Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (4): 437-446.DOI: 10.16819/j.1001-7216.2024.230805
• Research Papers • Previous Articles Next Articles
HU Jijie1,2, HU Zhihua3, ZHANG Junhua1, CAO Xiaochuang1, JIN Qianyu1, ZHANG Zhiyuan2, ZHU Lianfeng1,*()
Received:
2023-08-15
Revised:
2024-03-20
Online:
2024-07-10
Published:
2024-07-12
Contact:
*email: zlfnj@163.com
胡继杰1,2, 胡志华3, 张均华1, 曹小闯1, 金千瑜1, 章志远2, 朱练峰1,*()
通讯作者:
*email: zlfnj@163.com
基金资助:
HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage[J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446.
胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.230805
Fig. 2. Effects of rhizosphere saturated dissolved oxygen on rice leaf photosynthetic light response curves Pn, Net photosynthetic rate; PPFD, Photosynthetic photon-quanta flux density.
品种 Variety | 处理 Treatment | 最大净光合速率Pnmax [μmol/(m2·s)] | 表观量子效率 Q (mol/mol) | 光补偿点 LCP [μmol/(m2·s)] | 光饱和点 LSP [μmol/(m2·s)] | 暗呼吸速率 Rd [μmol/(m2·s)] | 曲线曲角 k | R2 |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 26.9±0.7 bc | 0.050±0.001 bc | 30.0±2.0 a | 1676±45 b | 1.68±0.08 a | 0.80±0.02 a | 0.998 |
RSDO | 25.6±0.2 c | 0.047±0.002 c | 29.3±2.3 a | 1723±77 b | 1.51±0.08 a | 0.77±0.02 a | 0.999 | |
IR45765-3B | CK | 28.6±2.4 ab | 0.056±0.003 a | 22.7±2.3 b | 2164±295 a | 1.46±0.13 a | 0.60±0.08 a | 0.997 |
RSDO | 25.6±2.0 c | 0.046±0.005 c | 20.0±6.9 bc | 2413±306 a | 1.05±0.20 b | 0.58±0.24 a | 0.999 | |
中旱221 Zhonghan 221 | CK | 30.8±0.9 a | 0.055±0.001 ab | 17.3±2.3 bc | 2175±313 a | 1.07±0.13 b | 0.65±0.11 a | 0.998 |
RSDO | 30.1±0.6 a | 0.054±0.001 ab | 14.7±2.3 c | 2025±219 ab | 0.87±0.12 b | 0.71±0.08 a | 0.999 |
Table 1. Related photosynthesis parameters of light response curve
品种 Variety | 处理 Treatment | 最大净光合速率Pnmax [μmol/(m2·s)] | 表观量子效率 Q (mol/mol) | 光补偿点 LCP [μmol/(m2·s)] | 光饱和点 LSP [μmol/(m2·s)] | 暗呼吸速率 Rd [μmol/(m2·s)] | 曲线曲角 k | R2 |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 26.9±0.7 bc | 0.050±0.001 bc | 30.0±2.0 a | 1676±45 b | 1.68±0.08 a | 0.80±0.02 a | 0.998 |
RSDO | 25.6±0.2 c | 0.047±0.002 c | 29.3±2.3 a | 1723±77 b | 1.51±0.08 a | 0.77±0.02 a | 0.999 | |
IR45765-3B | CK | 28.6±2.4 ab | 0.056±0.003 a | 22.7±2.3 b | 2164±295 a | 1.46±0.13 a | 0.60±0.08 a | 0.997 |
RSDO | 25.6±2.0 c | 0.046±0.005 c | 20.0±6.9 bc | 2413±306 a | 1.05±0.20 b | 0.58±0.24 a | 0.999 | |
中旱221 Zhonghan 221 | CK | 30.8±0.9 a | 0.055±0.001 ab | 17.3±2.3 bc | 2175±313 a | 1.07±0.13 b | 0.65±0.11 a | 0.998 |
RSDO | 30.1±0.6 a | 0.054±0.001 ab | 14.7±2.3 c | 2025±219 ab | 0.87±0.12 b | 0.71±0.08 a | 0.999 |
品种 Variety | 处理 Treatment | 最大光化学 效率 Fv/Fm | 光下最大光化学 效率 Fv'/Fm' | 实际光化学 效率 ΦPSII | 电子传递 速率 ETR | 非光化学 猝灭 NPQ | 光化学猝灭 系数 qP | 1−qP |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.775±0.012 a | 0.709±0.012 a | 0.655±0.031 ab | 330.3±15.8 ab | 0.386±0.045 b | 0.924±0.034 ab | 0.076±0.034 ab |
RSDO | 0.779±0.003 a | 0.709±0.011 a | 0.637±0.010 ab | 321.2±4.9 ab | 0.405±0.043 ab | 0.899±0.022 b | 0.101±0.022 a | |
IR45765-3B | CK | 0.721±0.012 c | 0.705±0.020 a | 0.664±0.042 a | 334.5±21.0 a | 0.239±0.071 c | 0.941±0.037 ab | 0.059±0.037 ab |
RSDO | 0.735±0.014 b | 0.667±0.020 b | 0.611±0.044 b | 308.2±22.4 b | 0.434±0.110 ab | 0.916±0.047 ab | 0.084±0.047 ab | |
中旱221 Zhonghan 221 | CK | 0.771±0.011 a | 0.669±0.022 b | 0.635±0.026 ab | 320.3±13.0 ab | 0.480±0.103 ab | 0.949±0.025 a | 0.051±0.025 b |
RSDO | 0.773±0.003 a | 0.662±0.025 b | 0.611±0.038 b | 308.0±19.3 b | 0.512±0.089 a | 0.922±0.029 ab | 0.078±0.029 ab |
Table 2. Effects of rhizosphere saturated dissolved oxygen on chlorophyll fluorescence parameters
品种 Variety | 处理 Treatment | 最大光化学 效率 Fv/Fm | 光下最大光化学 效率 Fv'/Fm' | 实际光化学 效率 ΦPSII | 电子传递 速率 ETR | 非光化学 猝灭 NPQ | 光化学猝灭 系数 qP | 1−qP |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.775±0.012 a | 0.709±0.012 a | 0.655±0.031 ab | 330.3±15.8 ab | 0.386±0.045 b | 0.924±0.034 ab | 0.076±0.034 ab |
RSDO | 0.779±0.003 a | 0.709±0.011 a | 0.637±0.010 ab | 321.2±4.9 ab | 0.405±0.043 ab | 0.899±0.022 b | 0.101±0.022 a | |
IR45765-3B | CK | 0.721±0.012 c | 0.705±0.020 a | 0.664±0.042 a | 334.5±21.0 a | 0.239±0.071 c | 0.941±0.037 ab | 0.059±0.037 ab |
RSDO | 0.735±0.014 b | 0.667±0.020 b | 0.611±0.044 b | 308.2±22.4 b | 0.434±0.110 ab | 0.916±0.047 ab | 0.084±0.047 ab | |
中旱221 Zhonghan 221 | CK | 0.771±0.011 a | 0.669±0.022 b | 0.635±0.026 ab | 320.3±13.0 ab | 0.480±0.103 ab | 0.949±0.025 a | 0.051±0.025 b |
RSDO | 0.773±0.003 a | 0.662±0.025 b | 0.611±0.038 b | 308.0±19.3 b | 0.512±0.089 a | 0.922±0.029 ab | 0.078±0.029 ab |
品种 Variety | 处理 Treatment | 呼吸速率Rn (μmol·m−2s−1) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (mmol·m−2s−1) | 气孔导度Gs (mol·m−2s−1) | 水分利用率WUE (μmol/mmol) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 1.07±0.15 b | 423.2±7.6 bc | 0.89±0.24 ab | 0.06±0.02 a | 1.24±0.29 bc |
RSDO | 1.33±0.15 a | 430.4±8.1 ab | 0.89±0.09 ab | 0.06±0.01 a | 1.52±0.34 ab | |
IR45765-3B | CK | 0.74±0.12 c | 409.3±1.7 c | 0.96±0.13 a | 0.06±0.01 a | 0.77±0.07 c |
RSDO | 1.08±0.15 b | 437.9±3.1 ab | 0.59±0.10 b | 0.05±0.01 a | 1.84±0.14 ab | |
中旱221 Zhonghan 221 | CK | 1.29±0.06 ab | 432.1±7.8 ab | 0.64±0.18 ab | 0.05±0.01 a | 2.11±0.60 a |
RSDO | 1.36±0.05 a | 440.7±13.8 a | 0.92±0.19 a | 0.04±0.01 a | 1.52±0.25 ab |
Table 3. Effects of rhizosphere saturated dissolved oxygen on respiration rate of rice leaves at night
品种 Variety | 处理 Treatment | 呼吸速率Rn (μmol·m−2s−1) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (mmol·m−2s−1) | 气孔导度Gs (mol·m−2s−1) | 水分利用率WUE (μmol/mmol) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 1.07±0.15 b | 423.2±7.6 bc | 0.89±0.24 ab | 0.06±0.02 a | 1.24±0.29 bc |
RSDO | 1.33±0.15 a | 430.4±8.1 ab | 0.89±0.09 ab | 0.06±0.01 a | 1.52±0.34 ab | |
IR45765-3B | CK | 0.74±0.12 c | 409.3±1.7 c | 0.96±0.13 a | 0.06±0.01 a | 0.77±0.07 c |
RSDO | 1.08±0.15 b | 437.9±3.1 ab | 0.59±0.10 b | 0.05±0.01 a | 1.84±0.14 ab | |
中旱221 Zhonghan 221 | CK | 1.29±0.06 ab | 432.1±7.8 ab | 0.64±0.18 ab | 0.05±0.01 a | 2.11±0.60 a |
RSDO | 1.36±0.05 a | 440.7±13.8 a | 0.92±0.19 a | 0.04±0.01 a | 1.52±0.25 ab |
品种 Variety | 处理 Treatment | 叶绿素a Chl a(mg/g) | 叶绿素b Chl b(mg/g) | 总叶绿素 Chl a+Chl b(mg/g) | 叶绿素a/叶绿素b Chl a/Chl b | 类胡萝卜素Carotenoid(mg/g) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 2.76±0.07 a | 1.73±0.05 b | 4.49±0.12 b | 1.60±0.02 d | 0.33±0.01 b |
RSDO | 2.58±0.08 c | 1.26±0.08 d | 3.84±0.16 d | 2.05±0.07 b | 0.39±0.01 a | |
IR45765-3B | CK | 2.65±0.03 bc | 1.46±0.04 c | 4.11±0.01 c | 1.81±0.07 c | 0.36±0.02 ab |
RSDO | 2.37±0.03 d | 1.06±0.02 e | 3.43±0.04 e | 2.23±0.04 a | 0.39±0.01 a | |
中旱221 Zhonghan 221 | CK | 2.83±0.05 a | 1.85±0.08 a | 4.68±0.09 a | 1.53±0.08 d | 0.32±0.04 b |
RSDO | 2.75±0.07 ab | 1.72±0.07 b | 4.47±0.03 b | 1.60±0.11 d | 0.33±0.04 b |
Table 4. Effects of rhizosphere saturated dissolved oxygen on photosynthetic pigment contents in rice leaves
品种 Variety | 处理 Treatment | 叶绿素a Chl a(mg/g) | 叶绿素b Chl b(mg/g) | 总叶绿素 Chl a+Chl b(mg/g) | 叶绿素a/叶绿素b Chl a/Chl b | 类胡萝卜素Carotenoid(mg/g) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 2.76±0.07 a | 1.73±0.05 b | 4.49±0.12 b | 1.60±0.02 d | 0.33±0.01 b |
RSDO | 2.58±0.08 c | 1.26±0.08 d | 3.84±0.16 d | 2.05±0.07 b | 0.39±0.01 a | |
IR45765-3B | CK | 2.65±0.03 bc | 1.46±0.04 c | 4.11±0.01 c | 1.81±0.07 c | 0.36±0.02 ab |
RSDO | 2.37±0.03 d | 1.06±0.02 e | 3.43±0.04 e | 2.23±0.04 a | 0.39±0.01 a | |
中旱221 Zhonghan 221 | CK | 2.83±0.05 a | 1.85±0.08 a | 4.68±0.09 a | 1.53±0.08 d | 0.32±0.04 b |
RSDO | 2.75±0.07 ab | 1.72±0.07 b | 4.47±0.03 b | 1.60±0.11 d | 0.33±0.04 b |
Fig. 3. Effects of rhizosphere saturated dissolved oxygen on relative conductivity of rice leaves Common lowercase letters above the bars indicate no significant difference among treatments at the 0.05 level.
品种 Variety | 处理 Treatment | 根Root (g/plant) | 茎Stem (g/plant) | 叶Leaf (g/plant) | 地上部Shoot (g/plant) | 根冠比 Root/shoot ratio | 叶面积指数 Leaf area index |
---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.97±0.06 a | 2.44±0.14 a | 2.27±0.13 a | 4.71±0.25 a | 0.206±0.006 a | 3.71±0.14 a |
RSDO | 0.79±0.09 bc | 2.06±0.31 b | 2.06±0.11 bc | 4.12±0.32 b | 0.192±0.009 ab | 3.36±0.17 bc | |
IR45765-3B | CK | 0.85±0.07 b | 2.37±0.30 ab | 2.21±0.09 ab | 4.58±0.26 a | 0.186±0.019 ab | 3.47±0.13 b |
RSDO | 0.74±0.05 bc | 2.15±0.05 ab | 2.01±0.08 cd | 4.15±0.07 b | 0.17±0.0149 b | 3.24±0.09 c | |
中旱221 Zhonghan 221 | CK | 0.70±0.06 cd | 1.99±0.10 b | 1.85±0.09 de | 3.84±0.18 b | 0.18±0.0082 b | 2.59±0.06 d |
RSDO | 0.65±0.03 d | 2.00±0.29 b | 1.74±0.08 e | 3.75±0.31 b | 0.17±0.004 b | 2.58±0.08 d |
Table 5. Effects of rhizosphere saturated dissolved oxygen on the dry matter weight of rice
品种 Variety | 处理 Treatment | 根Root (g/plant) | 茎Stem (g/plant) | 叶Leaf (g/plant) | 地上部Shoot (g/plant) | 根冠比 Root/shoot ratio | 叶面积指数 Leaf area index |
---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.97±0.06 a | 2.44±0.14 a | 2.27±0.13 a | 4.71±0.25 a | 0.206±0.006 a | 3.71±0.14 a |
RSDO | 0.79±0.09 bc | 2.06±0.31 b | 2.06±0.11 bc | 4.12±0.32 b | 0.192±0.009 ab | 3.36±0.17 bc | |
IR45765-3B | CK | 0.85±0.07 b | 2.37±0.30 ab | 2.21±0.09 ab | 4.58±0.26 a | 0.186±0.019 ab | 3.47±0.13 b |
RSDO | 0.74±0.05 bc | 2.15±0.05 ab | 2.01±0.08 cd | 4.15±0.07 b | 0.17±0.0149 b | 3.24±0.09 c | |
中旱221 Zhonghan 221 | CK | 0.70±0.06 cd | 1.99±0.10 b | 1.85±0.09 de | 3.84±0.18 b | 0.18±0.0082 b | 2.59±0.06 d |
RSDO | 0.65±0.03 d | 2.00±0.29 b | 1.74±0.08 e | 3.75±0.31 b | 0.17±0.004 b | 2.58±0.08 d |
Fig. 4. Correlation analysis between agronomic traits and photosynthetic characteristics of rice at two dissolved oxygen concentrations DOr, Dissolved oxygen concentration; LAI, Leaf area index; DMS, Dry matter of shoot; Chl, Chlorophyll content; Rn, Nighttime respiration rate; Fv′/Fm′, Maximal photochemical efficiency; ΦPSII, Actual photochemical efficiency; NPQ, Non-photochemical quenching; Pnmax, Maximum net photosynthetic rate; * and ** indicate significant difference at 0.05 and 0.01 level respectively.
[1] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. |
National Bureau of Statistics. China Statistical Yearbook[M]. Bejing: China Statistics Press, 2019. (in Chinese) | |
[2] | 柴娟娟, 廖敏, 徐培智, 解开治, 徐昌绪, 刘光荣, 杨生茂. 我国主要低产水稻冷浸田养分障碍因子特征分析[J]. 水土保持学报, 2012, 26(2): 284-288. |
Chai J J, Liao M, Xu P Z, Xie K Z, Xu C X, Liu G R, Yang S M. Feature analysis on nutrient’s restrictive factors of major low productive waterlogged paddy soil in China[J]. Journal of Soil and Water Conservation, 2012, 26(2): 284-288. (in Chinese with English abstract) | |
[3] | Liu Y X, Lu H H, Yang S M, Wang Y F. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161-167. |
[4] | Yamauchi T, Shimamura S, Nakazono M, Mochizuki T. Aerenchyma formation in crop species: A review[J]. Field Crops Research, 2013, 152(10): 8-16. |
[5] | Perata P, Armstrong W, Voesenek L A C J. Plants and flooding stress[J]. New Phytologist, 2011, 190(2): 269-273. |
[6] | Limami A M, Diab H, Lothier J. Nitrogen metabolism in plants under low oxygen stress[J]. Planta, 2014, 239(3): 531-541. |
[7] | Panda D, Barik J. Flooding Tolerance in rice: Focus on mechanisms and approaches[J]. Rice Science, 2021, 28(1): 43-57. |
[8] | Yamauchi M, Chuong P V. Rice seedling establishment as affected by cultivar, seed coating with calcium peroxide, sowing depth, and water level[J]. Field Crops Research, 1995, 41(2): 123-134. |
[9] | 胡志华, 朱练峰, 林育炯, 张均华, 胡继杰, 禹盛苗, 曹小闯, 金千瑜. 根部增氧模式对水稻产量与氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1503-1512. |
Hu Z H, Zhu L F, Lin Y J, Zhang J H, Hu J J, Yu S M, Cao X C, Jin Q Y. Effect of root aeration methods on rice yield and nitrogen utilization[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1503-1512. (in Chinese with English abstract) | |
[10] | 赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征[J]. 作物学报, 2010, 36(2): 303-312. |
Zhao F, Wang D Y, Xu C M, Zhang W J, Li F B, Mao H J, Zhang X F. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere[J]. Acta Agronomica Sinica, 2010, 36(2): 303-312. (in Chinese with English abstract) | |
[11] | Zhu L F, Yu S M, Jin Q Y. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice[J]. Rice Science, 2012, 19(1): 44-48. |
[12] | 徐春梅, 谢涛, 王丹英, 陈松, 计成林, 章秀福, 石庆华. 根际氧浓度对水稻分蘖期养分吸收和根系形态的影响[J]. 中国水稻科学, 2015, 29(6): 619-627. |
Xu C M, Xie T, Wang D Y, Chen S, Ji C L, Zhang X F, Shi Q H. Effects of rhizosphere oxygen concentration on nutrient uptake and root morphology of rice at tillering stage[J]. Chinese Journal of Rice Science, 2015, 29(6): 619-627. (in Chinese with English abstract) | |
[13] | 周晚来, 易永健, 屠乃美, 谭志坚, 汪洪鹰, 杨媛茹, 王朝云, 易镇邪. 根际增氧对水稻根系形态和生理影响的研究进展[J]. 中国生态农业学报, 2018, 26(3): 367-376. |
Zhou W L, Yi Y J, Tu N M, Tan Z J, Wang H Y, Yang N R, Wang C Y, Yi Z X. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367-376. (in Chinese with English abstract) | |
[14] | Kronzucker H J, Siddiqi M Y, Glass A D M, Kirk G J D,. Effects of hypoxia on 13NH4+ fluxes in rice roots. Kinetics and compartmental analysis[J]. Plant Physiology, 1998, 116(2): 581-587. |
[15] | 赵锋, 张卫建, 章秀福, 王丹英, 徐春梅. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响[J]. 作物学报, 2012, 38(2): 344-351. |
Zhao F, Zhang W J, Zhang X F, Wang D Y, Xu C M. Effect of continuous aeration on growth and activity of enzymes related to nitrogen metabolism of different rice genotypes at tillering stage[J]. Acta Agronomica sinica, 2012, 38(2): 344-351. (in Chinese with English abstract) | |
[16] | 胡志华, 朱练峰, 林育炯, 胡继杰, 张均华, 金千瑜. 根际氧浓度对水稻产量及其氮素利用的影响[J]. 中国水稻科学, 2015, 29(4): 382-389. |
Hu Z H, Zhu L F, Lin Y J, Hu J J, Zhang J H, Jin Q Y. Effects of rhizosphere oxygen concentration on rice grain yield and nitrogen utilization[J]. Chinese Journal of Rice Science, 2015, 29(4): 382-389. (in Chinese with English abstract) | |
[17] | Farquhar G D, Caemmerers S, Berry A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90. |
[18] | 叶子飘, 于强. 光合作用光响应模型的比较[J], 植物生态学报, 2008, 32(6): 1356-1361. |
Ye Z P, Yu Q. Comparison of new and several classical models of photosynthesis in response to irradiance[J]. Chinese Journal of Plant Ecology, 2008, 32(6): 1356-1361. (in Chinese with English abstract) | |
[19] | 彭丽丽, 姜卫兵, 韩健, 王明玉, 张斌斌, 马瑞娟. 不同呈色早熟桃叶片夜间呼吸速率的影响因素[J]. 江苏农业学报, 2013, 29(5): 1131-1135. |
Peng L L, Jiang W B, Han J, Wang M Y, Zhang B B, Ma R J. Factors affecting night respiration of early-maturing peach leaf coloring differently[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(5): 1131-1135. (in Chinese with English abstract) | |
[20] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
Li H S. The Experiment Principle and Technique on Plant Physiology and Biochemistry[M]. Beijing: Higher Education Press, 2000. (in Chinese). | |
[21] | Xu C M, Chen L P, Chen S, Chu G, Wang D Y, Zhang X F. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice[J]. Annals of Applied Biology, 2020, 177(1): 61-73. |
[22] | 赵霞, 徐春梅, 王丹英, 陈松, 陶龙兴, 章秀福. 根际溶氧量对分蘖期水稻生长特性及其氮素代谢的影响[J]. 中国农业科学, 2015, 48(18): 3733-3742. |
Zhao X, Xu C M, Wang D Y, Chen S, Tao L X, Zhang X F. Effect of rhizosphere oxygen on the growth characteristics of rice and its nitrogen metabolism at tillering stage[J]. Scientia Agricultura Sinica, 2015, 48(18): 3733-3742. (in Chinese with English abstract) | |
[23] | Stirbet A, Lazár D, Kromdijk J, Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses[J]? Photosynthetica, 2018, 56(1): 86-104. |
[24] | 段骅, 佟卉, 刘燕清, 许庆芬, 马骏, 王春敏. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2019, 33(3): 206-218. |
Duan H, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research advances in the effect of heat and drought on rice and its mechanism[J]. Chinese Journal of Rice Science, 2019, 33(3): 206-218. (in Chinese with English abstract) | |
[25] | Sun C X, Gao X X, Fu J Q, Zhou J H, Wu X F. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress[J]. Plant and Soil, 2015, 388(1-2): 99-117. |
[26] | Cal A J, Sanciangco M, Rebolledo M C, Luquet D, Torres R O, McNally K L, Henry A. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought[J]. Plant, Cell and Environment, 2019, 42(5): 1532-1544. |
[27] | 郑小兰, 侯亚兵, 王瑞娇, 赵群法, 王媛媛, 孙治强. 根际氧浓度对番茄幼苗生长发育的影响[J]. 华北农学报, 2017, 32(4): 208-214. |
Zheng X L, Hou Y B, Wang R J, Zhao Q F, Wang Y Y, Sun Z Q. Effects of oxygen concentration in rhizosphere on the growth of tomato seedings[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 208-214. (in Chinese with English abstract) | |
[28] | 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯, 刘守坎, 金千瑜, 朱练峰. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响[J]. 中国农业科学, 2021, 54(7): 1525-1536. |
Hu J J, Zhong C, Hu Z H, Zhang J H, Cao X C, Liu S K, Jin Q Y, Zhu L F. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristics of rice[J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536. (in Chinese with English abstract) | |
[29] | Liu J, Hasanuzzaman M, Sun H Z, Zhang J, Peng T, Sun H W, Xin Z Y, Zhao Q Z. Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia[J]. Environmental and Experimental Botany, 2019, 169: 103916. |
[30] | Cheng X Y, Wang M, Zhang C F, Wang S Q, Chen Z H. Relationships between plant photosynthesis, radial oxygen loss and nutrient removal in constructed wetland microcosms[J]. Biochemical Systematics and Ecology, 2014, 54: 299-306. |
[31] | Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water Rice(Oryza sativa L.)[J]. Annals of Botany, 2003, 91(2): 301-309. |
[32] | Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biology, 2004, 7(3): 235-246. |
[33] | 杨虎, 戈长水, 应武, 杨京平, 李金文, 何俊俊. 遮荫对水稻冠层叶片SPAD值及光合、形态特性参数的影响[J]. 植物营养与肥料学报, 2014, 20(3): 580-587. |
Yang H, Ge C S, Ying W, Yang J P, Li J W, He J J. Effect of shading on leaf SPAD values and the characteristics of photosynthesis and morphology of rice canopy[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 580-587. (in Chinese with English abstract) | |
[34] | Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, RÖdenbeck C, Arain M A, Baldocchi D, Bonan G B, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson K W, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward F I, Papale D. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science, 2010, 329(5993): 834-838. |
[35] | Thakur A K, Mandal K G, Mohanty R K, Ambast S K. Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management[J]. Agricultural Water Management, 2018, 206: 67-77. |
[36] | Yamane K, Kawasaki M, Taniguchi M, Miyake H. Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity[J]. Plant Production Science, 2008, 11(1): 139-145. |
[37] | 乔媛, 殷红, 李虎, 杨振兴, 高敏. 增强UV-B辐射对水稻叶绿素荧光特性的影响[J]. 华北农学报, 2014, 29(2): 146-151. |
Qiao Y, Yin H, Li H, Yang Z X, Gao M. Influence of enhanced UV-B radiation on chlorophyll fluorescence characteristics of rice[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 146-151. (in Chinese with English abstract) | |
[38] | Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, Lukasik I, Goltsev V, Ladle R J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38: 102. |
[39] | 褚润, 陈年来. UV-B辐射增强对芦苇叶绿素荧光参数的影响[J]. 环境科学学报, 2018, 38(8): 3375-3382. |
Chu R, Chen N L. Effects of enhanced UV-B radiation on chlorophyll fluorescence characteristics of Phragmites australis[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3375-3382. (in Chinese with English abstract) | |
[40] | Pompeiano A, Landi M, Meloni G, Vita F, Guglielminetti L, Guidi L. Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L. in responses to salinity stress[J]. Plant Biosystems, 2017, 151: 613-622. |
[1] |
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan.
Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] |
XU Yongqiang XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu.
Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] |
YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming.
Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||