Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (3): 233-245.DOI: 10.16819/j.1001-7216.2024.231206
• Review and Special Topic • Previous Articles Next Articles
CHEN Haotian1,2, QIN Yuan1,2, ZHONG Xiaohan1,2, LIN Chenyu1,2, QIN Jinghang1,2, YANG Jianchang1,2, ZHANG Weiyang1,2,*()
Received:
2023-12-11
Revised:
2024-01-31
Online:
2024-05-10
Published:
2024-05-13
Contact:
*email:wyz@yzu.edu.cn
陈浩田1,2, 秦缘1,2, 钟笑涵1,2, 林晨语1,2, 秦竞航1,2, 杨建昌1,2, 张伟杨1,2,*()
通讯作者:
*email:wyz@yzu.edu.cn
基金资助:
CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields[J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245.
陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.231206
[1] | Cai Y, Zheng Y, Bodelier P L E, Conrad R, Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7(1): 11728. |
[2] | Ma Y, Liu D, Schwenke G, Yang B. The global warming potential of straw-return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems[J]. Environmental Pollution, 2019, 252: 835-845. |
[3] | IPCC. Climate change 2023: synthesis report[M]. Cambridge: Cambridge University Press, 2023: 36. |
[4] | 林明明, 刘小玲, 林杏. 我国水稻生产现状及发展趋势[J]. 农业科学, 2023, 13(6): 562-567. |
Lin M M, Liu X L, Lin X. Status and development trend of rice production in china[J]. Journal of Agricultural Sciences, 2023, 13(6): 562-567. (in Chinese with English abstract) | |
[5] | Tian H, Lu C, Ciais P, Michalak A M, Josep G, Canadell, Saikawa E, Huntzinger D N, Gurney K R, Sitch S, Zhang B, Yang J, Bousquet P, Bruhwiler L, Chen G, Dlugokencky E, Friedlingstein P, Melillo J, Pan S, Poulter B, Prinn R, Saunois M, Schwalm C R, Wofsy S C. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere[J]. Nature, 2016, 531(7593): 225-228. |
[6] | 夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 834-841. |
Xia L L, Yan X Y, Cai Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020, 39(4): 834-841. (in Chinese with English abstract) | |
[7] | Roland F A E, Darchambeau F, Morana C, Bouillon S, Borges A V. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)[J]. Chemosphere, 2017, 168: 756-764. |
[8] | Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1462-1476. |
[9] | Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review[J]. Pedosphere, 2020, 30(1): 25-39. |
[10] | Ray S, Jin J O, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources[J]. Frontiers in Bioengineering and Biotechnology, 2023, 10: 907500. |
[11] | Evans P N, Boyd J A, Leu A O, Woodcroft B J, Parks D H, Hugenholtz P, Tyson G W. An evolving view of methane metabolism in the Archaea[J]. Nature Reviews Microbiology, 2019, 17(4): 219-232. |
[12] | Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants[J]. Applied and Environmental Microbiology, 2014, 80(16): 5043-5052. |
[13] | Ho A, Kerckhof F M, Luke C, Reim A, Krause S, Boon N, Bodelier P L E. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies[J]. Environmental Microbiology Reports, 2013, 5(3): 335-345. |
[14] | Malyan S K, Bhatia A, Kumar A, Gupta D K, Singh R, Kumar S S, Tomer R, Kumar O, Jain N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors[J]. Science of the Total Environment, 2016, 572: 874-896. |
[15] | Koo C W, Rosenzweig A C. Biochemistry of aerobic biological methane oxidation[J]. Chemical Society Reviews, 2021, 50(5): 3424-3436. |
[16] | Dunfield P F, Yuryev A, Senin P, Smirnova A V, Stott M B, Hou B, Ly B, Saw J H, Zhou Z, Ren Y, Wang J, Mountain B W, Crowe M A, Weatherby T M, Bodelier P L E, Liesack W, Feng L, Wang L, Alam M. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia[J]. Nature, 2007, 450(7171): 879-882. |
[17] | Yan C, Xu J, Zhong W, Lin Y, Lin X, Zhu J, Jia Z. Effect of elevated CO2 on methanotrophs in the rhizosphere of rice plant[J]. Acta Ecologica Sinica, 2013, 33(6): 1881-1888. |
[18] | Ku H H, Hayashi K, Agbisit R, Villegas-Pangga G. Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate[J]. Science of the Total Environment, 2017, 601: 1254-1262. |
[19] | Wei X, Fan L, Li Y, Wang W, Zhu Z, Zhran M, Shen J, Kim P J, Wu J, Ge T, Dorodnikov M. Subsurface methane dynamics of a paddy field under long-term fertilization: 13C-evidence from in-situ belowground labeling[J]. Journal of Cleaner Production, 2021, 325: 129285. |
[20] | 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2): 175-181. |
Jiang Y, Guan D H, Zhang W J. The effect of rice plant traits on methane emissions from paddy fields: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 175-181. (in Chinese with English abstract) | |
[21] | 沈学良, 田光蕾, 周元昌, 王缨. 水稻生物学特性对稻田甲烷排放的影响[J]. 农学学报, 2020, 10(2): 75-80. |
Shen X L, Tian G L, Zhou Y C, Wang Y. Rice biological characteristics: effects on methane emission from paddy fields[J]. Journal of Agriculture, 2020, 10(2): 75-80. (in Chinese with English abstract) | |
[22] | 黄亚男, 傅志强, 王勃然, 李超. 水稻根际特性与甲烷排放相关性研究[J]. 华北农学报, 2020, 35(5): 115-123. |
Huang Y N, Fu Z Q, Wang B R, Li C. Study on the correlation between rhizosphere characteristics and methane emission in rice[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 115-123. (in Chinese with English abstract) | |
[23] | Maurer D, Kiese R, Kreuzwieser J, Rennenberg H. Processes that determine the interplay of root exudation, methane emission and yield in rice agriculture[J]. Plant Biology, 2018, 20(6): 951-955. |
[24] | Ding H, Jiang Y, Cao C. Deep rice root systems reduce methane emissions in rice paddies[J]. Plant and Soil, 2021, 468: 337-352. |
[25] | Zheng H, Fu Z, Zhong J, Long W. Low methane emission in rice cultivars with high radial oxygen loss[J]. Plant and Soil, 2018, 431: 119-128. |
[26] | Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, Gu J, Zhang H, Lü B, Wu X, Wang Z, Yang J, Zhang J, Liu L. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields[J]. Soil Biology and Biochemistry, 2019, 129: 191-200. |
[27] | Abiko T, Obara M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots[J]. Plant Science, 2014, 215: 76-83. |
[28] | 钟娟, 傅志强, 刘莉, 祝志娟, 郑华斌. 水稻植株甲烷传输能力与根系特性的相关性分析[J]. 作物杂志, 2017(4): 105-112. |
Zhong J, Fu Z Q, Liu L, Zhu Z Z, Zheng H B. Correlation analysis of methane transport capacity and root characteristics in rice[J]. Crops, 2017(4): 105-112. (in Chinese with English abstract) | |
[29] | 任孝俭, 彭雨瑄, 韩凯艳, 邓志明, 崔克辉. 水稻植株对稻田甲烷排放的影响及其生物学机理研究进展[J]. 中国农学通报, 2022, 38(36): 80-87. |
Ren X J, Peng Y X, Han K Y, Deng Z M, Cui K H. Effect of rice plants on methane emission from paddy fields and its biological mechanism: A review[J]. Chinese Agricultural Science Bulletin, 2022, 38(36): 80-87. (in Chinese with English abstract) | |
[30] | Cheng H, Tam N F Y, Wang Y, Li S, Chen G, Ye Z. Effects of copper on growth, radial oxygen loss and root permeability of seedlings of the mangroves bruguiera gymnorrhiza and rhizophora stylosa[J]. Plant and Soil, 2012, 359: 255-266. |
[31] | Iqbal M F, Liu S, Zhu J, Zhao L, Qi T, Liang J, Luo J, Xiao X, Fan X. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy[J]. Journal of Environmental Management, 2021, 279: 111583. |
[32] | Fang K, Dai W, Chen H, Wang J, Gao H, Sha Z, Cao L. The effect of integrated rice-frog ecosystem on rice morphological traits and methane emission from paddy fields[J]. Science of the Total Environment, 2021, 783: 147123. |
[33] | Waldo N B, Hunt B K, Fadely E C, Moran J J, Neumann R B. Plant root exudates increase methane emissions through direct and indirect pathways[J]. Biogeochemistry, 2019, 145: 213-234. |
[34] | Conrad R. Microbial ecology of methanogens and methanotrophs[J]. Advances in Agronomy, 2007, 96: 1-63. |
[35] | Han C, Liu B, Zhong W. Effects of transgenic Bt rice on the active rhizospheric methanogenic archaeal community as revealed by DNA‐based stable isotope probing[J]. Journal of Applied Microbiology, 2018, 125(4): 1094-1107. |
[36] | Kimura M, Murase J, Lu Y. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4)[J]. Soil Biology and Biochemistry, 2004, 36(9): 1399-1416. |
[37] | 孙会峰, 周胜, 陈桂发, 付子轼, 刘国兰, 宋祥甫. 水稻品种对稻田CH4和N2O排放的影响[J]. 农业环境科学学报, 2015, 34(8): 1595-1602. |
Sun H F, Zhou S, Chen G F, Fu Z S, Liu G L, Song X F. Effects of rice cultivars on CH4 and N2O emissions from rice fields[J]. Journal of Agro-Environment Science, 2015, 34(8): 1595-1602. (in Chinese with English abstract) | |
[38] | Bhattacharyya P, Dash P K, Swain C K, Padhy S R, Roy K S, Neogi S, Berliner J, Adak T, Pokhare S S, Baig M J, Mohapatra T. Mechanism of plant mediated methane emission in tropical lowland rice[J]. Science of the Total Environment, 2019, 651: 84-92. |
[39] | 王丹英, 韩勃, 章秀福, 邵国胜, 徐春梅, 符冠富. 水稻根际含氧量对根系生长的影响[J]. 作物学报, 2008, 34(5): 803-808. |
Wang D Y, Han B, Zhang X F, Shao G S, Xu C M, Fu G F. Influence of rhizosphere oxygen concentration on rice root growth[J]. Acta Agronomica Sinica, 2008, 34(5): 803-808. (in Chinese with English abstract) | |
[40] | 欧媛. 典型湿地植物根系泌氧对根际氧化还原环境的影响[D]. 南京: 南京师范大学, 2016. |
Ou Y. Effects of root oxygenation on rhizosphere redox environment of typical wetland plants[D]. Nanjing: Nanjing Normal University, 2016. (in Chinese with English abstract) | |
[41] | 李奕林. 水稻根系通气组织与根系泌氧及根际硝化作用的关系[J]. 生态学报, 2012, 32(7): 2066-2074. |
Li Y L. Relationship among rice root aerechyma, root radial oxygen loss and rhizosphere nitrification[J]. Acta Ecologica Sinica, 2012, 32(7): 2066-2074. (in Chinese with English abstract) | |
[42] | 陈璐. 中粳品种演进对水稻产量、根系形态生理和稻田甲烷排放的影响[D]. 扬州: 扬州大学, 2016. |
Chen L. Effects of genetic evolution on grain Yield, root morphology and physiology in mid-season japonica rice and methane emission in paddy soil[D]. Yangzhou: Yangzhou University, 2016. (in Chinese with English abstract) | |
[43] | Gutierrez J, Atulba S L, Kim G, Kim P J. Importance of rice root oxidation potential as a regulator of CH4 production under waterlogged conditions[J]. Biology and Fertility of Soils, 2014, 50: 861-868. |
[44] | 张欣悦, 肖启涛, 刘臻婧, 廖远珊, 谢晖. 典型农业流域池塘甲烷浓度及扩散排放特征[J]. 农业环境科学学报, 2023, 42(4): 931-942. |
Zhang X Y, Xiao Q T, Liu Z J, Liao Y S, Xie H. Dissolved methane concentration and diffusion emission characteristics of ponds in a typical agricultural catchment[J]. Journal of Agro-Environment Science, 2023, 42(4): 931-942. (in Chinese with English abstract) | |
[45] | 武开阔, 张哲, 武志杰, 冯良山, 宫平, 白伟, 冯晨, 张丽莉. 不同秸秆还田量和氮肥配施对玉米田土壤CO2排放的影响[J]. 应用生态学报, 2022, 33(3): 664-670. |
Wu K K, Zhang Z, Wu Z J, Feng L S, Gong P, Bai W, Feng C, Zhang L L. Effects of different amounts of straw return and nitrogen fertilizer application on soil CO2 emission from maize fields[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 664-670. (in Chinese with English abstract) | |
[46] | 张涵, 唐常源, 禤映雪, 江涛, 黄品怡, 杨秋, 曹英杰. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 2022, 31(5): 939-948. |
Zhang H, Tang C Y, Xuan Y X, Jiang T, Huang P Y, Yang Q, Cao Y J. The regular pattern and influencing factors of CO2and CH4fluxes from mangrove soil[J]. Ecology and Environment Sciences, 2022, 31(5): 939-948. (in Chinese with English abstract) | |
[47] | Kuzyakov Y, Horwath W R, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles[J]. Soil Biology and Biochemistry, 2019, 128: 66-78. |
[48] | Zhang L, Dumont M G, Bodelier P L E, Adams J M, He D, Chu H. DNA stable-isotope probing highlights the effects of temperature on functionally active methanotrophs in natural wetlands[J]. Soil Biology and Biochemistry, 2020, 149: 107954. |
[49] | Fan L, Dippold M A, Thiel V, Ge T, Wu J, Kuzyakov Y, Dorodnikov M. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH4 balance under global warming[J]. Global Change Biology, 2022, 28(2): 654-664. |
[50] | 张怡彬, 徐洋, 王洪媛, 王绍莲, 翟丽梅, 刘宏斌. 稻蟹共生系统温室气体排放特征及其影响因素[J]. 农业资源与环境学报, 2022, 39(5): 931-939. |
Zhang Y B, Xu Y, Wang H Y, Wang S L, Zhai L M, Liu H B. Greenhouse gas emission characteristics and influencing factors of rice-crab symbiosis system[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 931-939. (in Chinese with English abstract) | |
[51] | 唐珍妮, 刘艺轩, 周旭东, 余珂, 于志国. 极端干旱对长江漫滩湿地温室气体排放的影响——以南京八卦洲湿地为例[J]. 中国农村水利水电, 2023(4): 69-81. |
Tang Z N, Liu Y X, Zhou X D, Yu K, Yu Z G. Effects of extreme drought on greenhouse gas emissions in yangtze floodplain wetland: a case study of Baguazhou wetland in Nanjing[J]. China Rural Water and Hydropower, 2023(4): 69-81. (in Chinese with English abstract) | |
[52] | Nan Q, Xin L, Qin Y, Waqas M, Wu W. Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: A review[J]. Biochar, 2021, 3(2): 125-134. |
[53] | Wu X, Wang W, Xie K, Yin C, Hou H, Xie X. Combined effects of straw and water management on CH4 emissions from rice fields[J]. Journal of Environmental Management, 2019, 231: 1257-1262. |
[54] | 韩雪, 陈宝明. 增温对土壤N2O和CH4排放的影响与微生物机制研究进展[J]. 应用生态学报, 2020, 31(11): 3906-3914. |
Han X, Chen B M. Progress in the effects of warming on soil N2O and CH4 emission and the underlying micro-bial mechanisms[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3906-3914. (in Chinese with English abstract) | |
[55] | 马静, 徐华, 蔡祖聪. 施肥对稻田甲烷排放的影响[J]. 土壤, 2010, 42(2): 153-163. |
Ma J, Xu H, Cai Z C. Effect of fertilization on methane emissions from rice fields[J]. Soils, 2010, 42(2): 153-163. (in Chinese with English abstract) | |
[56] | 甘德欣, 黄璜, 蒋廷杰, 黄梅. 免耕稻-鸭复合系统减少甲烷排放及其机理研究[J]. 生态与农村环境学报, 2011, 21(2): 1-6. |
Gan D X, Huang H, Jiang T J, Huang M. Decrease in CH4 emission and its mechanism in no-tillage rice-duck complex system[J]. Journal of Ecology and Rural Environment, 2011, 21(2): 1-6. (in Chinese with English abstract) | |
[57] | 蒋梦蝶, 何志龙, 孙赟, 周维, 胡荣桂, 林杉. 尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响[J]. 农业环境科学学报, 2018, 37(1): 196-204. |
Jiang M D, He Z L, Sun Y, Zhou W, Hu R G, Lin S. The effect of wheat-straw derived biochar on the soil pH and emissions of CO2 and CH4 from tea garden soil[J]. Journal of Agro-Environment Science, 2018, 37(1): 196-204. (in Chinese with English abstract) | |
[58] | 顾航, 肖凡书, 贺志理, 颜庆云. 湿地微生物介导的甲烷排放机制[J]. 微生物学报, 2018, 58(4): 618-632. |
Gu H, Xiao F S, He Z L, Yan Q Y. Microbial driven methane emission mechanisms in wetland ecosystems[J]. Acta Microbiologica Sinica, 2018, 58(4): 618-632. (in Chinese with English abstract) | |
[59] | 张志勇, 于旭昊, 熊淑萍, 马新明, 王小纯, 刘洋, 闫广轩, 李永革. 耕作方式与氮肥减施对黄褐土麦田土壤酶活性及温室气体排放的影响[J]. 农业环境科学学报, 2020, 39(2): 418-428. |
Zhang Z Y, Yu X H, Xiong S P, Ma X M, Wang X C, Liu Y, Yan G X, Li Y G. Effects of tillage methods and nitrogen fertilizer reduction on soil enzyme activities and greenhouse gas emissions of wheat yellow cinnamon soil[J]. Journal of Agro-Environment Science, 2020, 39(2): 418-428. (in Chinese with English abstract) | |
[60] | Zaman M, Nguyen M L, Blennerhassett J D, Quin B F. Reducing NH3, N2O and-N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers[J]. Biology and Fertility of Soils, 2008, 44(5): 693-705. |
[61] | 邓欧平, 李翰, 熊雷, 邓良基, 周伟, 贾凡凡. 秸秆、 猪粪混施对麦田根际土壤过氧化氢酶与蔗糖酶活性的影响[J]. 土壤, 2018, 50(1): 86-92. |
Deng O P, Li H, Xiong L, Deng L J, Zhou W, Jia F F. Effect of mixed application of rice-wheat straws and pig manure on soil enzyme activities in wheat-growth field[J]. Soils, 2018, 50(1): 86-92. (in Chinese with English abstract) | |
[62] | 周文涛, 戈家敏, 王勃然, 龙攀, 徐莹, 傅志强. 不同水稻品种甲烷排放与土壤酶的关系[J]. 农业环境科学学报, 2020, 39(11): 2675-2682. |
Zhou W T, Ge J M, Wang B R, Long P, Xu Y, Fu Z Q. Relationship between methane emissions and soil enzymes of different rice varieties[J]. Journal of Agro-Environment Science, 2020, 39(11): 2675-2682. (in Chinese with English abstract) | |
[63] | 周旋, 吴良欢, 戴锋, 董春华. 生化抑制剂组合与施肥模式对黄泥田稻季CH4和N2O排放的影响[J]. 生态与农村环境学报, 2018, 34(12): 1122-1130. |
Zhou X, Wu L H, Dai F, Dong C H. Effects of combined biochemical inhibitors and fertilization models on CH4 and N2O emission from yellow clayey field during rice growth season[J]. Journal of Ecology and Rural Environment, 2018, 34(12): 1122-1130. (in Chinese with English abstract) | |
[64] | Conrad R, Klose M, Lu Y, Chidthaisong A. Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw[J]. Frontiers in Microbiology, 2012, 3: 4. |
[65] | Wang K, Li F, Dong Y. Methane emission related to enzyme activities and organic carbon fractions in paddy soil of south china under different irrigation and nitrogen management[J]. Journal of Soil Science and Plant Nutrition, 2020, 20: 1397-1410. |
[66] | Alpana S, Vishwakarma P, Adhya T K, Inubushi K, Dubey S K. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem[J]. Science of the Total Environment, 2017, 596: 136-146. |
[67] | Pump J, Pratscher J, Conrad R. Colonization of rice roots with methanogenic archaea controls photosynthesis- derived methane emission[J]. Environmental Microbiology, 2015, 17(7): 2254-2260. |
[68] | 李小飞, 侯立军, 刘敏. 长江口沉积物甲烷产生潜力与产甲烷菌群落特征[J]. 环境科学学报, 2019, 39(5):1682-1690. |
Li X F, Hou L J, Liu M. Methane production potential and methanogens community in the sediments of the Yangtze Estuary[J]. Journal of Agro-Environment Science, 2019, 39(5): 1682-1690. (in Chinese with English abstract) | |
[69] | Pan X, Li H, Zhao L, Yang X, Su J, Dai S, Ning J, Li C, Cai G, Zhu G. Response of syntrophic bacterial and methanogenic archaeal communities in paddy soil to soil type and phenological period of rice growth[J]. Journal of Cleaner Production, 2021, 278: 123418. |
[70] | 党慧慧, 刘超, 伍翥嵘, 王圆媛, 胡正华, 李琪, 陈书涛. 不同播期粳稻稻田甲烷排放及综合效益研究[J]. 生态环境学报, 2021, 30(7): 1436-1446. |
Dang H H, Liu C, Wu Z R, Wang Y Y, Hu Z H, Li Q, Chen S T. Methane emission and comprehensive benefits of japonica rice paddy field with different sowing dates[J]. Ecology and Environment Sciences, 2021, 30(7): 1436-1446. (in Chinese with English abstract) | |
[71] | 毛楠, 刘桂民, 李莉莎, 李小明, 张博, 徐海燕, 吴晓东. 祁连山多年冻土区甲烷排放通量及其影响因素[J]. 生态学杂志, 2021, 40(6): 1745-1752. |
Mao N, Liu G M, Li L S, Li X M, Zhang B, Xu H Y, Wu X D. Methane flux and its influencing factors in the permafrost region of the Qilian Mountains[J]. Chinese Journal of Ecology, 2021, 40(6): 1745-1752. (in Chinese with English abstract) | |
[72] | 刘成, 刘晓雨, 张旭辉, 李恋卿, 潘根兴. 基于整合分析方法评价我国生物质炭施用的增产与固碳减排效果[J]. 农业环境科学学报, 2019, 38(3): 696-706. |
Liu C, Liu X Y, Zhang X H, Li L Q, Pan G X. Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis[J]. Journal of Agro-Environment Science, 2019, 38(3): 696-706. (in Chinese with English abstract) | |
[73] | Peng J, Wegner C E, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil[J]. Microbiome, 2018, 6: 1-16. |
[74] | 高思齐, 宋艳宇, 宋长春, 马秀艳, 蒋磊. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响[J]. 生态学报, 2020, 40(13): 4617-4627. |
Gao S Q, Song Y Y, Song C C, Ma X Y, Jiang L. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil[J]. Acta Ecologica Sinica, 2020, 40(13): 4617-4627. (in Chinese with English abstract) | |
[75] | Kotsyurbenko O R, Friedrich M W, Simankova M V, Nozhevnikova A N, Golyshin P N, Timmis K N, Conrad R. Shift from acetoclastic to H2-dependent methanogenesis in a west siberian peat bog at low pH values and isolation of an acidophilic methanobacterium strain[J]. Applied and Environmental Microbiology, 2007, 73(7): 2344-2348. |
[76] | 赵晓萌, 刘婧娜, 易丽霞, 朱波, 代红翠, 胡跃高, 曾昭海. 绿肥还田对双季稻根际土壤产甲烷古菌群落结构的影响[J]. 作物学报, 2015, 41(5): 30-39. |
Zhao X M, Liu J N, Yi L X, Zhu B, Dai H C, Hu Y G, Zeng Z H. Community structure of methanogens from double-rice rhizosphere soil as affected by green manure incorporation[J]. Acta Agronomica Sinica, 2015, 41(5): 30-39. (in Chinese with English abstract) | |
[77] | Wang P X, Yang Y D, Wang X Q, Zhao J, Peixoto L, Zeng Z H, Zang H D. Manure amendment increased the abundance of methanogens and methanotrophs but suppressed the type I methanotrophs in rice paddies[J]. Environmental Science and Pollution Research, 2020, 27: 8016-8027. |
[78] | 蔡元锋, 贾仲君. 土壤大气甲烷氧化菌研究进展[J]. 微生物学报, 2014, 54(8): 841-853. |
Cai Y F, Jia Z J. Research progress of atmospheric methane oxidizers in soil[J]. Acta Microbiologica Sinica, 2014, 54(8): 841-853. (in Chinese with English abstract) | |
[79] | Hogendoorn C, Pol A, Nuijten G H L, Op den Camp H J. Methanol production by “Methylacidiphilum fumariolicum” SolV under different growth conditions[J]. Applied and Environmental Microbiology, 2020, 86(18): e01188-20. |
[80] | Zhou B, Chen R, Peng S, Zhang Z, Lin X, Wang Y. Variations in methanogenic and methanotrophic communities resulted in different methane emissions from paddy soil applied with two types of manure[J]. Agronomy, 2023, 13(5): 1268. |
[81] | Tate K R. Soil methane oxidation and land-use change: From process to mitigation[J]. Soil Biology and Biochemistry, 2015, 80: 260-272. |
[82] | 许欣, 陈晨, 熊正琴. 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响[J]. 土壤学报, 2016, 53(6): 1517-1527. |
Xu X, Chen C, Xiong Z Q. Effects of Biochar and Nitrogen Fertilizer Amendment on Abundance and Potential Activity of Methanotrophs and Methanogens in Paddy Field[J]. Acta Pedologica Sinica, 2016, 53(6): 1517-1527. (in Chinese with English abstract) |
[1] |
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan.
Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] |
XU Yongqiang XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu.
Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] |
YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming.
Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||