Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (2): 108-117.DOI: 10.16819/j.1001-7216.2019.9001
• Research Papers • Previous Articles Next Articles
Hui DENG1, Zhiguo E2, Baixiao NIU1, Lei WANG2, Chen CHEN1,*()
Received:
2019-01-01
Revised:
2019-01-15
Online:
2019-03-10
Published:
2019-03-10
Contact:
Chen CHEN
通讯作者:
陈忱
基金资助:
CLC Number:
Hui DENG, Zhiguo E, Baixiao NIU, Lei WANG, Chen CHEN. Influence of DNA Methylation Inhibitor 5-Aza-2′-deoxycytidine on DNA Methylation and Seedling Development of Rice[J]. Chinese Journal OF Rice Science, 2019, 33(2): 108-117.
邓卉, 鄂志国, 牛百晓, 王磊, 陈忱. DNA甲基化抑制剂5-氮脱氧胞苷对水稻基因组甲基化及幼苗生长发育的影响[J]. 中国水稻科学, 2019, 33(2): 108-117.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.9001
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') | 引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|---|---|
MET1-1-qrt-f | GCATGTGCTTCCATCCTGAG | Lsi6-qrt-f | TTCCCTCCTAACCTCCTCAA |
MET1-1-qrt-r | ATCTGCCTGTGCTTGTTCTG | Lsi6-qrt-r | CCTGCGAAGATCGACGTAAT |
MET1-2-qrt-f | GCGCCAGTAAACTCCTACTT | LOC_Os07g05360-qrt-f | GTTGATGGGTACAGCCCAATA |
MET1-2-qrt-r | CCCAATCCAGCCTACCATAAA | LOC_Os07g05360-qrt-r | GAGTGATTGCCCAGAGAAGTAA |
CMT3-qrt-f | ATCTGCCTGTGCTTGTTCTG | LOC_Os07g05365-qrt-f | GCCAGCAAGTATGGAGCTAAT |
CMT3-qrt-r | ATCTGCCTGTGCTTGTTCTG | LOC_Os07g05365-qrt-r | AGAGCAACAACCCTGTCTTTC |
CMT2-qrt-f | TCAGGTTGTGGTGGCTTTAC | LOC_Os08g40160-qrt-f | CATTCCACAAGACTGGCTGAT |
CMT2-qrt-r | CTCTGTGTCTTTGGAGGTTGAG | LOC_Os08g40160-qrt-r | GTGATGGCTACGCTGACATT |
DNMT2-qrt-f | GACACCTACATTCCTAACATTGG | LOC_Os10g21192-qrt-f | GATAGCCAAGGTCGCGTTATTA |
DNMT2-qrt-r | TCAGCGACATTCAGACTTATTG | LOC_Os10g21192-qrt-r | AGAGGGAAGTTGTGAGCATTAC |
DRM2-qrt-f | CGTGCGGCATCTTACTACTGA | LOC_Os10g39880-qrt-f | GAGAGAGAACGCGAAAGTACAA |
DRM2-qrt-r | ATCTCGGTGATGGCGGTTG | LOC_Os10g39880-qrt-r | ACCGAACCATCCGATGTAAAG |
JIOsPR10-qrt-f | CCTCAGCCATGCCATTCA | LOC_Os07g37030-qrt-f | GCTCGCAGTACAACAACCA |
JIOsPR10-qrt-r | CTTGGTGATCTCGTCCTTCAC | LOC_Os07g37030-qrt-r | CCACGGCACGAAGAGAAC |
RSOsPR10-qrt-f | GCACTGTCACCACCATGAA | LOC_Os01g64120-qrt-f | CCACGCCGATCACCAATTA |
RSOsPR10-qrt-r | CGAGCTCATACTCCACGTTTATC | LOC_Os01g64120-qrt-r | CTGAACCTGCCGGAGAAC |
OsPR10a-qrt-f | GCCGCAAGTCATGTCCTAAA | LOC_Os07g30670-qrt-f | CGACAACTACATCGACCTCTAC |
OsPR10a-qrt-r | CGAGGTAGTCCTCGATCATCTT | LOC_Os07g30670-qrt-r | AGTTCACCGCCTTCAACTAC |
Lsi2-qrt-f | CTGGAGATGTCGGAGAACATAAC | Actin-f | CCAGGTATCGCTGACCGTAT |
Lsi2-qrt-r | CCACCTCATCACCCATAAGAAG | Actin-r | GGAAAGTGCTGAGTGAGGCT |
Lsi3-qrt-f | CGTTCGGTGTGTTCTGGAT | Tos17methy-f | GTTGATTATAGGGGATGATTTGGAGTATATTGTTT |
Lsi3-qrt-r | GCCGAGGAGGAAGGAAATAAA | Tos17methy-r | CATAAAACACAAAACAAATAACCATAATAAACTA |
Table 1 Primers used in the study.
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') | 引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|---|---|
MET1-1-qrt-f | GCATGTGCTTCCATCCTGAG | Lsi6-qrt-f | TTCCCTCCTAACCTCCTCAA |
MET1-1-qrt-r | ATCTGCCTGTGCTTGTTCTG | Lsi6-qrt-r | CCTGCGAAGATCGACGTAAT |
MET1-2-qrt-f | GCGCCAGTAAACTCCTACTT | LOC_Os07g05360-qrt-f | GTTGATGGGTACAGCCCAATA |
MET1-2-qrt-r | CCCAATCCAGCCTACCATAAA | LOC_Os07g05360-qrt-r | GAGTGATTGCCCAGAGAAGTAA |
CMT3-qrt-f | ATCTGCCTGTGCTTGTTCTG | LOC_Os07g05365-qrt-f | GCCAGCAAGTATGGAGCTAAT |
CMT3-qrt-r | ATCTGCCTGTGCTTGTTCTG | LOC_Os07g05365-qrt-r | AGAGCAACAACCCTGTCTTTC |
CMT2-qrt-f | TCAGGTTGTGGTGGCTTTAC | LOC_Os08g40160-qrt-f | CATTCCACAAGACTGGCTGAT |
CMT2-qrt-r | CTCTGTGTCTTTGGAGGTTGAG | LOC_Os08g40160-qrt-r | GTGATGGCTACGCTGACATT |
DNMT2-qrt-f | GACACCTACATTCCTAACATTGG | LOC_Os10g21192-qrt-f | GATAGCCAAGGTCGCGTTATTA |
DNMT2-qrt-r | TCAGCGACATTCAGACTTATTG | LOC_Os10g21192-qrt-r | AGAGGGAAGTTGTGAGCATTAC |
DRM2-qrt-f | CGTGCGGCATCTTACTACTGA | LOC_Os10g39880-qrt-f | GAGAGAGAACGCGAAAGTACAA |
DRM2-qrt-r | ATCTCGGTGATGGCGGTTG | LOC_Os10g39880-qrt-r | ACCGAACCATCCGATGTAAAG |
JIOsPR10-qrt-f | CCTCAGCCATGCCATTCA | LOC_Os07g37030-qrt-f | GCTCGCAGTACAACAACCA |
JIOsPR10-qrt-r | CTTGGTGATCTCGTCCTTCAC | LOC_Os07g37030-qrt-r | CCACGGCACGAAGAGAAC |
RSOsPR10-qrt-f | GCACTGTCACCACCATGAA | LOC_Os01g64120-qrt-f | CCACGCCGATCACCAATTA |
RSOsPR10-qrt-r | CGAGCTCATACTCCACGTTTATC | LOC_Os01g64120-qrt-r | CTGAACCTGCCGGAGAAC |
OsPR10a-qrt-f | GCCGCAAGTCATGTCCTAAA | LOC_Os07g30670-qrt-f | CGACAACTACATCGACCTCTAC |
OsPR10a-qrt-r | CGAGGTAGTCCTCGATCATCTT | LOC_Os07g30670-qrt-r | AGTTCACCGCCTTCAACTAC |
Lsi2-qrt-f | CTGGAGATGTCGGAGAACATAAC | Actin-f | CCAGGTATCGCTGACCGTAT |
Lsi2-qrt-r | CCACCTCATCACCCATAAGAAG | Actin-r | GGAAAGTGCTGAGTGAGGCT |
Lsi3-qrt-f | CGTTCGGTGTGTTCTGGAT | Tos17methy-f | GTTGATTATAGGGGATGATTTGGAGTATATTGTTT |
Lsi3-qrt-r | GCCGAGGAGGAAGGAAATAAA | Tos17methy-r | CATAAAACACAAAACAAATAACCATAATAAACTA |
Fig. 1. Effects of AZA treatment on genomic methylation. A, Digestion of the genomic DNA by methylation-sensitive MspⅠ; B, Methylation level of transposons Tos17chr7; C, Methylation pattern of transposons Tos17chr7 detected by bisulfate sequencing.
Fig. 3. Phenotypic analysis of the AZA-treated rice seedlings. A, Germination rate, values are mean±SD(n=50); B, Morphology of AZA treated and untreated plants at 2 days after germination(DAI) and 7DAI; C, Leaves of AZA treated and untreated plants; D, Chlorophyll contents, values are Mean±SD(n=3), **indicates significant difference at 0.01 level; E, Chloroplast structure, bar=0.5 μm.
Fig. 5. Leaf phenotype and relative expression level of silicon transporter. A, Semi-thin section of leaf of AZA-untreated plants, *indicate vascular bundle, bar=200 μm; B, Semi-thin section of leaf of AZA-treated plants, *indicate vascular bundle, bar=200 μm; C, Higher magnification view of leaf of AZA-untreated plant; D, Higher magnification view of leaf of AZA-treated plant; E, Scanning electron microscope (SEM) analysis of the leaf epidermal cells, Bar=25 μm; F, Cell length and width of the leaf epidermal cells, values are mean±SD(n=100); G, Relative expression level of silicon transporter, values are mean±SD(n=3).
Fig. 6. Relative expression level of pathogenesis-related genes and contents of resistance-related hormones. A, Relative expression level of pathogenesis-related genes JIOsPR10, RSOsPR10 and OsPR10a, values are mean±SD(n=3); B, Contents of abscisic acid (ABA), salicylic acid(SA), jasmonic acid(JA) in AZA-untreated and AZA-treated plants, values are mean±SD(n=3).
Fig. 4. Relative expression level of photosynthetic genes in AZA-untreated and AZA-treated plants. The error bars indicate standard deviations(n=3). **indicates significant difference at 0.01 level; ns indicates no statistical significance.
[1] | Springer N M, Schmitz R J.Exploiting induced and natural epigenetic variation for crop improvement.Nat Rev Genet, 2017, 18(9): 563. |
[2] | Shi J, Dong A, Shen W H.Epigenetic regulation of rice flowering and reproduction.Front Plant Sci, 2015, 5: 803. |
[3] | 洪苓苓, 马旭东. 组蛋白甲基化修饰的研究进展. 临床血液学杂志, 2010, 23(1): 54-56. |
Hong L L, Ma X D.Advances in histone methylation modification.J Clin Hematol, 2010, 23(1): 54-56. (in Chinese) | |
[4] | 关录飞, 吴笑女, 徐启江. DNA甲基化及其对植物发育的调控. 生物技术通讯, 2008, 19(4): 632-634. |
Guan L F, Wu X N, Xu Q J.DNA methylation and its regulation effect during plant development.Lett Biotechnol, 2008, 19(4): 632-634. (in Chinese with English abstract) | |
[5] | 郭广平, 袁金玲, 吴晓丽, 顾小平. DNA甲基化在植物研究中的应用现状与前景. 植物遗传资源学报, 2011, 12(3): 425-430. |
Guo G P, Yuan J L, Wu X L, Gu X P.DNA methylation and its application in plant research.J Plant Genet Resour, 2011, 12(3): 425-430. (in Chinese with English abstract) | |
[6] | Finnegan E J, Kovac K A.Plant DNA methyltransferases.Plant Mol Biol, 2000, 43(2/3): 189-201. |
[7] | Dowen R H, Pelizzola M, Schmitz R J, Lister R, Dowen J M, Nery J R, Dixon J E, Ecker J R.Widespread dynamic DNA methylation in response to biotic stress.Proc Natl Acad Sci, 2012, 109(32): E2183-91. |
[8] | Wang W S, Zhao X Q, Pan Y J, Zhu L H, Fu B Y, Li Z K.DNA methylation changes detected by methylation- sensitive amplified polymorphism in two contrasting rice genotypes under salt stress.J Genet Genom, 2011, 38(9): 419-424. |
[9] | 赵云雷, 叶武威, 王俊娟, 樊保香, 宋丽艳. DNA甲基化与植物抗逆性研究进展. 西北植物学报, 2009, 29(7): 1479-1489. |
Zhao Y L, Ye W W, Wang J J, Fan B X, Song L Y.Review of DNA methylation and plant stress tolerance.Acta Bot Bor-Occ Sin, 2009, 29(7): 1479-1489. (in Chinese with English abstract) | |
[10] | Ou X F, Zhang Y H, Xu C M, Lin X Y, Zang Q, Zhuang T T, Jiang L L, Wettstein D V, Liu B.Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PloS One, 2012, 7(9): e41143. |
[11] | Goll M G, Bestor T H.Eukaryotic cytosine methyltransferases.Annu Rev Biochem, 2005, 74: 481-514. |
[12] | Kakutani T, Jeddeloh J A, Flowers S K, Munakata K, Richards E J.Developmental abnormalities and epimutations associated with DNA hypomethylation mutations.Proc Natl Acad Sci USA, 1996, 93(22): 12406-12411. |
[13] | Asao H, Eun S H, Okano Y, Moritoh S, One A, Okano Y, Yamaguchi K, Shimatani Z, Koizumi A, Terada R.Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation.Plant J & Cell Mol Biol, 2012, 71(1): 85. |
[14] | Baubec T, Pecinka A, Rozhon W, Scheid O M.Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine.Plant J Cell & Mol Biol, 2010, 57(3): 542-554. |
[15] | 袁建民, 木万福, 麻继仙, 杨龙, 李易蓉, 但忠, 苏银玲. DNA甲基化抑制剂5-azaC对花椰菜生长发育的影响. 江西农业学报, 2018, 30(2): 42-45. |
Yuan J M, Mu W F, Ma J X, Yang L, Li Y R, Dan Z, Su Y L.The effects of DNA methylation inhibitor 5-azaC on growth and development of cauliflower.Acta Agric Jiangxi, 2018, 30(2): 42-45. (in Chinese with English abstract) | |
[16] | 汪媛媛. 两种DNA甲基化抑制剂对菊花表型和DNA甲基化的影响. 开封: 河南大学, 2012. |
Wang Y Y.The effect of two different DNA methylation inhibitors on curcumin phenotype and DNA methylation. Kaifeng: Henan University, 2012. (in Chinese with English abstract) | |
[17] | 刘秋香. DNA甲基化抑制剂5-Aza-2′-deoxycytidine处理后水稻的DNA甲基化研究. 杭州: 浙江大学, 2014. |
Liu Q X.The research on DNA methylation of rice treated with DNA methylation inhibitor 5-Aza-2′- deoxycytidine. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract) | |
[18] | Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H.A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA.Mol Gene Genet, 1990, 220(3): 441-447. |
[19] | 段光明. 叶绿素含量测定中Arnon公式的推导. 植物生理学报, 1992(3): 221. |
Duan G M. Derivation of Arnon formula in determination of chlorophyll content.Plant Physiol Commun, 1992(3): 221. (in Chinese) | |
[20] | Cheng C, Daigen M, Hirochika H.Epigenetic regulation of the rice retrotransposon Tos17.Mol Genet Genom, 2006, 276(4): 378. |
[21] | 黄菲, 李雪梅, 王文生, 傅彬英. DNA甲基化在植物抗逆反应中的研究进展及其育种应用. 中国农业科技导报, 2013, 15(6): 83-91. |
Huang F, Li X M, Wang W S, Fu B Y.Research progress of DNA methylation in stress response and breeding in plant.J Agric Sci Technol, 2013, 15(6): 83-91. (in Chinese with English abstract) | |
[22] | Boyko A, Kovalchuk I.Epigenetic control of plant stress response.Environ Mol Mutag, 2008, 49(1): 61-72. |
[23] | 彭海, 席婷, 张静, 吴先军. 胁迫条件下植物DNA甲基化的稳定性. 中国农业科学, 2011, 44(12): 2431-2438. |
Peng H, Xi T, Zhang J, Wu X J.Stability of stress-induced DNA methylation in plant.Sci Agric Sin, 2011, 44(12): 2431-2438. (in Chinese with English abstract) | |
[24] | Hu L J, Li N, Xu C M, Zhong S L, Lin X Y, Yang J J, Zhou T Q, Yuliang A, Wu Y, Chen Y R, Cao X F, Zemach A, Rustgi S, Wettstein D V, Liu B.Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality.Proc Natl Acad Sci USA, 2014, 111(29): 10642-10647. |
[25] | Kankel M W, Ramsey D E, Stokes T L, Flowers S K, Haag J R, Jeddeloh J A, Riddle N C, Verbsky M L, Rechards E J. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 2003, 163(3): 1109. |
[26] | Wang Z, Gerstein M, Snyder M.RNA-Seq: A revolutionary tool for transcriptomics.Nat Rev Genet, 2010, 10(1): 57-63. |
[27] | 仪治本, 孙毅, 牛天堂, 梁小红, 刘龙龙, 赵威军, 李炳林. 高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究. 作物学报, 2005, 31(9): 1138-1143. |
Yi Z B, Sun Y, Niu T T, Liang X H, Liu L L, Zhao W J, Li B L.Patterns of DNA cytosine methylation between hybrids and their parents in sorghum genome.Acta Agron Sin, 2005, 31(9): 1138-1143. (in Chinese with English abstract) | |
[28] | Song G S, Zhai H L, Peng Y G, Zhang L, Wei G, Chen X Y, Xiao Y G, Wang L L, Chen Y J, Wu B, Chen B, Zhang Y, Chen H, Feng X J, Gong W K, Liu Y, Yin Z J, Wang F, Liu G Z, Xu H L, Wei X L, Zhao X L, Ouwerkerk P, Hankemeier T, Reijmers T, Heijden R, Lu C M, Wang M, Greef J, Zhu Z.Comparative transcriptional profiling and preliminary study on heterosis mechanism of super- hybrid rice.Mol Plant, 2010, 3(6): 1012-1025. |
[29] | Dowen R H, Pelizzola M, Schmitz R J, Lister R, Dowen J M, Nery J R, Dixon J E, Ecker J R.Widespread dynamic DNA methylation in response to biotic stress.Proc Natl Acad Sci USA, 2012, 109(32): E2183. |
[30] | Yu A, Lepere G, Jay F, Wang J Y, Bapaume L, Wang Y, Abraham A L, Penterman J, Fischer R L, Voinnet O, Navarro L.Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci USA, 2013, 110(6): 2389-2394. |
[31] | Akimoto K, Katakami H, Kim H J, Ogawa E, Sano C M, Wada Y, Sano H.Epigenetic inheritance in rice plants.Ann Bot, 2007, 100(2): 205-217. |
[32] | Deleris A, Halter T, Navarro L.DNA methylation and demethylation in plant immunity.Ann Rev Phytopathol, 2016, 54(1): 579-603. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||