Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (6): 665-671.DOI: 10.16819/j.1001-7216.2024.231207
• Research Papers • Previous Articles Next Articles
DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng*()
Received:
2023-12-13
Revised:
2024-03-18
Online:
2024-11-10
Published:
2024-11-15
Contact:
*email: sunhongzheng@henau.edu.cn
杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正*()
通讯作者:
*email: sunhongzheng@henau.edu.cn
基金资助:
DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng. Mapping of qChalk8 Controlling Chalky Rice Rate in japonica Rice by Combining QTL-Seq with Molecular Markers[J]. Chinese Journal OF Rice Science, 2024, 38(6): 665-671.
杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正. 利用QTL-Seq结合分子标记定位粳稻垩白粒率控制位点qChalk8[J]. 中国水稻科学, 2024, 38(6): 665-671.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.231207
引物名称Primer | 位置 Location | 正向序列 Forward sequence | 反向序列 Reverse sequence |
---|---|---|---|
8_0.8Mb | Chr8_837961 | CCGGCATTTTGACAGGAAGTG | ACCTCTCTCTCTTTCTCTCTCCC |
8_3.5Mb | Chr8_3532447 | TCCAGATTCGTGATATTAGGATGAGT | GGAGGATCAGAGAGACCATGC |
8_4.5Mb | Chr8_4537532 | TCGTCGGGATTATTCCGAGC | ACACCGCCACCAATCAAAGA |
8_7.7Mb | Chr8_7747072 | CGGTCCATTGCACACCCTTA | ACATAACACATGCACCATGGA |
8_9.4Mb | Chr8_9385739 | TTGATGGGAGTGCCTGAAGA | TCACTGGTTACTATTGGTCACGT |
8_15.8Mb | Chr8_15858062 | GTAAGAAGCCAGAGCCGGAG | CTAAGAGAAGAGCGGGGTGC |
8_16.5Mb | Chr8_16560856 | ACAACCAACCCGGCTTGTTA | ACCATCCATTTGGCCTTGTT |
8_16.9Mb | Chr8_16906251 | CGACGAGGGGTCTTACCAAG | CTTCTCCCGATCCGCTCAAC |
8_17.6Mb | Chr8_17683064 | ACTTGCAACAACGATTGACCT | AAGCCACCAACCTTATTGCA |
8_18.5Mb | Chr8_18507050 | TGCTTTTCGCTTGGGCTAGA | GTTCCACTCTGCTACGGCTT |
8_19.6Mb | Chr8_19583199 | TAAACCCTTCAGTCCACGGC | ATGAGCTGGGGTATCGACCT |
8_21.8Mb | Chr8_21807790 | TCGCTCGCTTCCTGAAGTTT | GAAAAGCTCTGGCCAAACCG |
Table 1. Primers used in molecular marker mapping in this study
引物名称Primer | 位置 Location | 正向序列 Forward sequence | 反向序列 Reverse sequence |
---|---|---|---|
8_0.8Mb | Chr8_837961 | CCGGCATTTTGACAGGAAGTG | ACCTCTCTCTCTTTCTCTCTCCC |
8_3.5Mb | Chr8_3532447 | TCCAGATTCGTGATATTAGGATGAGT | GGAGGATCAGAGAGACCATGC |
8_4.5Mb | Chr8_4537532 | TCGTCGGGATTATTCCGAGC | ACACCGCCACCAATCAAAGA |
8_7.7Mb | Chr8_7747072 | CGGTCCATTGCACACCCTTA | ACATAACACATGCACCATGGA |
8_9.4Mb | Chr8_9385739 | TTGATGGGAGTGCCTGAAGA | TCACTGGTTACTATTGGTCACGT |
8_15.8Mb | Chr8_15858062 | GTAAGAAGCCAGAGCCGGAG | CTAAGAGAAGAGCGGGGTGC |
8_16.5Mb | Chr8_16560856 | ACAACCAACCCGGCTTGTTA | ACCATCCATTTGGCCTTGTT |
8_16.9Mb | Chr8_16906251 | CGACGAGGGGTCTTACCAAG | CTTCTCCCGATCCGCTCAAC |
8_17.6Mb | Chr8_17683064 | ACTTGCAACAACGATTGACCT | AAGCCACCAACCTTATTGCA |
8_18.5Mb | Chr8_18507050 | TGCTTTTCGCTTGGGCTAGA | GTTCCACTCTGCTACGGCTT |
8_19.6Mb | Chr8_19583199 | TAAACCCTTCAGTCCACGGC | ATGAGCTGGGGTATCGACCT |
8_21.8Mb | Chr8_21807790 | TCGCTCGCTTCCTGAAGTTT | GAAAAGCTCTGGCCAAACCG |
性状 Trait | 水晶3号 Shuijing 3 | 拉木加 Lamujia |
---|---|---|
垩白粒率 Chalky rice rate (%) | 8.1±0.5 | 91.9±0.3 |
粒长Grain length (mm) | 4.8±0.0 | 4.9±0.0 |
粒宽 Grain width (mm) | 2.7±0.0 | 2.8±0.0 |
长宽比 Length-width ratio | 1.8±0.0 | 1.7±0.0 |
Table 2. Measurement of chalkiness rate and grain shape traits of Shuijing 3 and Lamujia
性状 Trait | 水晶3号 Shuijing 3 | 拉木加 Lamujia |
---|---|---|
垩白粒率 Chalky rice rate (%) | 8.1±0.5 | 91.9±0.3 |
粒长Grain length (mm) | 4.8±0.0 | 4.9±0.0 |
粒宽 Grain width (mm) | 2.7±0.0 | 2.8±0.0 |
长宽比 Length-width ratio | 1.8±0.0 | 1.7±0.0 |
Fig. 1. Chalky rice rates of Shuijing 3, Lamujia and their reciprocal cross F1 in two environments A, Chalky rice rate of Shuijing 3 and Lamujia in Sanya, Hainan Province and Yuanyang, Henan Province; B, Chalky rice rate of reciprocal cross F1 in Sanya and Yuanyang. SLF1 is Shuijing 3×Lamujia F1 and LSF1 is Lamujia×Shuijing 3 F1.
Fig. 2. Histogram of chalky rice rate distribution of Hainan and Henan F2 populations A, F2 population of Sanya, Hainan; B, F2 population of Yuanyang, Henan. The dashed line rectangles indicate high chalkiness and low chalkiness bulks.
Fig. 3. ΔSNP-index analysis of extreme individuals bulks of Hainan and Henan F2 populations A, ΔSNP-index of extreme individuals bulks of Hainan F2 population, the red line indicates 95% confidence interval and the blue line indicates 99% confidence interval; B, ΔSNP-index of extreme individuals bulks of Henan F2 population; C, SNP-index of high chalkiness bulk (blue dots) and low chalkiness bulk (green) in Hainan population; D, SNP-index of high chalkiness bulk (blue dots) and low chalkiness bulk (green) in Henan population.
[1] | Gann P J I, Dharwadker D, Cherati S R, Vinzant K, Khodakovskaya M, Srivastava V. Targeted mutagenesis of the vacuolar H+ translocating pyrophosphatase gene reduces grain chalkiness in rice[J]. Plant Journal, 2023, 115(5): 1261-1276. |
[2] | Misra G, Badoni S, Parween S, Singh R K, Leung H, Ladejobi O, Mott R, Sreenivasulu N. Genome-wide association coupled gene to gene interaction studies unveil novel epistatic targets among major effect loci impacting rice grain chalkiness[J]. Plant Biotechnology Journal, 2021, 19(5): 910-925. |
[3] | 邱颖欣, 董皓, 李懿星, 王天抗, 宋书锋, 李莉. 水稻垩白性状相关基因研究进展[J]. 杂交水稻, 2023, 38(4): 12-20. |
Qiu Y X, Dong H, Li Y X, Wang T K, Song S F, Li L. Research progress on genes related to chalkiness in rice[J]. Hybrid Rice, 2023, 38(4): 12-20. (in Chinese with English abstract) | |
[4] | 柏晶晶, 胡文彬, 汪丽, 周政, 王立峰, 赵正洪, 何予卿. 水稻垩白主效QTL的定位与分析[J]. 湖南农业科学, 2021(12): 5-8. |
Bai J J, Hu W B, Wang L, Zhou Z, Wang L F, Zhao Z H, He Y Q. Major QTLs mapping and analysis for rice chalkiness[J]. Hunan Agricultural Sciences, 2021(12): 5-8. (in Chinese with English abstract) | |
[5] | 施利利, 张欣, 丁得亮, 王松文, 崔晶. 垩白米含量与稻米品质的关系研究[J]. 食品科技, 2016, 41(9): 177-180. |
Shi L L, Zhang X, Ding D L, Wang S W, Cui J. Study on the relationship between chalky rice content and rice quality[J]. Food Science and Technology, 41(9): 177-180. (in Chinese with English abstract) | |
[6] | Sreenivasulu N, Butardo V, Misra G, Cuevas R, Anacleto R, Kavi K P. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress[J]. Journal of Experimental Botany, 2015, 66(7): 1737-1748. |
[7] | 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应[J]. 农业环境科学学报, 2020, 39(4): 822-833. |
Wang Y X, Yang L X. Response of rice quality to major climate change factors[J]. Journal of Agro-Environment Science, 2020, 39(4): 822-833. (in Chinese with English abstract) | |
[8] | 景立权, 户少武, 穆海蓉, 王云霞, 杨连新. 大气环境变化导致水稻品质总体变劣[J]. 中国农业科学, 2018, 51(13): 2462-2475. |
Jing L Q, Hu S W, Mu H R, Wang Y X, Yang L X. Change of atmospheric environment leads to deterioration of rice quality[J]. Scientia Agricultura Sinica, 2018, 51(13): 2462-2475. (in Chinese with English abstract) | |
[9] | 张桂莲, 廖斌, 唐文帮, 陈立云, 肖应辉. 稻米垩白性状对高温耐性的QTL分析[J]. 中国水稻科学, 2017, 31(3): 257-264. |
Zhang G L, Liao B, Tang W B, Chen L Y, Xiao Y H. Identifying QTLs for thermo-tolerance of grain chalkiness trait[J]. Chinese Journal of Rice Science, 2017, 31(3): 257-264. (in Chinese with English abstract) | |
[10] | Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[11] | Yun P, Zhu Y, Wu B, Gao G, Sun P, Zhang Q, He Y. Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice[J]. Molecular Breeding, 2016, 36(12): 162. |
[12] | Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P, Yao J, Zhou Z, Chen J, Liu R, Cheng S, Zhang H, Zheng Y, Lou G, Chen P, Wan S, Zhou M, Li Y, Gao G, Zhang Q, Li X, Lian X, He Y. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality[J]. Plant Cell, 2022, 34(5): 1912-1932. |
[13] | Gao Y, Liu C, Li Y, Zhang A, Dong G, Xie L, Zhang B, Ruan B, Hong K, Xue D, Zeng D, Guo L, Qian Q, Gao Z. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9[J]. Rice, 2016, 9(1): 41. |
[14] | Nguyen K, Grondin A, Courtois B, Gantet P. Next-generation sequencing accelerates crop gene discovery[J]. Trends in Plant Science, 2019, 24(3): 263-274. |
[15] | Zegeye W, Zhang Y, Cao L, Cheng S. Whole genome resequencing from bulked populations as a rapid QTL and gene identification method in rice[J]. International Journal of Molecular Sciences, 2018, 19(12): 4000. |
[16] | Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760. |
[17] | McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M. The genome analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303. |
[18] | Mansfeld B, Grumet R. QTLseqr: An R package for bulk segregant analysis with next-generation sequencing[J]. Plant Genome, 2018, 11(2): 180006. |
[19] | Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Research, 2010, 38(16): e164. |
[20] | Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, Rozen S. Primer3: New capabilities and interfaces[J]. Nucleic Acids Research, 2012, 40(15): e115. |
[21] | Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal, 2015, 3(3): 269-283. |
[22] | Jiang L, Zhong H, Jiang X, Zhang J, Huang R, Liao F, Deng Y, Liu Q, Huang Y, Wang H, Tao Y, Zheng J. Identification and pleiotropic effect analysis of GSE5 on rice chalkiness and grain shape[J]. Frontiers in Plant Science, 2021, 12: 814928. |
[23] | 严旭, 左艳春, 王红林, 李杨, 李影正, 寇晶, 周晓康, 唐祈林, 杜周和. 禾本科三倍体:形成、鉴定与利用[J]. 植物学报, 2021, 56(3): 372-387. |
Yan X, Zuo Y C, Wang H L, Li Y, Li Y Z, Kou J, Zhou X K, Tang Q L, Du Z H. Triploid in Poaceae: Formation, detection, and utilization[J]. Chinese Bulletin of Botany, 2021, 56(3): 372-387. | |
[24] | Yang W, Xiong L, Liang J, Hao Q, Luan X, Tan Q, Lin S, Zhu H, Liu G, Liu Z, Bu S, Wang S, Zhang G. Substitution mapping of two closely linked QTLs on chromosome 8 controlling grain chalkiness in rice[J]. Rice, 2021, 14(1): 85. |
[25] | Qiu X, Chen K, Lü W, Ou X, Zhu Y, Xing D, Yang L, Fan F, Yang J, Xu J, Zheng T, Li Z. Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2017, 130(5): 951-967. |
[26] | Zhao X, Daygon V, McNally K, Hamilton R, Xie F, Reinke R, Fitzgerald M. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical and Applied Genetics, 2016, 129(1): 141-153. |
[27] | Li J, Yang H, Xu G, Deng K, Yu J, Xiang S, Zhou K, Zhang Q, Li R, Li M, Ling Y, Yang Z, He G, Zhao F. QTL analysis of Z414, a chromosome segment substitution line with short, wide grains, and substitution mapping of qGL11 in rice[J]. Rice, 2022, 15(1): 25. |
[1] |
SUI Jingjing, ZHAO Guilong, JIN Xin, BU Qingyun, TANG Jiaqi.
Advances in Molecular and Physiological Mechanisms of Cold Tolerance Regulation of Rice at the Booting Stage [J]. Chinese Journal OF Rice Science, 2025, 39(1): 1-10. |
[2] |
REN Ningning, SUN Yongjian, SHEN Congcong, ZHU Shuangbing, LI Huiju, ZHANG Zhiyuan, CHEN Kai.
Research Progress in Rice Mesocotyl [J]. Chinese Journal OF Rice Science, 2025, 39(1): 11-23. |
[3] |
XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui.
Research Progress in Rice Quality of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46. |
[4] |
CHEN Zhihui, TAO Yajun, FAN Fangjun, XU Yang, WANG Fangquan, LI Wenqi, GULINAER·Bahetibieke, JIANG Yanjie, ZHU Jianping, LI Xia, YANG Jie.
Development and Application of a Functional Marker for Heading Date Gene Hd6 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 47-54. |
[5] |
HU Fengyue, WANG Jian, WANG Chun, WANG Kejian, LIU Chaolei.
Generation of Rice DMP1, DMP2 and DMP3 Mutants and Identification of Their Haploid Induction Ability [J]. Chinese Journal OF Rice Science, 2025, 39(1): 55-66. |
[6] |
YANG Chuanming, WANG Lizhi, ZHANG Xijuan, YANG Xianli, WANG Yangyang, HOU Benfu, CUI Shize2, 4, LI Qingchao, LIU Kai4, MA Rui, FENG Yanjiang, LAI Yongcai, LI Hongyu, JIANG Shukun.
Analysis of QTL Controlling Cold Tolerance at Seedling Stage by Using a High-Density SNP Linkage Map in japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 82-91. |
[7] |
CHEN Shurong, ZHU Lianfeng, QIN Birong, WANG Jie, Zhu Xuhua, TIAN Wenhao, ZHU Chunquan, CAO Xiaochuang, KONG Yali, ZHANG Junhua, JIN Qianyu.
Effects of Nitrification Inhibitors on Rice Growth, Yield and Nitrogen Use Efficiency Under Oxygenated Irrigation [J]. Chinese Journal OF Rice Science, 2025, 39(1): 92-100. |
[8] |
WU Meng, NI Chuan, KANG Yuying, MAO Yuxin, YE Miao, ZHANG Zujian.
Inter-varietal Differences in Early Tillering Characteristics and Their Responses to Nitrogen [J]. Chinese Journal OF Rice Science, 2025, 39(1): 101-114. |
[9] |
WANG Xiaoxi, CAI Chuang, SONG Lian, ZHOU Wei, YANG Xiong, GU Xinyue ZHU Chunwu.
Effect of Free-air CO2 Enrichment and Temperature Increase on Grain Quality of Rice Cultivar Yangdao 6 [J]. Chinese Journal OF Rice Science, 2025, 39(1): 115-127. |
[10] |
JIANG Min, WANG Guanglun, LI Minglu, MIAO Bo, LI Mingxuan, SHI Chunlin.
Risk Assessment and Dynamic Early Warming of Heat Damage in Rice Based on Simulation Model [J]. Chinese Journal OF Rice Science, 2025, 39(1): 128-142. |
[11] | YANG Jie, YANG Changdeng, ZENG Yuxiang, HOU Yuxuan, CHEN Tianxiao, LIANG Yan. Research Progress in Mining and Utilization of Rice Blast Resistance Genes [J]. Chinese Journal OF Rice Science, 2024, 38(6): 591-603. |
[12] | FENG Xiangqian, WANG Aidong, HONG Weiyuan, LI Ziqiu, QIN Jinhua, ZHAN Lichuan, CHEN Lipeng, ZHANG Yunbo, WANG Danying, CHEN Song. Research Progress in Rice Yield Estimation Method Based on Low-altitude Unmanned Aerial Vehicle Remote Sensing [J]. Chinese Journal OF Rice Science, 2024, 38(6): 604-616. |
[13] | YE Miao, MAO Yuxin, ZHANG Dehai, KANG Yuying, YUAN Rong, ZHANG Zujian. Advances in Leaf and Canopy Eco-physiological Characteristics of High Photosynthetic Efficiency Rice Varieties and Their Regulation Mechanisms by Nitrogen [J]. Chinese Journal OF Rice Science, 2024, 38(6): 617-626. |
[14] | WANG Qing, WANG Yanru, ZHANG Xiuli, LÜ Qiming. Sequence Variation Analysis of the Parthenogeny-inducing Gene BBM1 in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 627-637. |
[15] | ZHONG Zhihu, QIN Lu, LI Zhili, YANG Zhen, HE Xiaopeng, CAI Yicong. Genome-wide Identification and Comprehensive Analysis of IDD Gene Family in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 638-652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||