉保华, 陶龙兴, 符冠富, 秦叶波. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J]. 中国水稻科学, 2023, 37(3): 253-264. |
Wang W T, Ma J Y, Li G Y, Fu W M, Li H B, Lin J, Chen T T, Fen B H, Tao L X, Fu G F, Qin Y B. Effect of different fertilizer application rates on rice yield and quality formation and its relationship with energy metabolism at high temperature[J]. Chinese Journal of Rice Science, 2023, 37(3): 253-264. (in Chinese with English abstract) | |
[47] | Munns R, Day D A, Fricke W, Watt M, Arsova B, Barkla B J, Bose J, Byrt C S, Chen Z H, Foster K J, Gilliham M, Henderson S W, Jenkins C L D, Kronzucker H J, Miklavcic S J, Plett D, Roy S J, Shabala S, Shelden M C, Soole K L, Taylor N L, Tester M, Wege S, Wegner L H, Tyerman S D. Energy costs of salt tolerance in crop plants[J]. New Phytologist, 2020, 225(3): 1072-1090. |
[48] | Munns R, Passioura J B, Colmer T D, Byrt C S. Osmotic adjustment and energy limitations to plant growth in saline soil[J]. New Phytologist, 2020, 225(3): 1091-1096. |
[49] | De Block M, van Lijsebettens M. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity[J]. Current Opinion in Plant Biology, 2011, 14(3): 275-282. |
[50] | Li G Y, Chen T T, Feng B H, Peng S B, Tao L X, Fu G F. Respiration, rather than photosynthesis, determines rice yield loss under moderate high-temperature conditions[J]. Frontiers in Plant Science, 2021, 12: 678653. |
[51] | Kimbembe R E, Li G Y, Fu G F, Feng B H, Fu W M, Tao L X, Chen T T. Proteomic analysis of salicylic acid regulation of grain filling of two near-isogenic rice (Oryza sativa L.) varieties under soil drying condition[J]. Plant Physiology and Biochemistry, 2020, 51: 659-672. |
[52] | Li G Y, Zhang C X, Zhang G H, Fu W M, Feng B H, Chen T T, Peng S B, Tao L X, Fu G F. Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis[J]. Rice, 2020, 13(1): 18. |
[53] | Shabala S, Chen G, Chen Z H, Pottosin I. The energy cost of the tonoplast futile sodium leak[J]. New Phytologist, 2020, 225(3): 1105-1110. |
[1] | XIA Yang, LI Chuanming, LIU Qin, HAN Guangjie, XU Bin, HUANG Lixin, QI Jianhang, LU Yurong, XU Jian. Effects of Piriformospora indica on the Growth and Antioxidant System of Rice Seedlings Under Salt Stress [J]. Chinese Journal OF Rice Science, 2023, 37(5): 543-552. |
[2] | WANG Wenting, MA Jiaying, LI Guangyan, FU Weimeng, LI Hubo, LIN Jie, CHEN Tingting, FENG Baohua, TAO Longxing, FU Guanfu, QIN Yebo. Effect of Different Fertilizer Application Rates on Rice Yield and Quality Formation and Its Relationship with Energy Metabolism at High Temperature [J]. Chinese Journal OF Rice Science, 2023, 37(3): 253-264. |
[3] | ZHOU Zhenling, LIN Bing, ZHOU Qun, YANG Bo, LIU Yan, ZHOU Tianyang, WANG Baoxiang, GU Junfei, XU Dayong, YANG Jianchang. Responses of Rice Varieties Differing in Salt Tolerance to Salt Stress and Their Physiological Mechanisms [J]. Chinese Journal OF Rice Science, 2023, 37(2): 153-165. |
[4] | LIU Shuli, ZHANG Rui, Shahid HUSSAIN, WANG Yang, CHEN Yinglong, WEI Huanhe, HOU Hongyan, DAI Qigen. Research Progress in Alleviating Effects of Exogenous Substances on Salt Stress in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(1): 1-15. |
[5] | WU Mingming, ZENG Wei, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, YE Shenghai. Research Progress in Molecular Mechanism and Breeding Status of Salt Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(6): 551-561. |
[6] | WANG Yang, ZHANG Rui, LIU Yonghao, LI Rongkai, GE Jianfei, DENG Shiwen, ZHANG Xubin, CHEN Yinglong, WEI Huanhe, DAI Qigen. Rice Response to Salt Stress and Research Progress in Salt Tolerance Mechanism [J]. Chinese Journal OF Rice Science, 2022, 36(2): 105-117. |
[7] | LIANG Cheng, XIANG Xunchao, ZHANG Ouling, YOU Hui, XU Liang, CHEN Yongjun. Analyses on Agronomic Traits and Genetic Characteristics of Two New Plant-architecture Lines in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(2): 171-180. |
[8] | Yuxiang LI, Hairong LIN, Qian LIANG, Guodong WANG. Effects of Dopamine Priming on Seed Germination and Seedling Growth of Rice Under Salt Stress [J]. Chinese Journal OF Rice Science, 2021, 35(5): 487-494. |
[9] | Yujun ZHU, Ziwei ZUO, Zhenhua ZHANG, Yeyang FAN. A New Approach for Fine-mapping and Map-based Cloning of Minor-Effect QTL in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(4): 407-414. |
[10] | Kai LU, Tao CHEN, Shu YAO, Wenhua LIANG, Xiaodong WEI, Yadong ZHANG, Cailin WANG. Functional Analysis on Four Receptor-like Protein Kinases Under Salt Stress in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(2): 103-111. |
[11] | Yali ZHENG, Linchuang YU, Xiaoxiao AN, Xinle CHENG, Lijun REN, Zilong SU, Xiaoya ZHENG, Tao LAN. Identification of a Knockout Mutant of OsWOX3B Gene in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2021, 35(2): 112-120. |
[12] | Yiwei KANG, Yuyu CHEN, Yingxin ZHANG. Research Progress and Breeding Prospects of Grain Size Associated Genes in Rice [J]. Chinese Journal OF Rice Science, 2020, 34(6): 479-490. |
[13] | Yanhua CHEN, Yaliang WANG, Defeng ZHU, Qinghua SHI, Huizhe CHEN, Jing XIANG, Yikai ZHANG, Yuping ZHANG. Mechanism of Exogenous Brassinolide in Alleviating High Temperature Injury at Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2019, 33(5): 457-466. |
[14] | Jingfang LI, Yunlu TIAN, Xi LIU, Shijia LIU, Liangming CHEN, Ling JIANG, Wenwei ZHANG, Dayong XU, Yihua WANG, Jianmin WAN. The Guanylate Kinase OsGK1 is Essential for Seed Development in Rice [J]. Chinese Journal OF Rice Science, 2018, 32(5): 415-426. |
[15] | Lixin CUI, Yanan HE, Yaping LI, Xianzhi XIE. Expression Patterns of OsHKT Genes in Rice [J]. Chinese Journal OF Rice Science, 2017, 31(6): 559-567. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||