Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (5): 495-506.DOI: 10.16819/j.1001-7216.2024.231107
• Reviews and Special Topics • Previous Articles Next Articles
XU Yongqiang1,#, XU Jun2,#, FENG Baohua1, XIAO Jingjing3, WANG Danying1, ZENG Yuxiang1, FU Guanfu1,*()
Received:
2023-11-10
Revised:
2024-05-27
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email:fuguanfu@caas.cn
About author:
#These authors contributed equally to this work
许用强1,#, 徐军2,#, 奉保华1, 肖晶晶3, 王丹英1, 曾宇翔1, 符冠富1,*()
通讯作者:
*email:fuguanfu@caas.cn
作者简介:
#共同第一作者
基金资助:
XU Yongqiang, XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu. Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress[J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506.
许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.231107
Fig. 1. Descriptive model of signal transduction and energy metabolism involving in pollen tube growth in pistil of rice and its response to abiotic stress The growth of pollen tubes in the pistil of rice is regulated by both signaling molecules such as Ca2+,ROS,and IAA as well as the energetic substances including sucrose, lipids, and ATP. The cell wall reconstruction, actin cytoskeleton construction, endocytosis and exocytosis play key roles in pollen tube growth, which is a high-energy consuming process. The signaling molecules such as Ca2+,ROS,and IAA are mainly responsible for guiding the pollen tube toward the ovule, with RALF genes playing a role in maintaining pollen tube integrity. However, both signaling molecules and energy metabolism can be disrupted by abiotic stresses such as heat, drought, cold and heavy metals, leading to the inhibition of pollen tube growth and inducing spikelet sterility
[1] | Shi J, An G, Weber A P M, Zhang D. Prospects for rice in 2050[J]. Plant, Cell and Environment, 2023, 46(4): 1037-1045. |
[2] | 朱凤霞, 刘博, 陈渠玲, 易继中, 张源泉, 甘平洋, 陈昌勇, 周涛. 米制主食产品发展现状及思路[J]. 农产品加工, 2020(21): 104-107. |
Zhu F X, Liu B, Chen Q L, Yi J Z, Zhang Y Q, Gan P Y, Chen C Y, Zhou T. Development status and trend of rice staple products[J]. Farm Products Processing, 2020(21): 104-107. (in Chinese) | |
[3] | Yuan S, Linquist B A, Wilson L T, Cassman K G, Stuart A M, Pede V, Miro B, Saito K, Agustiani N, Aristya V E, Krisnadi L Y, Zanon A J, Heinemann A B, Carracelas G, Subash N, Brahmanand P S, Li T, Peng S, Grassini P. Sustainable intensification for a larger global rice bowl[J]. Nature Communications, 2021, 12(1): 7163. |
[4] | Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[5] | Perkins-Kirkpatrick S E, Lewis S C. Increasing trends in regional heatwaves[J]. Nature Communications, 2020, 11(1): 3357. |
[6] | Chen J, Xu Y, Fei K, Wang R, He J, Fu L, Shao S, Li K, Zhu K, Zhang W, Wang Z, Yang J. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines[J]. Scientific Reports, 2020, 10(1): 2210. |
[7] | 段骅, 佟卉, 刘燕清, 许庆芬, 马骏, 王春敏. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2019, 33(3): 206-218. |
Duan Y, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research Advances in the Effect of Heat and Drought on Rice and Its Mechanism[J]. Chinese Journal of Rice Science, 2019, 33(3): 206-218. (in Chinese with English abstract) | |
[8] | Gerona M E B, Deocampo M P, Egdane J, Ismail A, Dionisio-Sese M. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage[J]. Rice Science, 2019, 26(04): 207-219. |
[9] | Matsui T, Hasegawa T. Effect of long anther dehiscence on seed set at high temperatures during flowering in rice[J]. Scientific Reports, 2019, 9(1): 20363. |
[10] | Shi W, Li X, Schmidt R C, Struik P C, Yin X, Jagadish S V K. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice[J]. Plant, Cell and Environment, 2018, 41(6): 1287-1297. |
[11] | Prasad P V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J]. Field Crops Research, 2006, 95: 398-411. |
[12] | Rottmann T, Fritz C, Sauer N, Stadler R. Glucose Uptake via STP Transporters Inhibits in Vitro Pollen Tube Growth in a HEXOKINASE1-Dependent Manner in Arabidopsis thaliana[J]. The Plant Cell, 2018, 30(9): 2057-2081. |
[13] | Seitz J, Reimann T M, Fritz C, Schröder C, Knab J, Weber W, Stadler R. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth[J]. Frontiers in Plant Science, 2023, 14:1063765. |
[14] | Wang Y, Lü X, Sheng D, Hou X, Mandal S, Liu X, Zhang P, Shen S, Wang P, Krishna Jagadish S V, Huang S. Heat-dependent postpollination limitations on maize pollen tube growth and kernel sterility[J]. Plant Cell Environment, 2023, 46(12): 3822-3838. |
[15] | Li R L, Shen J H, Jia Y, Li W, Wang L M. Fertilization process in sorghum and its performance time for each stage[J]. Acta Agronomica Sinica, 2009, 35(12): 2234. |
[16] | Jagadish S V K, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2010, 61(1): 143-156. |
[17] | 陈士强. 关于稻麦花粉管伸长和极核受精过程的研究[D]. 扬州: 扬州大学, 2007. |
Chen S Q. Studies of pollen tube growth and polar nucleus fertilization of rice, wheat and barley[D]. Yangzhou: Yangzhou University, 2007. (in Chinese with English abstract) | |
[18] | Stewman S F, Jones-Rhoades M, Bhimalapuram P, Tchernookov M, Preuss D, Dinner A R. Mechanistic insights from a quantitative analysis of pollen tube guidance[J]. BMC Plant Biology, 2010, 10: 32. |
[19] | Johnson M A, Harper J F, Palanivelu R. Pollen tube navigation from germination to fertilization[J]. Annual Review of Plant Biology, 2019, 70(1): 809-837. |
[20] | Scheible N, McCubbin A. Signaling in pollen tube growth: beyond the tip of the polarity iceberg[J]. Plants (Basel, Switzerland), 2019, 8(6): 156. |
[21] | Hoffmann R D, Portes M T, Olsen L I, Damineli D S C, Hayashi M, Nunes C O, Pedersen J T, Lima P T, Campos C, Feijó J A, Palmgren M. Plasma membrane H+-ATPases sustain pollen tube growth and fertilization[J]. Nature Communications, 2020, 11(1): 2395. |
[22] | Kim Y J, Kim M H, Hong W J, Moon S, Kim S T, Park S K, Jung K H. OsMTD2-mediated reactive oxygen species (ROS) balance is essential for intact pollen tube elongation in rice[J]. The Plant Journal, 2021, 107(4): 1131-1147. |
[23] | Hernández M L, Lima-Cabello E, Alché J D, Martínez-Rivas J M, Castro A J. Lipid composition and associated gene expression patterns during pollen germination and pollen tube growth in olive (Olea europaea L.)[J]. Plant Cell Physiology, 2020, 61(7): 1348-1364. |
[24] | Chebli Y, Geitmann A. FRAP experiments show pectatelyases promote pollen germination and lubricate the path of the pollen tube in Arabidopsis thaliana[J]. Microscopy and Microanalysis, 2018, 24(S1): 1376-1377. |
[25] | Cascallares M, Setzes N, Marchetti F, López G A, Distéfano A M, Cainzos M, Zabaleta E, Pagnussat G C. A complex journey: cell wall remodeling, interactions, and integrity during pollen tube growth[J]. Frontiers in Plant Science, 2020, 11: 599247. |
[26] | Zhou X, Lu J, Zhang Y, Guo J, Lin W, Van Norman J M, Qin Y, Zhu X, Yang Z. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil[J]. Developmental Cell, 2021, 56(7): 1030-1042.e6. |
[27] | Scheible N, Henning P M, McCubbin A G. Calmodulin-Domain protein kinase PiCDPK1 interacts with the 14-3-3-like protein NtGF14 to modulate pollen tube growth[J]. Plants (Basel, Switzerland), 2024, 13(3): 451. |
[28] | Yang N, Wang T. Comparative proteomic analysis reveals a dynamic pollen plasma membrane protein map and the membrane landscape of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils in rice[J]. BMC Plant Biology, 2017, 17(1): 2. |
[29] | Chen D, Zhao J. Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum[J]. Physiologia Plantarum, 2008, 134(1): 202. |
[30] | Wu J Z, Lin Y, Zhang X L, Pang D W, Zhao J. IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri[J]. Journal of Experimental Botany, 2008, 59(9): 2529-2543. |
[31] | He S L, Hsieh H L, Jauh G Y. SMALL AUXIN UP RNA62/75 are required for the translation of transcripts essential for pollen tube growth[J]. Plant Physiology, 2018, 178(2): 626-640. |
[32] | 卢鑫蕊, 沈绍琴, 常雅薇, 周利明. 钙传感器调控花粉管生长的研究进展[J]. 分子植物育种, 2022, 20(7): 2320-2325. |
Lu X R, Shen S Q, Chang Y W, Zhou L M. Research progress of calcium sensor regulating pollen tube growth[J]. Molecular Plant Breeding, 2022, 20(7): 2320-2325. (in Chinese with English abstract) | |
[33] | 龙涛, 张伟伟, 张卿, 邢宇, 曹庆芹, 秦岭, 房克凤. Ca2+螯合剂乙二醇二乙醚二胺四乙酸对板栗花粉管发育的影响[J]. 北京农学院学报, 2022, 37(3): 31-37. |
Long T, Zhang W W, Zhang Q, Xing Y, Cao Q Q, Qin L, Fang K F. Effect of Ca2+ chelating agent ethylene glycol tetraacetic acid on pollen tube development of Castanea mollissima[J]. Journal of Beijing University of Agriculture, 2022, 37(3): 31-37. (in Chinese with English abstract) | |
[34] | Liu P, Li R L, Zhang L, Wang Q L, Niehaus K, Baluska F, Samaj J, Lin J X. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth[J]. Plant Journal, 2009, 60(2): 303-313. |
[35] | Ge Z, Cheung A Y, Qu L J. Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface[J]. New Phytologist, 2019, 222(2): 687-693. |
[36] | Kaya H, Nakajima R, Iwano M, Kanaoka M M, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth[J]. Plant Cell, 2014, 26(3): 1069. |
[37] | Do T H T, Choi H, Palmgren M, Martinoia E, Hwang J U, Lee Y. Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25): 12540-12549. |
[38] | Fu Y. The actin cytoskeleton and signaling network during pollen tube tip growth[J]. Journal of Integrative Plant Biology, 2010, 52(2): 131-137. |
[39] | Potocký M, Jones M A, Bezvoda R, Smirnoff N, Žárský V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth[J]. New Phytologist, 2007, 174(4): 742-751. |
[40] | Kou X, Liu Q, Sun Y, Wang P, Zhang S, Wu J. The peptide PbrPSK2 from Phytosulfokine family induces reactive oxygen species (ROS) production to regulate pear pollen tube growth[J]. Frontiers in Plant Science, 2020, 11: 601993. |
[41] | Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I. MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain[J]. The Plant Cell, 2017, 29(12): 3030-3050. |
[42] | 张鹏, 张文超. 花粉萌发与花粉管生长的信号调控机制[J]. 广东农业科学, 2013, 40(5): 138-141. |
Zhang P, Zhang W C. Signal regulation mechanism of pollen germination and pollen tube growth[J]. Guangdong Agricultural Sciences, 2013, 40(5): 138-141. (in Chinese with English abstract) | |
[43] | Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M. C, Luo X, Ruan H, García-Valencia L E, Zhong S, Hou S, Huang Q, Lai L, Moura D S, Gu H, Dong J, Wu H M, Dresselhaus T, Xiao J, Cheung A Y, Qu L J. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling[J]. Science, 2017, 358(6370): 1596-1600. |
[44] | Li H X, Yang Y, Zhang H K, Li C Y, Du P Z, Bi M M, Chen T, Qian D, Niu Y, Ren H Y, An L Z, Xiang Y. The Arabidopsis GPI-anchored protein COBL11 is necessary for regulating pollen tube integrity[J]. Cell Reports, 2023, 42(11): 113353. |
[45] | Gao Q, Wang C, Xi Y, Shao Q, Hou C, Li L, Luan S. RALF signaling pathway activates MLO calcium channels to maintain pollen tube integrity[J]. Cell Research, 2023, 33(1): 71-79. |
[46] | Gao Q, Wang C, Xi Y, Shao Q, Li L, Luan S. A. Receptor-channel trio conducts Ca2+ signaling for pollen tube reception[J]. Nature, 2022, 607(7919): 534-539. |
[47] | Kim E J, Kim J H, Hong W J, Kim E Y, Kim M H, Lee S K, Min C W, Kim S T, Park S K, Jung K H, Kim Y J. Rice pollen-specific OsRALF17 and OsRALF19 are essential for pollen tube growth[J]. Journal of Integrative Plant Biology, 2023, 10.1111. |
[48] | Duan Q, Liu M C J, Kita D, Jordan S S, Yeh F L J, Yvon R, Carpenter H, Federico A N, Carcia-Valencia L E, Eyles S J, Wang C S, Wu H M, Cheung A Y. FERONIA controls pectin- and nitric oxide-mediated male-female interaction[J]. Nature, 2020, 579(7800): 561-566. |
[49] | Rounds C M, Winship L J, Hepler P K. Pollen tube energetics: Respiration, fermentation and the race to the ovule[J]. AoB Plants, 2011(S1): plr019. DOI:10.1093/aobpla/plr019 |
[50] | 王忠. 水稻的开花与结实:水稻生殖器官发育图谱[M]. 北京: 科学出版社, 2015: 183. |
Wang Z. Flowering and Fruiting of Rice: A Map of Reproductive Organ Development in Rice[M]. Beijing: Science Press, 2015: 183. (in Chinese) | |
[51] | Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function[J]. Journal of Integrative Plant Biology, 2021, 63(1): 241-250. |
[52] | Cai G, Parrotta L, Cresti M. Organelle trafficking, the cytoskeleton, and pollen tube growth[J]. Journal of Integrative Plant Biology, 2015, 57(1): 63-78. |
[53] | Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein analysis of pollen tubes after the treatments of membrane trafficking inhibitors gains insights on molecular mechanism underlying pollen tube polar growth[J]. Protein Journal, 2021, 40(2): 205-222. |
[54] | Liu J, Lim S L, Zhong J Y, Lim B L. Bioenergetics of pollen tube growth in Arabidopsis thaliana revealed by ratiometric genetically encoded biosensors[J]. Nature Communications, 2022, 13(1): 7822. |
[55] | De Block M, van Lijsebettens M. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity[J]. Current Opinion in Plant Biology, 2011, 14(3): 275-282. |
[56] | Falhof J, Pedersen J T, Fuglsang A T, Palmgren M. Plasma membrane H(+)-ATPase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3): 323-337. |
[57] | Li Y, Zeng H, Xu F, Yan F, Xu W. H+-ATPases in plant growth and stress responses[J]. Annual Review of Plant Biology, 2022, 73: 495-521. |
[58] | Zhang M, Wang Y, Chen X, Xu F, Ding M, Ye W, Kawai Y, Toda Y, Hayashi Y, Suzuki T, Zeng H, Xiao L, Xiao X, Xu J, Guo S, Yan F, Shen Q, Xu G, Kinoshita T, Zhu Y. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis[J]. Nature Communications, 2021, 12(1): 735. |
[59] | Lang V, Pertl-Obermeyer H, Safiarian M J, Obermeyer G. Pump up the volume: A central role for the plasma membrane H(+) pump in pollen germination and tube growth[J]. Protoplasma, 2014, 251(3): 477-488. |
[60] | Hoffmann R D, Portes M T, Olsen L I, Damineli D S C, Hayashi M, Nunes C O, Pedersen J T, Lima P T, Campos C, Feijó J A, Palmgren M. Plasma membrane H+-ATPases sustain pollen tube growth and fertilization[J]. Nature Communications, 2020, 11(1): 2395. |
[61] | Chen W, Jia P F, Yang W C, Li H J. Plasma membrane H+-ATPases-mediated cytosolic proton gradient regulates pollen tube growth[J]. Journal of Integrative Plant Biology, 2020, 62(12): 1817-1822. |
[62] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
Xu Y Q, Jiang N, Feng B H, Xiao J J, Tao L X, Fu G F. Research progress in mechanism behind heat damage and its regulatory techniques during flowering in rice[J]. Chinese Journal of Rice Science, 2024, 38(2): 111-126. (in Chinese with English abstract) | |
[63] | Zhang C X, Li G Y, Chen T T, Feng B B, Fu W M, Yan J X, Islam M R, Jin Q Y, Tao L X, Fu G F. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils[J]. Rice, 2018, 11(1): 14. |
[64] | 徐坤. 高温对梨花粉萌发及生长的影响[D]. 南京: 南京农业大学, 2015. |
Xu K. The effect of high temperature on pollen germination and tube growth of pera[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract) | |
[65] | Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes[J]. Planta, 2016, 243(1): 43-63. |
[66] | Muhlemann J K, Younts T L, Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): E11188-E11197. |
[67] | Jiang N, Yu P H, Fu W M, Li G Y, Feng B H, Chen T T, Li H B, Tao L X, Fu G F. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets[J]. Plant Cell Environment, 2020, 43(5): 1273-1287. |
[68] | Wagner J, Gastl E, Kogler M, Scheiber M. Cold Tolerance of the male gametophyte during germination and tube growth depends on the flowering time[J]. Plants (Basel), 2016, 6(1): 2. |
[69] | Qian D, Li T, Chen S Y, Wan D S, He Y X, Zheng C, Li J J, Sun Z P, Li J J, Sun J X, Niu Y Z, Li H X, Wang M X, Niu Y, Yang Y, An Z L, Xiang Y. Evolution of the thermostability of actin-depolymerizing factors enhances the adaptation of pollen germination to high temperature[J]. Plant Cell, 2024, 36(4): 881-898. |
[70] | Zeng Y H, Zhang Y P, Xiang J, Uphoff N T, Pan X H, Zhu D F. Effects of low temperature stress on spikelet-related parameters during anthesis in indica-japonica hybrid rice[J]. Frontiers in Plant Science, 2017, 8: 1350. |
[71] | Coast O, Murdoch A J, Ellis R H, Hay F R, Jagadish K S. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress[J]. Plant Cell Environment, 2016, 39(1): 26-37. |
[72] | Shimono H, Abe A, Aoki N, Koumoto T, Sato M, Yokoi S, Kuroda E, Endo T, Saeki K I, Nagano K. Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice[J]. Plant Physiology, 2016, 157(2): 175-192. |
[73] | Preston J C, Fjellheim S. Flowering time runs hot and cold[J]. Plant Physiology, 2022, 190(1): 5-18. |
[74] | Usman B, Derakhshani B, Jung K H. Recent molecular aspects and integrated omics strategies for understanding the abiotic stress tolerance of rice[J]. Plants (Basel), 2023, 12(10): 2019. |
[75] | 刘次桃, 王威, 毛毕刚, 储成才, 张红生. 水稻耐低温逆境研究: 分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
Liu C T, Wang W, Mao B G, Chu C C, Zhang H S. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects[J]. Hereditas(Beijing), 2018, 40(3): 171-185. (in Chinese with English abstract) | |
[76] | Wu J Y, Jin C, Qu H Y, Tao S T, Xu G H, Wu J, Wu H Q, Zhang S L. Low temperature inhibits pollen viability by alteration of actin cytoskeleton and regulation of pollen plasma membrane ion channels in Pyrus pyrifolia[J]. Environmental and Experimental Botany, 2012, 78(none), 70-75. |
[77] | Gao Y B, Wang C L, Wu J Y, Zhou H S, Jiang X T, Wu J, Zhang S. Low temperature inhibits pollen tube growth by disruption of both tip-localized reactive oxygen species and endocytosis in Pyrus bretschneideri Rehd[J]. Plant Physiology and Biochemistry, 2014, 74C, 255-262. |
[78] | Wang W D, Sheng X Y, Shu Z F, Li D Q, Pan J T, Ye X L, Chang P P, Li X H, Wang Y H. Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth[J]. Frontiers in Plant Science, 2016, 7(342): 456. |
[79] | Parrotta L, Faleri C, Guerriero G, Cai G. Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes[J]. Plant Science, 2019, 283: 329-342. |
[80] | Çetinbaş-Genç A, Cai G, Del Duca S. Treatment with spermidine alleviates the effects of concomitantly applied cold stress by modulating Ca2+, pH and ROS homeostasis, actin filament organization and cell wall deposition in pollen tubes of Camellia sinensis[J]. Plant Physiology and Biochemistry, 2020, 156: 578-590. |
[81] | Gad A G, Habiba, Zheng X Z, Miao Y. Low light/darkness as stressors of multifactor-induced senescence in rice plants[J]. International Journal of Molecular Sciences, 2021, 22(8): 3936. |
[82] | Deng F, Zeng Y, Li Q, He C, Li B, Zhu Y, Zhu X, Yang F, Zhong X, Wang L. Decreased anther dehiscence contributes to a lower fertilization rate of rice subjected to shading stress[J]. Field Crops Research, 2021, 273: 108291. |
[83] | Li H B, Feng B H, Li J C, Fu W M, Wang W T, Chen T T, Liu L M, Wu Z H, Peng S B, Tao L X, Fu G F. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy[J]. Plant Cell Environment, 2023, 46(4): 1363-1383. |
[84] | Cantagallo J E, Medan D, Hall A J. Grain number in sunflower as affected by shading during floret growth, anthesis and grain setting[J]. Field Crops Research, 2004, 85(2-3): 191-202. |
[85] | Campbell A W, Griffin W B, Burritt D J, Conner A J. The importance of light intensity for pollen tube growth and embryo survival in wheat × maize crosses[J]. Annals of Botany, 2001(4): 517-522. |
[86] | Fu G F, Song J, Xiong J, Li Y R, Tao L X. Changes of oxidative stress and soluble sugar in anthers involve in rice pollen abortion under drought stress[J]. Agricultural Sciences in China, 2011, 10(7): 1016-1025. |
[87] | Chen T T, Feng B H, Fu W M, Zhang C X, Fu G F. Nodes protect against drought stress in rice (Oryza sativa) by mediating hydraulic conductance[J]. Environmental and Experimental Botany, 2018, 155: 411-419. |
[88] | Hu W, Liu Y, Loka D A, Zahoor R, Wang S S, Zhou Z G. Drought limits pollen tube growth rate by altering carbohydrate metabolism in cotton (Gossypium hirsutum) pistils[J]. Plant Science, 2019, 286: 108-117. |
[89] | Li Y Q, Zhang H Q, Pierson E S, Huang F Y, Linskens H F, Hepler P K, Cresti M. Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes[J]. Planta, 1996, 200, 41-49. |
[90] | Biagini G, Faleri C, Cresti M, Cai G. Sucrose concentration in the growth medium affects the cell wall composition of tobacco pollen tubes[J]. Plant Reproduction, 2014, 27(3): 129-144. |
[91] | González M V, Coque M, Herrero M. Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae)[J]. American Journal of Botany, 1996, 83(2): 148-154. |
[92] | Fu G F, Song J, Li Y R, Yue M K, Xiong J, Tao L X. Alterations of panicle antioxidant metabolism and carbohydrate content and pistil water potential involved in spikelet sterility in rice under water-deficit stress[J]. Rice Science, 2010, 17(4): 303-310. |
[93] | Hu W, Liu Y, Loka D A, Zahoor R, Wang S, Zhou Z. Drought limits pollen tube growth rate by altering carbohydrate metabolism in cotton (Gossypium hirsutum) pistils[J]. Plant Science, 2019, 286: 108-117. |
[94] | Xiang M T, Li Y, Yang J Y, Lei K G, Li Y, Li F, Zheng D F, Fang X Q, Cao Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops[J]. Environmental Pollution, 2021, 278(2): 116911. |
[95] | Mesnoua M, Roumani M, Mizab O, Zeguerrou R. Heavy metals differentially affect date palm pollen germination and tube elongation[J]. Italus Hortus, 2020, 27(3): 64-71. |
[96] | Wang X X, Zhang S S, Gao Y, Lü W G, Sheng X Y. Different heavy metals have various effects on Picea wilsonii pollen germination and tube growth[J]. Plant Signaling & Behavior, 2015, 10(4): e989015. |
[97] | Sawidis T, Reiss H D. Effects of heavy metals on pollen tube growth and ultrastructure[J]. Protoplasma, 1995, 185: 113-122. |
[98] | Wang X X, Gao Y, Feng Y, Li X, Wei Q, Sheng X Y. Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth[J]. PLoS One, 2014, 9(4): e94721. |
[99] | Liu X Y, Xiao Y L, Zi J, Yan J, Li C H, Du C X, Wan J X, Wu H X, Zheng B, Wang S B, Liang Q Z. Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes[J]. Scientific Reports, 2023, 13(1): 611. |
[100] | Kaur R, Das S, Bansal S, Singh G, Sardar S, Dhar H, Ram H. Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms[J]. Plant Physiology, 2021, 173(1): 430-448. |
[101] | Kumari V V, Banerjee P, Verma V C, Sukumaran S, Chandran M A S, Gopinath K A, Venkatesh G, Yadav S K, Singh V K, Awasthi N K. Plant nutrition: an effective way to alleviate abiotic stress in agricultural crops[J]. International Journal of Molecular Sciences, 2022, 23(15): 8519. |
[102] | Hu W, Loka D A, Fitzsimons T R, Zhou Z, Oosterhuis D M. Oosterhuis, Potassium deficiency limits reproductive success by altering carbohydrate and protein balances in cotton (Gossypium hirsutum L.)[J]. Environmental and Experimental Botany, 2018, 145: 87-94. |
[103] | Pandey N, Pathak G C, Sharma C P. Zinc is critically required for pollen function and fertilization in lentil[J]. Journal of Trace Elements in Medicine and Biology, 2006, 20(2): 89-96. |
[104] | 杨晓冬, 孙素琴, 李一勤. 硼缺乏导致花粉管细胞壁多糖分布的改变[J]. 植物学报, 1999, 41(11): 1169-1176. |
Yang X D, Sun S Q, Li Y Q. Boron deficiency causes changes in the distribution of major polysaccharides of pollen tube wall[J]. Acta Botanica Sinica, 1999, 41(11): 1169-1176. (in Chinese with English abstract) | |
[105] | 李光彦. 能量代谢影响水稻耐热性的作用机理[D]. 武汉: 华中农业大学, 2022. |
Li G Y. The mechanism of energy metabolism mediating rice heat resistance[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[106] | Lau T C, Stephenson A G. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (cucurbitaceae)[J]. Sexual Plant Reproduction, 1994, 7(4): 215-220. |
[107] | Laggoun F, Ali N, Tourneur S, Prudent G, Gügi B, Kiefer-Meyer M C, Mareck A, Cruz F, Yvin J C, Nguema-Ona E, Mollet J C, Jamois F, Lehner A. Two carbohydrate-based natural extracts stimulate in vitro pollen germination and pollen tube growth of tomato under cold temperatures[J]. Frontiers in Plant Science, 2021, 12: 552515. |
[108] | Wolukau J N, Zhang S L, Xu G H, Chen D. The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume[J]. Scientia Horticulturae, 2004, 99(3-4): 289-299. |
[109] | Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A F. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231(6): 1237-1249. |
[110] | Gupta K, Gupta B, Ghosh B, Sengupta N A. Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress[J]. Acta Physiologiae Plantarum, 2012, 34(1): 29. |
[111] | Upadhyay R K, Shao J, Mattoo A K. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: Presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses[J]. Planta, 254(5): 108. |
[112] | Aloisi I, Piccini C, Cai G, Del Duca S. Male fertility under environmental stress: Do polyamines act as pollen tube growth protectants[J]. International Journal of Molecular Sciences, 2022, 23(3): 1874. |
[113] | Xu X H, Tian Z Q, Xing A Q, Wu Z C, Li X Y, Dai L C, Yang Y Y, Yin J, Wang Y H. Nitric oxide participates in aluminum-stress-induced pollen tube growth inhibition in tea (Camelliasinensis) by regulating CsALMTs. Plants (Basel), 2022, 11(17): 2233. |
[114] | Fahad S, Hussain S, Saud S, Tanveer M, Bajwa A A, Hassan S, Shah A N, Ullah A, Wu C, Khan F A, Shah F, Ullah S, Chen Y, Huang J. A biochar application protects rice pollen from high-temperature stress[J]. Plant Physiology and Biochemistry, 2015, 96: 281-287. |
[115] | 法哈德. 高温胁迫对水稻产量和品质的影响与化学调控的缓解效应与机理[D]. 武汉: 华中农业大学, 2016. |
Shah F. Effect of high temperature stress on rice grain yield and quality, and mitigation through application of chemical regulators, and its mechanism[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract) | |
[116] | Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein analysis of pollen tubes after the treatments of membrane trafficking inhibitors gains insights on molecular mechanism underlying pollen tube polar growth[J]. Protein Journal, 2021, 40(2): 205-222. |
[1] |
YANG Jie, YANG Changdeng, ZENG Yuxiang, HOU Yuxuan, CHEN Tianxiao, LIANG Yan.
Research Progress in Mining and Utilization of Rice Blast Resistance Genes [J]. Chinese Journal OF Rice Science, 2024, 38(6): 591-603. |
[2] |
FENG Xiangqian, WANG Aidong, HONG Weiyuan, LI Ziqiu, QIN Jinhua, ZHAN Lichuan, CHEN Lipeng, ZHANG Yunbo, WANG Danying, CHEN Song.
Research Progress in Rice Yield Estimation Method Based on Low-altitude Unmanned Aerial Vehicle Remote Sensing [J]. Chinese Journal OF Rice Science, 2024, 38(6): 604-616. |
[3] |
YE Miao, MAO Yuxin, ZHANG Dehai, KANG Yuying, YUAN Rong, ZHANG Zujian.
Advances in Leaf and Canopy Eco-physiological Characteristics of High Photosynthetic Efficiency Rice Varieties and Their Regulation Mechanisms by Nitrogen [J]. Chinese Journal OF Rice Science, 2024, 38(6): 617-626. |
[4] |
WANG Qing, WANG Yanru, ZHANG Xiuli, LÜ Qiming .
Sequence Variation Analysis of the Parthenogeny-inducing Gene BBM1 in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 627-637. |
[5] |
ZHONG Zhihu, QIN Lu, LI Zhili, YANG Zhen, HE Xiaopeng, CAI Yicong.
Genome-wide Identification and Comprehensive Analysis of IDD Gene Family in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 638-652. |
[6] |
LI Wei, XU Xia, BIAN Ying, ZHANG Xiaobo, FAN Jiongjiong, CHENG Benyi, YANG Shihua, WU Jianli, WEI Xin, ZENG Bo, GONG Junyi.
Cytoplasmic Source Analysis of Sterile Lines from 5460 Three-line Hybrid Rice Varieties [J]. Chinese Journal OF Rice Science, 2024, 38(6): 653-664. |
[7] |
DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng.
Mapping of qChalk8 Controlling Chalky Rice Rate in japonica Rice by Combining QTL-Seq with Molecular Markers [J]. Chinese Journal OF Rice Science, 2024, 38(6): 665-671. |
[8] |
LIU Junfeng, MOU Jingyi, ZHAO Hongyan, GUO Shimeng, LI Yimeng, LIANG Chao, ZHOU Chanchan, WANG Shu, HUANG Yuancai.
Effects of Nitrogen Application Practice and Row Spacing on Yield and Nitrogen Use Efficiency in japonica Rice With Different Panicle Types [J]. Chinese Journal OF Rice Science, 2024, 38(6): 672-684. |
[9] |
WU Xiang, ZHANG Yikai, ZHANG Peng, MA Xinling, CHEN Yulin, CHEN Huizhe, ZHANG Yuping, XIANG Jing, WANG Yaliang, WANG Zhigang, LI Liangtao.
Effects of 2,4-Epibrassinolide on Root Growth and Physiological Characteristics of Rice Seedlings Raised in Biochar Substrate [J]. Chinese Journal OF Rice Science, 2024, 38(6): 685-694. |
[10] |
YAO Shu, CHEN Tao, ZHAO Chunfang, ZHOU Lihui, ZHAO Ling, LIANG Wenhua, HAO Lei, LU Kai, ZHU Zhen, ZHAO Qingyong, GUAN Ju, WANG Cailin, ZHANG Yadong.
Analysis on Appearance and Cooking Taste Quality Characteristics of Different Types of japonica Rice in Jianghuai Rice-growing Area [J]. Chinese Journal OF Rice Science, 2024, 38(6): 709-718. |
[11] | WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan. Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[12] | HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong. Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[13] | LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao. Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[14] | YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming. Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[15] | JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian. Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||