Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (2): 95-107.DOI: 10.16819/j.1001-7216.2019.8083 95
• Review • Next Articles
Da SU1,2, Liangquan WU2, K Rasmussen Søren3, Lujian ZHOU4, Fangmin CHENG4,*
Received:
2018-07-16
Revised:
2018-12-31
Online:
2019-03-10
Published:
2019-03-10
Contact:
Fangmin CHENG
苏达1,2, 吴良泉2, SørenKRasmussen3, 周庐建4, 程方民4,*
通讯作者:
程方民
基金资助:
CLC Number:
Da SU, Liangquan WU, K Rasmussen Søren, Lujian ZHOU, Fangmin CHENG. Research Advances on the Low Phytic Acid Rice Breeding and Their Genetic Physiological Regulation and Environmental Adaptability[J]. Chinese Journal OF Rice Science, 2019, 33(2): 95-107.
苏达, 吴良泉, SørenKRasmussen, 周庐建, 程方民. 低植酸水稻种质资源筛选、遗传生理调控与环境生态适应性 研究进展[J]. 中国水稻科学, 2019, 33(2): 95-107.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.8083 95
Fig. 1. Biosynthetic pathways of phytic acid. [1], MIPS,myo-inositol-3-phosphate synthase; [2], Ins(3)P1-monophosphatase IMP,myo-inositol-phosphate monophosphatase; [3], MIK,myo-inositol- kinase; [4], PGK,phosphoglycerate kinase; [5], ITP5/6K,inositol 1,3,4-triphosphate 5/6-kinase; [6], IPK1,inositol 1,3,4,5,6-pentakisphosphate 2-kinase; [7], PtdIns Synthase,phosphatidy linositol synthase; [8], Phospholipase C; [9], Inositol 1,4,5-tris-phosphate kinase; [10], ABC transporter; MRP transporter; [11], InsP6 Kinase; [12], Phytases or phosphatase.
突变方法 Origin of mutation | 基因位点 Locus | 低植酸突变体名称 Name of lpa | 植酸含量降幅 Reduction in Phytic acid /% | 无机磷变化 Pi variation | 总磷变化 Total P variation | 产量劣变 Yield inferiority | 其他 Other phenotypic changes | 参考文献 Reference | ||
---|---|---|---|---|---|---|---|---|---|---|
antisense under Ole18 | MIPS (RION1) | -- | 68-75 | 增加 (等摩尔) | -- | 否 | 植酸变化仅影响胚乳和糊粉层 | [ | ||
antisense under 35S | MIPS (RION1) | -- | -- | -- | 不变 | -- | -- | [ | ||
RNAi under GluB-1 | MIPS (RION1) | lpa1 | 17 | 增加 (等摩尔) | -- | -- | -- | [ | ||
RNAi | MIPS | -- | -- | 增加 (等摩尔) | -- | -- | MIPS基因下调4.59倍;阳离子含量增加, 其中精米中铁含量增加1.6倍;肌醇和抗坏血酸含量降低 | [ | ||
RNAi under Oleosin 18 | IPK1 | -- | 69(T4代) | 增加 (等摩尔) | 不变 | 否 | IPK1 转录表达下调3.85倍;胚乳中铁含量增加1.8倍 | [ | ||
EMS | ITPK | -- | 46-68 | -- | -- | 是 | -- | [ | ||
γ-rays + sodium zide | MIK | Os-lpa-XS110-1 | 34-64 | -- | -- | 是. | 23个蛋白表达量增加;肌醇,果聚糖, 半乳糖和半乳糖苷含量增加;低价磷酸肌醇盐未检出 | [ | ||
EMS | MIK | lpa N15-186 | 34-75 | -- | -- | -- | -- | [ | ||
Gene silence (amiMIK) | MIK | -- | 37.0-50.7, | 增加 3.2-4.8倍 | -- | -- | OsMIK转录表达降低,不同株系总磷含量变化不一致 | [ | ||
Gene silence (hpMIK) | MIK | -- | 14.9-50.2 | 增加 1.8-4.4倍 | -- | -- | OsMIK转录表达降低,不同株系总磷含量变化不一致 | [ | ||
γ-rays + sodium zide | MRP | Os-lpa-XS110-2 | 20 | -- | -- | 是 | 肌醇和寡聚糖降低 | [ | ||
γ-rays + sodium zide | MRP | Os-lpa-XS110-3 | 约100 | 增加10倍 | 不变 | 致死 | 肌醇含量增加400%;植酸量<0.20 mg/g | [ | ||
T-DNA insertion | MRP | -- | 90 | 增加10倍 | 不变 | 致死 | -- | [ | ||
RNAi under Oleosin 18 | MRP | -- | 35.8-71.9 | 增加 7.5 倍 | -- | 是 | 脂和核酸中的磷含量降低 | [ | ||
γ-rays | -- | Os-lpa-XQZ-3 | -- | -- | -- | 致死 | -- | [ | ||
γ-rays | Sultr3;3 | -- | 44 | 增加 (等摩尔) | -- | 是 | -- | [ | ||
γ-rays | Sultr3;3 | lpa-Z9B-1 | 45 | -- | 降低 | 是 | -- | [ | ||
γ-rays | Sultr3;3 | lpa-MH86-1 | 43.9-35.2 | 增加108%-170% | 降低 | 是 | 糖、小分子籽粒内含物、丝氨酸、赖氨酸、硫、磷酸、 GABA活性增加;植酸、硫酸盐和磷酸盐基因表达量改变 | [ | ||
γ-rays | 2-PGK | KBNT lpa1-1 | 39-71 | 增加5%-32% | -- | 减产10% | 植酸蛋白体体积减小;低价肌醇磷酸盐增加 | [ | ||
60Co-γ | 2-PGK | DR1331-2 | 45 | 增加 (等摩尔) | 不变 | 否 | -- | [ | ||
γ-rays | -- | lpa1 | 45 | 增加 (等摩尔) | 不变 | 否 | 胚中植酸降幅高于糊粉层;钙, 锰降低、锌增加; 无低价磷酸盐 | [ [ | ||
60Co-γ+ NaN3 | -- | Os-lpa-R6547-3 | -- | -- | -- | 致死 | -- | [ | ||
EMS | -- | Dontokoi176 | 15 | -- | 增加12% | 否 | 垩白增幅率较低,铁,钼含量降低,其它矿质元素增加 | [ | ||
EMS | -- | Koshihikari2623 | 45 | -- | 不变 | 否 | 垩白增幅率较高,萌发前期活性较低 | [ | ||
γ-rays | -- | Koshihikari4019 | 36 | -- | 不变 | 否 | 垩白增幅率较高 | [ | ||
Callus culture | -- | NC1857 | 17.1 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜、锰、钠、锌增加,钼降低41.9% | [ | ||
EMS | -- | Dontokoil 76 | 14.7 | 增加 | 增加 22% | 小幅降低 | 增加了43.4%的铜,33.4%的钾,20.4%的镁,11.5%的钠, 39.1%的磷,23.6%的硫,10.8%的二氧化硅,44.2%的锌。 而降低铁13.8%,钼17.5% | [ | ||
γ-rays | -- | Koshihikari49 | 5.9 | 增加 | 增加 9.4% | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ | ||
EMS | -- | Koshihikari2623 | 44.7 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ | ||
EMS | -- | Koshihikari3847 Koshihikari | 47.9 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ | ||
EMS | -- | Koshihikari4019 | 35.9 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ |
Table 1 Different lpa rice mutants and their characteristics.
突变方法 Origin of mutation | 基因位点 Locus | 低植酸突变体名称 Name of lpa | 植酸含量降幅 Reduction in Phytic acid /% | 无机磷变化 Pi variation | 总磷变化 Total P variation | 产量劣变 Yield inferiority | 其他 Other phenotypic changes | 参考文献 Reference | ||
---|---|---|---|---|---|---|---|---|---|---|
antisense under Ole18 | MIPS (RION1) | -- | 68-75 | 增加 (等摩尔) | -- | 否 | 植酸变化仅影响胚乳和糊粉层 | [ | ||
antisense under 35S | MIPS (RION1) | -- | -- | -- | 不变 | -- | -- | [ | ||
RNAi under GluB-1 | MIPS (RION1) | lpa1 | 17 | 增加 (等摩尔) | -- | -- | -- | [ | ||
RNAi | MIPS | -- | -- | 增加 (等摩尔) | -- | -- | MIPS基因下调4.59倍;阳离子含量增加, 其中精米中铁含量增加1.6倍;肌醇和抗坏血酸含量降低 | [ | ||
RNAi under Oleosin 18 | IPK1 | -- | 69(T4代) | 增加 (等摩尔) | 不变 | 否 | IPK1 转录表达下调3.85倍;胚乳中铁含量增加1.8倍 | [ | ||
EMS | ITPK | -- | 46-68 | -- | -- | 是 | -- | [ | ||
γ-rays + sodium zide | MIK | Os-lpa-XS110-1 | 34-64 | -- | -- | 是. | 23个蛋白表达量增加;肌醇,果聚糖, 半乳糖和半乳糖苷含量增加;低价磷酸肌醇盐未检出 | [ | ||
EMS | MIK | lpa N15-186 | 34-75 | -- | -- | -- | -- | [ | ||
Gene silence (amiMIK) | MIK | -- | 37.0-50.7, | 增加 3.2-4.8倍 | -- | -- | OsMIK转录表达降低,不同株系总磷含量变化不一致 | [ | ||
Gene silence (hpMIK) | MIK | -- | 14.9-50.2 | 增加 1.8-4.4倍 | -- | -- | OsMIK转录表达降低,不同株系总磷含量变化不一致 | [ | ||
γ-rays + sodium zide | MRP | Os-lpa-XS110-2 | 20 | -- | -- | 是 | 肌醇和寡聚糖降低 | [ | ||
γ-rays + sodium zide | MRP | Os-lpa-XS110-3 | 约100 | 增加10倍 | 不变 | 致死 | 肌醇含量增加400%;植酸量<0.20 mg/g | [ | ||
T-DNA insertion | MRP | -- | 90 | 增加10倍 | 不变 | 致死 | -- | [ | ||
RNAi under Oleosin 18 | MRP | -- | 35.8-71.9 | 增加 7.5 倍 | -- | 是 | 脂和核酸中的磷含量降低 | [ | ||
γ-rays | -- | Os-lpa-XQZ-3 | -- | -- | -- | 致死 | -- | [ | ||
γ-rays | Sultr3;3 | -- | 44 | 增加 (等摩尔) | -- | 是 | -- | [ | ||
γ-rays | Sultr3;3 | lpa-Z9B-1 | 45 | -- | 降低 | 是 | -- | [ | ||
γ-rays | Sultr3;3 | lpa-MH86-1 | 43.9-35.2 | 增加108%-170% | 降低 | 是 | 糖、小分子籽粒内含物、丝氨酸、赖氨酸、硫、磷酸、 GABA活性增加;植酸、硫酸盐和磷酸盐基因表达量改变 | [ | ||
γ-rays | 2-PGK | KBNT lpa1-1 | 39-71 | 增加5%-32% | -- | 减产10% | 植酸蛋白体体积减小;低价肌醇磷酸盐增加 | [ | ||
60Co-γ | 2-PGK | DR1331-2 | 45 | 增加 (等摩尔) | 不变 | 否 | -- | [ | ||
γ-rays | -- | lpa1 | 45 | 增加 (等摩尔) | 不变 | 否 | 胚中植酸降幅高于糊粉层;钙, 锰降低、锌增加; 无低价磷酸盐 | [ [ | ||
60Co-γ+ NaN3 | -- | Os-lpa-R6547-3 | -- | -- | -- | 致死 | -- | [ | ||
EMS | -- | Dontokoi176 | 15 | -- | 增加12% | 否 | 垩白增幅率较低,铁,钼含量降低,其它矿质元素增加 | [ | ||
EMS | -- | Koshihikari2623 | 45 | -- | 不变 | 否 | 垩白增幅率较高,萌发前期活性较低 | [ | ||
γ-rays | -- | Koshihikari4019 | 36 | -- | 不变 | 否 | 垩白增幅率较高 | [ | ||
Callus culture | -- | NC1857 | 17.1 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜、锰、钠、锌增加,钼降低41.9% | [ | ||
EMS | -- | Dontokoil 76 | 14.7 | 增加 | 增加 22% | 小幅降低 | 增加了43.4%的铜,33.4%的钾,20.4%的镁,11.5%的钠, 39.1%的磷,23.6%的硫,10.8%的二氧化硅,44.2%的锌。 而降低铁13.8%,钼17.5% | [ | ||
γ-rays | -- | Koshihikari49 | 5.9 | 增加 | 增加 9.4% | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ | ||
EMS | -- | Koshihikari2623 | 44.7 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ | ||
EMS | -- | Koshihikari3847 Koshihikari | 47.9 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ | ||
EMS | -- | Koshihikari4019 | 35.9 | 增加 (等摩尔) | 不变 | 小幅降低 | 铜,锰,钠和锌增加,钼降低 | [ |
[1] | Raboy V.Seeds for a better future: 'Low phytate', grains help to overcome malnutrition and reduce pollution.Trends Plant Sci, 2001, 6(10): 458-462. |
[2] | Borg S, Brinch-Pedersen H, Tauris B, Holm P B.Iron transport, deposition and bioavailability in the wheat and barley grain.Plant Soil, 2009, 325(1-2): 15-24. |
[3] | Rosa-Sibakov N, Kaisa P, Valérie M.How does wheat grain, bran and aleurone structure impact their nutritional and technological properties?Trends Food Sci Technol, 2015, 41(2): 118-134. |
[4] | 张倩雯, 丁广大, 王效华, Liu L, King J G, 徐芳森, 石磊. 植物种子植酸研究进展. 植物科学学报, 2016, 34(5): 814-820. |
Zhang Q W, Ding G D, Wang X H, Liu L, King J G, Xu F S, Shi L.Research progress on plant seed phytate.Plant Sci J, 2016, 34(5): 814-820. (in Chinese with English abstract) | |
[5] | Brinch-Pedersen H, Sorensen L D, Holm P B.Engineering crop plants: Getting a handle on phosphate.Trends Plant Sci, 2002, 7(3): 118-125. |
[6] | Welch R M, Graham R D.Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot, 2004, 55(396): 353-364. |
[7] | Boncompagni E, Gregorio O, Eleonora C, Prakash I G, Stefania G, Theophilus T K Z, Maria G D, Erik N, Francesca S. Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways.PloS One, 2018, 13(6): e0198394. |
[8] | Loewus F A, Murthy P. Myo-inositol metabolism in plants. Plant Sci, 2000, 150(1): 1-19. |
[9] | Raboy V.Low-phytic-acid grains.Food Nutr Bull, 2000, 21(4): 423-427. |
[10] | Suzuki M, Tanaka K, Kuwano M, Yoshida K T.Expression pattern of inositol phosphate-related enzymes in rice (Oryza sartiva L.): Implications for the phytic acid biosynthetic pathway. Gene, 2007, 405(1-2): 55-64. |
[11] | Coelho C M, Tsai S M, Vitorello V A.Dynamics of inositol phosphate pools (tris-, tetrakis- and pentakisphosphate) in relation to the rate of phytate synthesis during seed development in common bean (Phaseolus vulgaris L.). J Plant Physiol, 2005, 162(1): 1-9. |
[12] | Shi J, Wang H, Wu Y, Hazebroek J, Meeley R B, Ertl D S.The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol, 2003, 131(2): 507-515. |
[13] | Cui M, Liang D, Ma F W.Molecular cloning and characterization of a cDNA encoding kiwifruit L-myo-inositol-1-phosphate synthase, a key gene of inositol formation. Mol Biol Rep, 2013, 40(1): 697-705. |
[14] | Perera I, Saman S, Naoki H.Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability.Rice, 2018, 11(1): 4. |
[15] | Coelho C M, Benedito V A, Figueira A, Vitorello V A, Azevedo R A.Variation in the enzyme activity and gene expression of myo-inositol-3-phosphate synthase and phytate accumulation during seed development in common bean(Phaseolus vulgaris L.). Acta Physiol Plant, 2007, 190(3): 24-39. |
[16] | Larson S R, Rutger J N, Young K A, Raboy V.Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci, 2000, 40(5): 1397-1405. |
[17] | Wilcox J R, Premachandra G S, Young K A, Raboy V.Isolation of high seed inorganic P, low-phytate soybean mutants.Crop Sci, 2000, 40(6): 1601-1605. |
[18] | Yuan F J, Zhao H J, Ren X L, Zhu S L, Fu X J, Shu Q Y.Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet, 2007, 115(7): 945-957. |
[19] | Hambidge K M, Krebs N F, Westcott J L, Sian L, Miller L V, Peterson K L, Raboy V.Absorption of calcium from tortilla meals prepared from low-phytate maize.Am J Clin Nutr, 2005, 82(1): 84-87. |
[20] | Poulsen H D, Johansen K S, Hatzack F, Boisen S, Rasmussen S R K. Nutritional value of low-phytate barley evaluated in rats.Acta Agr Scand A-An, 2001, 51(1): 53-58. |
[21] | Petry N, Egli I, Campion B, Nielsen E, Hurrell R.Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr, 2013, 143(8): 1219-1224. |
[22] | Hambidge K M, Huffer J W, Raboy V, Grunwald G K, Westcott J L, Sian L, Miller L V, Dorsch J A, Krebs N F.Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids.Am J Clin Nutr, 2004, 79(6): 1053-1059. |
[23] | Kuwano M, Mimura T, Takaiwa F, Yoshida K T.Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene(RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J, 2009, 7(1): 96-105. |
[24] | Feng X, Yoshida K T.Molecular approaches for producing low-phytic-acid grains in rice.Plant Biotechnol, 2004, 21(3): 183-189. |
[25] | Li W X, Huang J Z, Zhao H J, Tan Y Y, Cui H R, Poirier Y, Shu Q Y.Production of low phytic acid rice by hairpin RNA- and artificial microRNA-mediated silencing of OsMIK in seeds. Plant Cell Tiss Org, 2014, 119(1): 15-25. |
[26] | Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida K T.Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breeding, 2006, 18(3): 263-272. |
[27] | Ali N, Paul S, Gayen D, Sarkar S N, Datta S K, Datta K.RNAi mediated down regulation of myo-inositol-3- phosphate synthase to generate low phytate rice. Rice, 2013, 6(1): 1-12. |
[28] | Kim S I, Andaya C B, Newman J W, Goyal S S, Tai T H.Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet, 2008, 117(8): 1291-1301. |
[29] | Kim S I, Andaya C B, Goyal S S, Tai T H.The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet, 2008, 117(5): 769-779. |
[30] | Zhao H J, Liu Q L, Ren X L, Wu D X, Shu Q Y.Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol Breeding, 2008, 22(4): 603-612. |
[31] | Kim S, Tai T H.Identification of novel rice low phytic acid mutations via TILLING by sequencing.Mol Breeding, 2014, 34(4): 1717-1729. |
[32] | Ali N, Paul S, Gayen D, Sarkar S N, Datta K, Datta S K.Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakis phosphate 2-kinase gene (IPK1). PloS One, 2013, 8(7): e68161. |
[33] | Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring J K, Brearley C, Martinoia E. The Arabidopsis ATP-binding cassette protein ATMRP5/ATABCC5 is a high-affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem, 2009: jbc. M109. 030247. |
[34] | Xu X H, Zhao H J, Liu Q L, Frank T, Engel K H, An G H, Shu Q Y.Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds.Theor Appl Genet, 2009, 119(1): 75-83. |
[35] | Wanke D, Üner Kolukisaoglu H.An update on the ABCC transporter family in plants: Many genes, many proteins, but how Many functions?Plant Biol, 2010, 12: 15-25. |
[36] | Maroof M A, Glover N M, Biyashev R M, Buss G R, Grabau E A.Genetic basis of the low-phytate trait in the soybean line CX1834.Crop Sci, 2009, 49(1): 69-76. |
[37] | Panzeri D, Cassani E, Doria E, Tagliabue G, Fort L, Campion B, Bollini R, Brearley C A, Pilu R, Nielsen E, Sparvoli F.A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol, 2011, 191(1): 70-83. |
[38] | Cerino B F, Amelotti M, Cassani E, Pilu R.Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize. J Hered, 2012, 103(4): 598-605. |
[39] | Shi J, Wang H, Hazebroek J, Harp T.The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J, 2005, 42(5): 708-719. |
[40] | Pilu R, Panzeri D, Cassani E, Cerino B F, Landoni M, Nielsen E.A paramutation phenomenon is involved in the genetics of maize low phytic acid 1-241 (lpa1-241) trait. Heredity, 2009, 102(3): 236-245. |
[41] | Bhati K K, Alok A, Kumar A, Kaur J, Tiwari S, Pandey A K, Notes A.Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J Exp Bot, 2016, 67(14): 4379-4389. |
[42] | Bhati K K, Aggarwal S, Sharma S, Mantri S, Singh S P, Bhalla S, Kaur J, Tiwari S, Roy J K, Tuli R, Pandey A K.Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.). Plant Sci, 2014, 224: 74-85. |
[43] | Mitsuhashi N, Kondo M, Nakaune S, Ohnishi M, Hayashi M, Hara-Nishimura I, Richardson A, Fukaki H, Nishimura M, Mimura T.Localization of myo-inositol-1- phosphate synthase to the endosperm in developing seeds of Arabidopsis. J Exp Bot, 2008, 59(11): 3069-3076. |
[44] | Chiera J M, Grabau E A.Localization of myo-inositol phosphate synthase(GmMIPS-1) during the early stages of soybean seed development. J Exp Bot, 2007, 58: 2261-2268. |
[45] | Li W X, Zhao H J, Pang W Q, Cui H R, Poirier Y, Shu Q Y.Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice. Transgen Res, 2014, 23(4): 585-599. |
[46] | Sparvoli F, Cominelli E.Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plants, 2015, 4(4): 728-755. |
[47] | Borghi L, Kang J, Ko D, Lee Y, Marinoia E.The role of ABCG-type ABC transporters in phytohormone transport.Biochem Soc T, 2015, 43(5): 924-930. |
[48] | Cominelli E, Confalonieri M, Carlessi M, Cortinovisa G, Daminati M G, Porch T G, Losa A, Sparvoli F.Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems.Plant Sci, 2018, 270: 1-12. |
[49] | Israel D W, Taliercio E, Kwanyuen P, Burton J W, Dean L.Inositol metabolism in developing seed of low and normal phytic acid soybean lines.Crop Sci, 2011, 51: 282-289. |
[50] | Redekar N, Pilot G, Raboy V, Song L, Saghai-Maroof M A. Inference of transcription regulatory network in low phytic acid soybean seeds.Front Plant Sci, 2017, 8: 2029. |
[51] | Redekar N R, Biyashev R M, Jensen R V, Helm R, Grabau E A, Maroof M A.Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.BMC Genom, 2015, 16(1): 1074. |
[52] | Liu K S, Xu X H, Ren X L, Fu H W, Wu D X, Shu Q Y.Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet, 2007, 114(5): 803-814. |
[53] | Zhao H J, Liu Q L, Fu H W, Xu X H, Wu D X, Shu Q Y.Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice.Field Crop Res, 2008, 108(3): 206-211. |
[54] | Zhao H, Frank T, Tan Y.Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol, 2016, 211(3): 926-939. |
[55] | Ye H, Zhang X Q, Broughton S, Westcott S, Wu D, Lance R, Li C.A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley.Funct Integr Genom, 2011, 11(1): 103-110. |
[56] | Takahashi H, Buchner P, Yoshimoto N, Hawkesford M J, Shiu S H.Evolutionary relationships and functional diversity of plant sulfate transporters.Front Plant Sci, 2012, 2: 119. |
[57] | Zhang S, Yang W, Zhao Q, Zhou X, Jiang L, Ma S, Liu X, Li Y, Zhang C, Fan Y, Chen R.Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genom, 2016, 17(1): 129. |
[58] | Frank T, Norenberg S, Engel K H.Metabolite profiling of two novel low phytic acid (lpa) soybean mutants. J Agric Food Chem, 2009, 57(14): 6408-6416. |
[59] | Emami K, Morris N J, Cockell S J, Golebiowska G, Shu Q Y, Gatehouse A M R. Changes in protein expression profiles between a low phytic acid rice (Oryza sativa L. ssp. japonica) line and its parental line: a proteomic and bioinformatic approach. J Agric Food Chem, 2010, 58(11): 6912-6922. |
[60] | Rutger J N, Raboy V, Moldenhauer K A K, Bryant R J, Lee F N, Gibbons J W. Registration of KBNT lpa1-1 low phytic acid germplasm of rice. Crop Sci, 2004, 44(1): 363-364. |
[61] | Lott J N A, Liu J C, Ockenden I, Truax M. Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Sci Res, 2004, 14(2): 109-116. |
[62] | Andaya C B, Tai T H.Fine mapping of the rice low phytic acid (Lpa1) locus.Theor Appl Genet, 2005, 111(3): 489-495. |
[63] | Yatou O, Aoki H, Aii J, Tanaka H.Selection of novel non-lethal, low phytic acid mutants and evaluation of their agronomic traits/mineral compositions in rice (Oryza sativa). Jarq-jpn Agr Res Q: Jarq, 2018, 52(1): 39-47. |
[64] | Hitz W D, Carlson T J, Kerr P S, Sebastian S A.Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds.Plant Physiol, 2002, 128(2): 650-660. |
[65] | Edwards J D, Jackson A K, McClung A M. Genetic architecture of grain chalk in rice and interactions with a low phytic acid locus.Field Crop Res, 2017, 205: 116-123. |
[66] | Zhou L, Ye Y, Zhao Q, Du X, Zakari S A, Su D, Pan G, Cheng F M.Suppression of ROS generation mediated by higher InsP3 level is critical for the delay of seed germination in lpa rice. Plant Growth Regul, 2018, 85(3): 411-424. |
[67] | Oltmans S E, Fehr W R, Welke G A, Raboy V, Peterson K L.Agronomic and seed traits of soybean lines with low-phytate phosphorus.Crop Sci, 2005, 45(2): 593-598. |
[68] | Bregitzer P, Raboy V.Effects of four independent low-phytate mutations in barley on (Hordeum vulgare L.) seed phosphorus characteristics and malting quality. Cereal Chem, 2006, 83: 460-464. |
[69] | Meis S J, Fehr W R, Schnebly S R.Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides.Crop Sci, 2003, 43(4): 1336-1339. |
[70] | Hulke B S, Fehr W R, Welke G A.Agronomic and seed characteristics of soybean with reduced phytate and palmitate.Crop Sci, 2004, 44: 2027-2031. |
[71] | Su D, Lei B T, Li Z W, Cao Z Z, Huang F D, Pan G, Ding Y, Cheng F M.Influence of high temperature during filling period on grain phytic acid and its relation to spikelet sterility and grain weight in non-lethal low phytic acid mutations in rice.J Cereal Sci, 2014, 60(2): 331-338. |
[72] | Pilu R, Landoni M, Cassani E, Doria E, Nielsen E.The maize lpa241 mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci, 2005, 45: 2096-2105. |
[73] | Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett S G, Bauman A T, Murthy P, Sheridan W F, Ertl D S.Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1.Plant Physiol, 2000, 124(1): 355-368. |
[74] | David E B, Edward J S, Mary J G, Victor R, Jianming F.A low phytic acid barley mutation alters seed gene expression.Crop Sci, 2007, 47: S149. |
[75] | Ertl D S, Young K A, Raboy V.Plant genetic approaches to phosphorus management in agricultural production.J Environ Qual, 1998, 27(2): 299-304. |
[76] | Nunes A C, Vianna G R, Cuneo F, Amayafarf A, De-Capdeville G, Rech L, Arag A.RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene(GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta, 2006, 224(1): 125-132. |
[77] | Raboy V, Peterson K.A substantial fraction of barley (Hordeum vulgare L.) low phytic acid mutations have little or no effect on yield across diverse production environments. Plants, 2015, 4(2): 225-239. |
[78] | Naidoo R, Tongoona P, Derera J, Laing M D, Watson G M F. Combining ability of low phytic acid (lpa1-1) and quality protein maize (QPM) lines for seed germination and vigour under stress and non-stress conditions. Euphytica, 2012, 185(3): 529-541. |
[79] | Ockenden I, Dorsch J A, Reid M M, Lin L, Grant L K, Raboy V, Lott J N A. Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Sci, 2004, 167(5): 1131-1142. |
[80] | Sheard L B, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M.Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor.Nature, 2010, 468(7322): 400-405. |
[81] | Ananieva E, Gillaspy G.Switches in nutrient and inositol signaling.Plant Signal Behav, 2009, 4(4): 304-306. |
[82] | Lemtiri-Chlieh F, MacRobbie E, Webb A, Manison N F, Brownlee C, Skeppe J N, Chen J, Prestwich G D, Brearley C A. Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells.Proc Natl Acad Sci U.S.A, 2003, 100(17): 10091-10095. |
[83] | Murphy A M, Otto B, Brearley C A, Carr J P, Hanke D E.A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens.Plant J, 2008, 56(4): 638-652. |
[84] | Munnik T, Vermeer J E.Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants.Plant Cell Environ, 2010, 33(4): 655-669. |
[85] | Stevenson-Paulik J, Bastidas R J, Chiou S T, Frye R A, York J D.Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U.S.A, 2005, 102(35): 12612-12617. |
[86] | Kuo H, Chang T, Chiang S.Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. Plant J, 2014, 80(3): 503-515. |
[87] | Qin Z, Chen Q, Tong Z.The Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase, AtItpk-1, is involved in plant photomorphogenesis under red light conditions, possibly via interaction with COP9 signalosome. Plant Physiol Bioch, 2005, 43(10-11): 947-954. |
[88] | Latrasse D, Jegu T, Meng P H, Mazubert C, Hudik E, Delarue M, Charon C, Crespi M, Hirt H, Raynaud C, Bergounioux C, Benhamed M.Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator.Nuc Acids Res, 2013, 41(5): 2907-2917. |
[89] | Loewus F A, Loewus M W.Myo-inositol: its biosynthesis and metabolism.Ann Rev Plant Physiol, 1983, 34(1): 137-161. |
[90] | Gumber S C, Loewus M W, Loewus F A.Further studies on myo-Inositol-1-phosphatase from the pollen of Lilium longiflorum Thunb. Plant Physiol, 1984, 76(1): 40-44. |
[91] | Irvine R F, Schell M J.Back in the water: The return of the inositol phosphates.Nat Rev Mol Cell Bio, 2001, 2(5): 327-338. |
[92] | Hui Q, Yang R, Shen C, Zhou Y, Gu Z.Mechanism of calcium lactate facilitating phytic acid degradation in soybean during germination. J Agric Food Chem, 2016, 64(27): 5564-5573. |
[93] | Nelson D E, Rammesmayer G, Bohnert H J.Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance.Plant Cell, 1998, 10(5): 753-764. |
[94] | Patra B, Ray S, Richter A, Majumder A L.Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma, 2010, 245(1-4): 143-152. |
[95] | Majee M, Maitra S, Dastidar K G, Pattnaik S, Chatterjee A, Hait N C, Das K P, Majumder A L.A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype.J Biol Chem, 2004, 279(27): 28539-28552. |
[96] | Ishitani M, Majumder A L, Bornhouser A, Michalowski C B, Jensen R G, Bohnert H J.Coordinate transcriptional induction of myo-inositol metabolism during environ mental stress. Plant J, 1996, 9(4): 537-548. |
[97] | Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma P K, Chattopadhyay D.Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum.Plant Physiol, 2004, 135(3): 1608-1620. |
[98] | Abreu E, Aragao F.Isolation and characterization of a myo-inositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress. Ann Bot-London, 2007, 99(2): 285-292. |
[99] | Iwai T, Takahashi M, Oda K, Terada Y, Yoshida K T.Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.Plant Physiol, 2012, 160(4): 2007-2014. |
[100] | Kaur H, Shukla R K, Yadav G, Chattopadhyay D, Majee M.Two divergent genes encoding L -myo-inositol 1-phosphate synthase1(CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea.Plant Cell Environ, 2008, 31(11): 1701-1716. |
[101] | Das-Chatterjee A, Goswami L, Maitra S, Dastidar K G, Ray S, Majumder A L.Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka(PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett, 2006, 580(16): 3980-3988. |
[102] | Plaxton W C, Preiss J.Purification and properties of nonproteolytic degraded ADPglucose pyrophosphorylase from maize endosperm.Plant Physiol, 1987, 83(1): 105-112. |
[103] | Bilgrami S S, Houshmand S, Kadivar M, Fakheri B, Zandi P, Shariati V, Razavi K, Tavakol E, Mahdinezhad N, Sabouri S J, Kumar B S, Możdżeń K.Phytic acid, iron and zinc content in wheat ploidy levels and amphiploids: The impact of genotype and planting seasons. Arch Acker Pfl Boden, 2018, 64(3): 331-346. |
[104] | Miller G A, Youngs V L.Environmental and cultivar effects on oat phytic acid concentration.Cereal Chem, 1980, 57: 189-191. |
[105] | Batten G D, Lott J.The influence of phosphorus nutrition on the appearance and composition of globoid crystals in wheat aleurone cells.Cereal Chem, 1986, 63(1): 14-18. |
[106] | Feil B, Fossati D.Phytic acid in triticale grains as affected by cultivar and environment.Crop Sci, 1997, 37(3): 916-921. |
[107] | Jaksomsak P, Tuiwong P, Rerkasem B, Guild G, Palmer L, Stangoulis J, Prom-u-thai C T. The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four Thai rice varieties with different grain zinc.,J Cereal Sci, 2018 79: 6-12. |
[108] | Dost K, Tokul O.Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography.Anal Chim Acta, 2006, 558(1-2): 22-27. |
[109] | Dai F, Wang J, Zhang S, Xu Z, Zhang G.Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley.Food Chem, 2007, 105(2): 606-611. |
[110] | Thavarajah D, Thavarajah P, See C T, Vandenberg A.Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chem, 2010, 122(1): 254-259. |
[111] | Fernando N, Panozzo J, Tausz M, Norton R M, Fitzgerald G J, Myers S, Nicolas M E, Seneweera S.Intra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatments.J Cereal Sci, 2014, 59(2): 137-144. |
[112] | Dhole V J, Reddy K S.Genetic variation for phytic acid content in mungbean (Vigna radiata L. Wilczek). The Crop J, 2015, 3(2): 157-162. |
[113] | 赵宁春, 张小明, 叶胜海, 程方民. 不同栽培方式和施氮量对稻米营养品质及植酸积累的影响. 浙江农业学报, 2009, 21(3): 259-263. |
Zhao N C, Zhang X M, Ye S H, Cheng F M.Effects of different cultivation methods and nitrogen application on grain phytic acid contents and nutritional quality for japonica rice.Acta Agric Zhejiang, 2009, 21(3): 259-263. (in Chinese with English abstract) | |
[114] | 赵宁春, 张其芳, 程方民, 周伟军. 氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性. 中国水稻科学, 2007, 21(2): 185-190. |
Zhao N C, Zhang Q F, Cheng F M.Phosphorus and zinc supply levels on grain phytic acid content and its correlation with several mineral nutrients in rice grain.Chin J Rice Sci, 2007, 21(2): 185-190. (in Chinese with English abstract) | |
[115] | Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S.Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar.Anim Feed Sci Tech, 2007, 133(3-4): 320-334. |
[116] | Liu Z H, Cheng F M, Zhang G P.Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content.Food Chem, 2005, 89(1): 49-52. |
[117] | Magallanes-López A M, Hernandez-Espinosa N, Velu G, Posadas-Romano G, Ordoñez-Villegas V M G, Crossa J, Ammar K, Guzmán C. Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits.Food Chem, 2017, 237: 499-505. |
[118] | Hummel M, Hallahan B F, Brychkova G, Ramirez-Villegas J, Guwela V, Chataika B, Curley E, McKeown P C, Morrison L, Talsma E F, Beebe S, Jarvis A, Chirwa R, Spillane C. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa.Sci Rep, 2018, 8: 16187. |
[119] | Gibson L R, Mullen R E.Mineral concentrations in soybean seed produced under high day and night temperature.Can J Plant Sci, 2001, 81(4): 595-600. |
[120] | Ning H, Liu Z, Wang Q, Lin Z, Chen S, Li G, Wang S, Ding Y.Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes.J Cereal Sci, 2009, 50(1): 49-55. |
[121] | Khan A M, Hussain S, Rengel Z, Shah M A A. Zinc bioavailability and nitrogen concentration in grains of wheat crop sprayed with zinc sulfate, ammonium sulfate, ammonium chloride, and urea.J Plant Nutr, 2018, 41(15): 1926-1936. |
[122] | Wang Z M, Liu Q, Pan F, Yuan L X, Yin X B.Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat.Field Crop Res, 2015, 184: 58-64. |
[123] | 张其方, 刘奎刚, 苏达, 王复标, 程方民. 氮素和水分处理对稻米植酸含量和蛋白组分的影响. 植物营养与肥料学报, 2012, 18(3): 542-550. |
Zhang Q F, Liu K G, Su D, Wang F B, Cheng F M.Effects of different nitrogen and water treatments on phytic acid contents and protein components in rice grain.Plant Nutr Fert Sci, 2012, 18(3): 542-550. (in Chinese with English abstract) | |
[124] | Su D, Zhou L J, Zhao Q, Pan G, Cheng F M.Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) Grains. J Agric Food Chem, 2018, 66(7): 1601-1611. |
[125] | Raboy V, Dickinson D B.Phytic acid levels in seeds of Glycine max and G. soja as influenced by phosphorus status.Crop Sci, 1993, 33(6): 1300-1305. |
[126] | Buerkert A, Haake C, Ruckwied M, Marschner H.Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crop Res, 1998, 57(2): 223-235. |
[127] | Zhang W, Liu D Y, Liu Y M, Chen X P, Zou C Q.Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.). J Agric Food Chem, 2017, 65(8):1473-1482. |
[128] | Lickfett T, Matthaus B, Velasco L, Mollers C.Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply.Eur J Agron, 1999, 11(3-4): 293-299. |
[1] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[2] | WANG Tengjiao, CHEN Chen. Mechanisms Behind Aleurone Development in Cereals and Its Application in Breeding [J]. Chinese Journal OF Rice Science, 2023, 37(5): 459-469. |
[3] | Juan ZHANG, Baixiao NIU, Zhiguo E, Chen CHEN. Towards Understanding the Genetic Regulations of Endosperm Development in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(4): 326-341. |
[4] | Youjin SONG, Chao WU, Ziyu LI, She TANG, Ganghua LI, Shaohua WANG, Yanfeng DING. Differential Responses of Grain Yields to High Temperature in Different Stages of Reproductive Growth in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(2): 177-186. |
[5] | Qing ZHANG, Juan WANG, Li-quan JING, Lian-xin YANG, Yun-xia WANG. Effect of Foliar Application of Different Zn Compounds on Zn Concentration and Bioavailability in Brown Rice [J]. Chinese Journal OF Rice Science, 2015, 29(6): 610-618. |
[6] | Da SU, Fu-biao WANG, Bing-ting LEI, Jue WANG, Gang PAN, Fang-min CHENG. The Response of Phytic Acid and Its Expression Profiles in Rice (Oryza sativa L.) Grain as Induced by Phosphorus Supply [J]. Chinese Journal OF Rice Science, 2015, 29(2): 159-166. |
[7] | ZHANG Weixing#, SUN Chengxiao#, MIN Jie, DUAN Binwu, ZHU Zhiwei*. Effect of Exogenous Phytic Acid Application on Rice Grain Yield and Quality During Mid and Late Growth Stage [J]. Chinese Journal of Rice Science, 2013, 27(6): 603-609. |
[8] | SONG Yuanli, LUAN Weijiang*. Regulatory Pathways of Rice Flowering in Different Light and Temperature Conditions [J]. Chinese Journal of Rice Science, 2012, 26(4): 383-392. |
[9] | LI Mao-bai,#,WANG Hui,#,ZHANG Jian-ming,LEE Jung-ro,YANG Run-qing,ZHOU Yu-qiong,PIAO Zhong-ze. QTL Mapping and Epistasis Analysis for Phytic Acid Concentration in Rice Grain by Using the Bayesian Model Selection [J]. Chinese Journal of Rice Science, 2009, 23(5): 475-480 . |
[10] | WANG Hui,LI Maobai,ZHANG Jianming,SHI Yingyao,LEE Jung Ro,PIAO Zhongze . Phytic Acid Content in Different Parts of Grain and Its Correlation with Rice Quality Traits [J]. Chinese Journal of Rice Science, 2009, 23(2): 215-215~218 . |
[11] | WU Wei ,CHENG Fang-min ,LIU Zheng-hui. Variations in Grain Phytic Acid and Protein Contents among japonica Rice Cultivars from Jiangsu-Zhejiang Area and Their Correlation [J]. Chinese Journal of Rice Science, 2007, 21(3): 331-334 . |
[12] | ZHAO Ning-chun ,ZHANG Qi-fang ,CHENG Fang-min ,ZHOU Wei-jun. Effects of Nitrogen,Phosphorus and Zinc Supply Levels on Grain Phytic Acid Content and Its Correlation with Several Mineral Nutrients in Rice Grains [J]. Chinese Journal of Rice Science, 2007, 21(2): 185-190 . |
[13] | Wang Yu-hua,Ren Xue-liang,Liu Qing-long,Chen Wen-yue,Shen Sheng-quan,Wu Dian-xing,Shu Qing-yao. Screening, Selection and Development of High Inorganic Phosphorus Mutants in Rice [J]. Chinese Journal of Rice Science, 2005, 19(1): 47-51 . |
[14] | LIAO Min,XIE Xiao-mei,WU Liang-huan. Effects of Dry-Cultivated and Plastic Film-Mulched Rice Planting on Microorganism Ecological Quality in a Paddy Field Soil [J]. Chinese Journal of Rice Science, 2002, 16(3): 243-246 . |
[15] | Wen Tieqiao,Song Guoqing,Zhou Yong,Zhang Yang. The Relationship between Phytase Activity in Rice Seed and Germination (in English) [J]. Chinese Journal of Rice Science, 1997, 11(2): 89-92 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||