Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (2): 159-166.DOI: 10.3969/j.issn.1001-7216.2015.02.007
• Orginal Article • Previous Articles Next Articles
Da SU, Fu-biao WANG, Bing-ting LEI, Jue WANG, Gang PAN*(), Fang-min CHENG*(
)
Received:
2014-08-05
Revised:
2014-09-08
Online:
2015-03-10
Published:
2015-03-10
Contact:
Gang PAN, Fang-min CHENG
苏达, 王复标, 雷炳婷, 王珏, 潘刚*(), 程方民*(
)
通讯作者:
潘刚,程方民
基金资助:
CLC Number:
Da SU, Fu-biao WANG, Bing-ting LEI, Jue WANG, Gang PAN, Fang-min CHENG. The Response of Phytic Acid and Its Expression Profiles in Rice (Oryza sativa L.) Grain as Induced by Phosphorus Supply[J]. Chinese Journal OF Rice Science, 2015, 29(2): 159-166.
苏达, 王复标, 雷炳婷, 王珏, 潘刚, 程方民. 外源磷处理对水稻籽粒植酸含量及相关代谢基因表达的影响[J]. 中国水稻科学, 2015, 29(2): 159-166.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2015.02.007
基因 Gene | 基因登录号 Accession no. | 引物序列 Primer pairs (5'-3') | 产物大小 Product size/bp |
---|---|---|---|
ACTIN | X16280 | F: TGCGACGTGGATATTAGGAA | 83 |
R: TGCCAGGGAACATAGTGGTA | |||
RINO1 | AK103501 | F: CCGTGGCATGTGGCAAAGAG | 151 |
R: TGCATAGCCCGATAAGAGTC | |||
ITP5/6K-6 | AK102571 | F: ATTTGCATACAGGCGACAAC | 127 |
R: ATGTTCATCGCAAGCAGTTC | |||
IPK2 | AK072296 | F: GGAGCAAACCCTGTACCACT | 114 |
R: ACCAGCTTCACCCTTACACC | |||
IPK1 | AK102842 | F: GCTGGAAAGAATGTGCTTGA | 138 |
R: TGCTATGCAACTGCTTCCTC |
Table 1 Sequence of primers for phytic acid synthesis-related genes.
基因 Gene | 基因登录号 Accession no. | 引物序列 Primer pairs (5'-3') | 产物大小 Product size/bp |
---|---|---|---|
ACTIN | X16280 | F: TGCGACGTGGATATTAGGAA | 83 |
R: TGCCAGGGAACATAGTGGTA | |||
RINO1 | AK103501 | F: CCGTGGCATGTGGCAAAGAG | 151 |
R: TGCATAGCCCGATAAGAGTC | |||
ITP5/6K-6 | AK102571 | F: ATTTGCATACAGGCGACAAC | 127 |
R: ATGTTCATCGCAAGCAGTTC | |||
IPK2 | AK072296 | F: GGAGCAAACCCTGTACCACT | 114 |
R: ACCAGCTTCACCCTTACACC | |||
IPK1 | AK102842 | F: GCTGGAAAGAATGTGCTTGA | 138 |
R: TGCTATGCAACTGCTTCCTC |
品种与参数 Variety and parameter | 磷浓度P level/(mmol·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 6 | 12 | |||||||||||
秀水09 Xiushui 09 | |||||||||||||||
千粒重1000-grain weight/g | 18.04 | ± | 0.48 b | 20.03 | ± | 0.72 a | 20.12 | ± | 0.36 a | 17.46 | ± | 0.57 b | 15.72 | ± | 0.63 c |
植酸浓度PA concentration/% | 0.43 | ± | 0.04 d | 0.60 | ± | 0.01 c | 0.87 | ± | 0.02 b | 0.95 | ± | 0.03 a | 0.96 | ± | 0.05 a |
植酸含量PA content/(mg·grain-1) | 0.077 | ± | 0.006 d | 0.121 | ± | 0.006 c | 0.174 | ± | 0.002 a | 0.166 | ± | 0.001 ab | 0.151 | ± | 0.012 b |
无机磷Inorganic P/(mg·g-1) | 0.18 | ± | 0.02 d | 0.18 | ± | 0.02 d | 0.48 | ± | 0.02 c | 0.79 | ± | 0.01 b | 1.01 | ± | 0.06 a |
总磷Total P/(mg·g-1) | 1.66 | ± | 0.12 d | 2.25 | ± | 0.02 c | 3.51 | ± | 0.06 b | 4.19 | ± | 0.11 a | 4.51 | ± | 0.22 a |
锌含量Zn content/(mg·kg-1) | 21.93 | ± | 1.02 a | 21.70 | ± | 1.10 a | 17.95 | ± | 0.13 b | 17.97 | ± | 0.66 b | 16.74 | ± | 0.11 b |
铁含量Fe content/(mg·kg-1) | 28.80 | ± | 2.23 a | 24.49 | ± | 0.65 b | 21.44 | ± | 1.15 b | 17.51 | ± | 0.62 c | 14.19 | ± | 0.07 d |
植酸锌摩尔比[PA]/[Zn] | 19.26 | ± | 1.51 d | 27.60 | ± | 1.23 c | 47.91 | ± | 1.50 b | 52.39 | ± | 3.03 ab | 56.79 | ± | 2.31 a |
植酸铁摩尔比[PA]/[Fe] | 12.67 | ± | 2.06 e | 20.92 | ± | 0.86 d | 34.42 | ± | 2.67 c | 46.03 | ± | 2.63 b | 57.40 | ± | 2.96 a |
秀水110 Xiushui 110 | |||||||||||||||
千粒重 1000-grain weight/g | 17.86 | ± | 0.54 c | 19.02 | ± | 0.93 b | 19.53 | ± | 0.23 b | 20.71 | ± | 0.13 a | 18.63 | ± | 1.06 bc |
植酸浓度PA concentration/% | 0.56 | ± | 0.02 c | 0.58 | ± | 0.04 c | 0.85 | ± | 0.02 b | 0.97 | ± | 0.03 a | 0.98 | ± | 0.04 a |
植酸含量PA content/(mg·grain-1) | 0.100 | ± | 0.006 c | 0.110 | ± | 0.007 c | 0.166 | ± | 0.006 b | 0.201 | ± | 0.006 a | 0.192 | ± | 0.018 ab |
无机磷Inorganic P/(mg·g-1) | 0.20 | ± | 0.04 d | 0.23 | ± | 0.01 d | 0.34 | ± | 0.00 c | 0.73 | ± | 0.00 b | 1.10 | ± | 0.03 a |
总磷Total P/(mg·g-1) | 2.12 | ± | 0.06 d | 2.23 | ± | 0.12 d | 3.28 | ± | 0.08 c | 4.18 | ± | 0.11 b | 4.68 | ± | 0.13 a |
锌含量Zn content/(mg·kg-1) | 21.87 | ± | 0.30 b | 22.78 | ± | 0.48 b | 24.59 | ± | 1.26 a | 19.42 | ± | 0.02 c | 18.09 | ± | 0.21 c |
铁含量Fe content/(mg·kg-1) | 21.37 | ± | 0.59 a | 20.70 | ± | 0.11 a | 20.56 | ± | 0.14 ab | 19.65 | ± | 0.43 bc | 18.96 | ± | 0.16 c |
植酸锌摩尔比[PA]/[Zn] | 25.43 | ± | 1.15 c | 25.26 | ± | 1.98 c | 34.34 | ± | 1.48 b | 49.42 | ± | 1.77 a | 53.48 | ± | 2.11 a |
植酸铁摩尔比[PA]/[Fe] | 22.30 | ± | 1.32 c | 23.78 | ± | 1.64 c | 35.11 | ± | 0.85 b | 41.81 | ± | 1.20 a | 43.68 | ± | 1.76 a |
Table 2 Differences in phytic acid(PA), inorganic P, total P and grain Zn, Fe contents at various external P levels.
品种与参数 Variety and parameter | 磷浓度P level/(mmol·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 6 | 12 | |||||||||||
秀水09 Xiushui 09 | |||||||||||||||
千粒重1000-grain weight/g | 18.04 | ± | 0.48 b | 20.03 | ± | 0.72 a | 20.12 | ± | 0.36 a | 17.46 | ± | 0.57 b | 15.72 | ± | 0.63 c |
植酸浓度PA concentration/% | 0.43 | ± | 0.04 d | 0.60 | ± | 0.01 c | 0.87 | ± | 0.02 b | 0.95 | ± | 0.03 a | 0.96 | ± | 0.05 a |
植酸含量PA content/(mg·grain-1) | 0.077 | ± | 0.006 d | 0.121 | ± | 0.006 c | 0.174 | ± | 0.002 a | 0.166 | ± | 0.001 ab | 0.151 | ± | 0.012 b |
无机磷Inorganic P/(mg·g-1) | 0.18 | ± | 0.02 d | 0.18 | ± | 0.02 d | 0.48 | ± | 0.02 c | 0.79 | ± | 0.01 b | 1.01 | ± | 0.06 a |
总磷Total P/(mg·g-1) | 1.66 | ± | 0.12 d | 2.25 | ± | 0.02 c | 3.51 | ± | 0.06 b | 4.19 | ± | 0.11 a | 4.51 | ± | 0.22 a |
锌含量Zn content/(mg·kg-1) | 21.93 | ± | 1.02 a | 21.70 | ± | 1.10 a | 17.95 | ± | 0.13 b | 17.97 | ± | 0.66 b | 16.74 | ± | 0.11 b |
铁含量Fe content/(mg·kg-1) | 28.80 | ± | 2.23 a | 24.49 | ± | 0.65 b | 21.44 | ± | 1.15 b | 17.51 | ± | 0.62 c | 14.19 | ± | 0.07 d |
植酸锌摩尔比[PA]/[Zn] | 19.26 | ± | 1.51 d | 27.60 | ± | 1.23 c | 47.91 | ± | 1.50 b | 52.39 | ± | 3.03 ab | 56.79 | ± | 2.31 a |
植酸铁摩尔比[PA]/[Fe] | 12.67 | ± | 2.06 e | 20.92 | ± | 0.86 d | 34.42 | ± | 2.67 c | 46.03 | ± | 2.63 b | 57.40 | ± | 2.96 a |
秀水110 Xiushui 110 | |||||||||||||||
千粒重 1000-grain weight/g | 17.86 | ± | 0.54 c | 19.02 | ± | 0.93 b | 19.53 | ± | 0.23 b | 20.71 | ± | 0.13 a | 18.63 | ± | 1.06 bc |
植酸浓度PA concentration/% | 0.56 | ± | 0.02 c | 0.58 | ± | 0.04 c | 0.85 | ± | 0.02 b | 0.97 | ± | 0.03 a | 0.98 | ± | 0.04 a |
植酸含量PA content/(mg·grain-1) | 0.100 | ± | 0.006 c | 0.110 | ± | 0.007 c | 0.166 | ± | 0.006 b | 0.201 | ± | 0.006 a | 0.192 | ± | 0.018 ab |
无机磷Inorganic P/(mg·g-1) | 0.20 | ± | 0.04 d | 0.23 | ± | 0.01 d | 0.34 | ± | 0.00 c | 0.73 | ± | 0.00 b | 1.10 | ± | 0.03 a |
总磷Total P/(mg·g-1) | 2.12 | ± | 0.06 d | 2.23 | ± | 0.12 d | 3.28 | ± | 0.08 c | 4.18 | ± | 0.11 b | 4.68 | ± | 0.13 a |
锌含量Zn content/(mg·kg-1) | 21.87 | ± | 0.30 b | 22.78 | ± | 0.48 b | 24.59 | ± | 1.26 a | 19.42 | ± | 0.02 c | 18.09 | ± | 0.21 c |
铁含量Fe content/(mg·kg-1) | 21.37 | ± | 0.59 a | 20.70 | ± | 0.11 a | 20.56 | ± | 0.14 ab | 19.65 | ± | 0.43 bc | 18.96 | ± | 0.16 c |
植酸锌摩尔比[PA]/[Zn] | 25.43 | ± | 1.15 c | 25.26 | ± | 1.98 c | 34.34 | ± | 1.48 b | 49.42 | ± | 1.77 a | 53.48 | ± | 2.11 a |
植酸铁摩尔比[PA]/[Fe] | 22.30 | ± | 1.32 c | 23.78 | ± | 1.64 c | 35.11 | ± | 0.85 b | 41.81 | ± | 1.20 a | 43.68 | ± | 1.76 a |
Fig.1. Difference in the expressions of PA-related genes to external P concentrations in rice grain. 0P,No P added;3P, Optimum P concentration(3 mmol/L); 12P, High P concentration(12 mmol/L).
Fig. 2. Temporal patterns of transcriptional expressions of various genes involving in phytic acid biosynthesis pathway in rice endosperm during grain filling.
[1] | 郭朝晖, 李合松, 张杨珠, 等. 磷素水平对杂交水稻生长发育和磷素运移的影响. 中国水稻科学, 2002, 16(2): 151-156. |
[2] | 唐湘如, 余铁桥. 磷钾肥对饲用稻产量和蛋白质含量的影响及其机理研究. 中国农业科学, 2002, 35(4): 372-377. |
[3] | Raboy V.Seeds for a better future:‘Low phytate’grains help to overcome malnutrition and reduce pollution.Trend Plant Sci, 2001, 6(10): 458-462. |
[4] | Loewus F A, Murthy P.Myo-inositol metabolism in plants.Plant Sci, 2000, 150(1): 1-19. |
[5] | Wilcox J R, Premachandra G S, Young K A, et al.Isolation of high seed inorganic P, low-phytate soybean mutants.Crop Sci, 2000, 40(6): 1601-1605. |
[6] | Saneoka H, Koba T.Plant growth and phytic acid accumulation in grain as affected by phosphorus application in maize (Zea mays L.).Grassl Sci, 2003, 48(6): 485-489. |
[7] | Raboy V, Dickinson D B.Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc.Plant Physiol, 1984, 75(4): 1094-1098. |
[8] | Jackson C A, Windes J M, Bregitzer P, et al.Phosphorus fertility effects on the expression of the low phytic acid barley phenotype.Crop Sci, 2009, 49(5): 1800-1806. |
[9] | 毛盈, 陈鑫, 裘波音, 等. 氮磷肥用量与配比对大麦籽粒植酸含量的影响. 浙江大学学报: 农业与生命科学版, 2009, 35(3): 285-291. |
[10] | 赵宁春, 张其芳, 程方民, 等. 氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性. 中国水稻科学, 2007, 21(2): 185-190. |
[11] | 郭再华, 贺立源, 徐才国. 磷水平对不同磷效率水稻生长及磷、锌养分吸收的影响. 中国水稻科学, 2005, 19(4): 355-360. |
[12] | 王人民, 张永鑫, 杨肖娥, 等. 水稻锌高效营养特性的遗传分析. 植物营养与肥料学报, 2003, 9(2): 196-202. |
[13] | 浙江大学. 一种直穗型水稻的穗离体培养方法: 中国, CN103355169B.2014-07-01 |
[14] | Liu Z, Cheng F, Zhang G.Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content.Food Chem, 2005, 89(1): 49-52. |
[15] | Wei Y Y, Shohag M, Wang Y Y, et al.Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination.J Agric Food Chem, 2012, 60(7): 1871-1879. |
[16] | 龚金龙, 张洪程, 李杰, 等. 施磷量对超级稻南粳44产量和品质的影响. 中国水稻科学, 2011, 25(4): 447-451. |
[17] | 梁建生, 曹显祖, 徐生. 蔗糖和激素对水稻离体培养穗籽粒生长的影响. 中国水稻科学, 1993, 7(2): 77-82. |
[18] | 王苏影, 潘晓华, 吴建富, 等. 磷肥运筹对双季早、晚稻产量与品质的影响. 作物杂志, 2011(4): 63-66. |
[19] | Matsuno K, Fujimura T. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice. Plant Sci, 2014, 217/218(1): 152-157 |
[20] | Blair M W, Sandoval T A, Caldas G V, et al.Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean.Crop Sci, 2009, 49(1): 237-246. |
[21] | Israel D W, Kwanyuen P, Burton J W.Genetic variability for phytic acid phosphorus and inorgaic phosphorus in seeds of soybeans in maturity groups V, VI, and VII.Crop Sci, 2006, 46(1): 67-71. |
[22] | 李洪影, 焉石, 孙涛, 等. 施磷对不同收获时期青贮玉米碳水化合物积累的影响. 草业学报, 2011, 20(4): 90-97. |
[23] | Gibson T S, Leece D R.Estimation of physiologically active zinc in maize by biochemical assay.Plant Soil, 1981, 63(3): 395-406. |
[24] | Suzuki M, Tanaka K, Kuwano M, et al.Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway.Gene, 2007, 405(1/2): 55-64. |
[25] | Hitz W D, Carlson T J, Kerr P S, et al.Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds.Plant Physiol, 2002, 128(2): 650-660. |
[26] | Yuan F J, Zhu D H, Deng B, et al.Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).J Agric Food Chem, 2009, 57(9): 3632-3638. |
[27] | Ali N, Paul S, Gayen D, et al.Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1).PloS One, 2013, 8(7): e68161 |
[28] | 赵宁春, 韦克苏, 吴殿星, 等. 低植酸突变体水稻灌浆过程中籽粒淀粉合成与茎鞘物质转运特性. 作物学报, 2008, 34(11): 1977-1984. |
[29] | Khodakovskaya M, Sword C, Wu Q, et al.Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato.Plant Biotechnol J, 2010, 8(2): 170-183. |
[1] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[2] | LIANG Cheng, XIANG Xunchao, ZHANG Ouling, YOU Hui, XU Liang, CHEN Yongjun. Analyses on Agronomic Traits and Genetic Characteristics of Two New Plant-architecture Lines in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(2): 171-180. |
[3] | Yujun ZHU, Ziwei ZUO, Zhenhua ZHANG, Yeyang FAN. A New Approach for Fine-mapping and Map-based Cloning of Minor-Effect QTL in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(4): 407-414. |
[4] | Yali ZHENG, Linchuang YU, Xiaoxiao AN, Xinle CHENG, Lijun REN, Zilong SU, Xiaoya ZHENG, Tao LAN. Identification of a Knockout Mutant of OsWOX3B Gene in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2021, 35(2): 112-120. |
[5] | Yiwei KANG, Yuyu CHEN, Yingxin ZHANG. Research Progress and Breeding Prospects of Grain Size Associated Genes in Rice [J]. Chinese Journal OF Rice Science, 2020, 34(6): 479-490. |
[6] | Yanhua CHEN, Yaliang WANG, Defeng ZHU, Qinghua SHI, Huizhe CHEN, Jing XIANG, Yikai ZHANG, Yuping ZHANG. Mechanism of Exogenous Brassinolide in Alleviating High Temperature Injury at Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2019, 33(5): 457-466. |
[7] | Da SU, Liangquan WU, K Rasmussen Søren, Lujian ZHOU, Fangmin CHENG. Research Advances on the Low Phytic Acid Rice Breeding and Their Genetic Physiological Regulation and Environmental Adaptability [J]. Chinese Journal OF Rice Science, 2019, 33(2): 95-107. |
[8] | Jingfang LI, Yunlu TIAN, Xi LIU, Shijia LIU, Liangming CHEN, Ling JIANG, Wenwei ZHANG, Dayong XU, Yihua WANG, Jianmin WAN. The Guanylate Kinase OsGK1 is Essential for Seed Development in Rice [J]. Chinese Journal OF Rice Science, 2018, 32(5): 415-426. |
[9] | Peng-yi PAN, Jian-ping ZHU, Yun-long WANG, Yuan-yuan HAO, Yue CAI, Wen-wei ZHANG, Ling JIANG, Yi-hua WANG, Jian-min WAN. Phenotyping and Gene Cloning of a Floury Endosperm Mutant ws in Rice [J]. Chinese Journal OF Rice Science, 2016, 30(5): 447-457. |
[10] | Min XI, Zhao-miao LIN, Yan-ling ZHAO, Xin-cheng ZHANG, Xiao-yu YANG, Zheng-hui LIU, Gang-hua LI, Shao-hua WANG, Yan-feng DING. Effects of Nitrogen Fertilizer Application on the Formation of White-belly and White-core as Well as Biochemical Composition of japonica Rice Grains [J]. Chinese Journal OF Rice Science, 2016, 30(2): 193-199. |
[11] | XUQian-kun, De-yong REN, Zi-zhuang LI, Da-li ZENG, Long-biao GUO, Qian QIAN. Research Progresses in Rice Spikelet Glume Development [J]. Chinese Journal OF Rice Science, 2016, 30(1): 99-104. |
[12] | Peng WANG, Yue CAI, Wei-wei CHEN, Jing MA, Xin-gang CHEN, Xiao-jie TANG, Xiao-man YOU, Fei KONG, Jie ZHANG, Hai-gang YAN, Guo-xiang WANG, Ling JIANG, Wen-wei ZHANG, Jian-min WAN. Phenotyping and Gene Cloning of a Small-grain Dwarf Mutant sgd1(t) in Rice [J]. Chinese Journal OF Rice Science, 2016, 30(1): 1-9. |
[13] | Qing ZHANG, Juan WANG, Li-quan JING, Lian-xin YANG, Yun-xia WANG. Effect of Foliar Application of Different Zn Compounds on Zn Concentration and Bioavailability in Brown Rice [J]. Chinese Journal OF Rice Science, 2015, 29(6): 610-618. |
[14] | Zuo-zhen DONG, Liang-huan WU, Jie CHAI, Yuan-li CHEN, Yue-zhong ZHU. Effects of Different Nitrogen, Phosphorus and Potassium Treatments on Rice Yield, Quality, Nutrient Absorption-Utilization and Economic Benefit of Zhongzheyou 1 in Central Zhejiang Province,China [J]. Chinese Journal OF Rice Science, 2015, 29(4): 399-407. |
[15] | ZHANG Weixing#, SUN Chengxiao#, MIN Jie, DUAN Binwu, ZHU Zhiwei*. Effect of Exogenous Phytic Acid Application on Rice Grain Yield and Quality During Mid and Late Growth Stage [J]. Chinese Journal of Rice Science, 2013, 27(6): 603-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||