Chinese Journal OF Rice Science ›› 2017, Vol. 31 ›› Issue (3): 247-256.DOI: 10.16819/j.1001-7216.2017.6159 247
• Orginal Article • Previous Articles Next Articles
Dandan XUAN#, Lianping SUN#, Peipei ZHANG, Yingxin ZHANG, Weixun WU, Zhengfu YANG, Xiaodeng ZHAN, Xihong SHEN, Liyong CAO*(), Shihua CHENG*(
)
Received:
2016-12-01
Revised:
2017-02-06
Online:
2017-05-10
Published:
2017-05-10
Contact:
Dandan XUAN, Lianping SUN, Liyong CAO, Shihua CHENG
轩丹丹#, 孙廉平#, 张沛沛, 张迎信, 吴玮勋, 杨正福, 占小登, 沈希宏, 曹立勇*(), 程式华*(
)
通讯作者:
轩丹丹,孙廉平,曹立勇,程式华
基金资助:
CLC Number:
Dandan XUAN, Lianping SUN, Peipei ZHANG, Yingxin ZHANG, Weixun WU, Zhengfu YANG, Xiaodeng ZHAN, Xihong SHEN, Liyong CAO, Shihua CHENG. Characterization and Gene Mapping of a No-pollen Genic Sterile Mutant whf41 in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(3): 247-256.
轩丹丹, 孙廉平, 张沛沛, 张迎信, 吴玮勋, 杨正福, 占小登, 沈希宏, 曹立勇, 程式华. 水稻无花粉型核雄性不育突变体whf41的鉴定与基因定位[J]. 中国水稻科学, 2017, 31(3): 247-256.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2017.6159 247
引物名称 Primer name | 上游引物 Forward primer(5'-3') | 下游引物 Reverse primer(5'-3') | 实验目的 Purpose | |
---|---|---|---|---|
InD40 | CTGCACCGGAGAAATTTGAT | CGCATGCAGATGAATAGGTG | 精细定位 Fine maping | |
InD41 | TAATTTCGGCTCATCCAAGC | GAAGCTCCGCAGGTTCAG | 精细定位 Fine maping | |
RM14436 | CTGACGCCGTCTTGCGTTATTCC | CGGCGACTTCGACTACTCAAGC | 精细定位 Fine maping | |
RM14442 | CGACACGGGCAAGAACTTATACGG | ATCCGATGACGGAGCATGATAGC | 精细定位 Fine maping | |
XD-5 | TGTCTTGTACCACTGCAATCAT | AACCCAAATCTAACAACTGACG | 精细定位 Fine maping | |
XD-11 | ACATAAATGATTGTTTCGTGGAG | CCTTTGAGTCAAAAAAAATAGGCA | 精细定位 Fine maping | |
XD-12 | CACTCAGTGGCAGATCCAAG | GTGCGTGAGTTCGTAAAGATGA | 精细定位 Fine maping | |
GWHF41 | GAGACGCTCCGCCTCTACC | ACTCCATCCTCCCCATGGA | 突变位点检测 Mutation site detection | |
LOC_Os06g03930 | CTGCTGTCCCAGTGGATGCTA | CCTCACCCCAAAGGTATGTCA | qRT-PCR | |
LOC_Os04g48460 | CAAGTTCACGGCGTTCCAG | CGTCATCCCACATCTCGAATCTGAA | qRT-PCR | |
CYP704B2 | AGCGGCAAGCAAGAGAAGA | GCCATCTTCATCTGGAGGTA | qRT-PCR | |
CYP703A3 | TTTGATGCAGGACATGATT | TTGCCGGCGCTGAAGGGGA | qRT-PCR | |
GAMYB | CTCTCCAAAGTTTCCCCAGC | GAACATGATACCGTCGCCAA | qRT-PCR | |
WDA1 | CAGATCATCCTGAGCGGTAT | CGAGTGGTAGTGGGTGTAGA | qRT-PCR | |
OSC4 | GAGTGCGTGCCGCAGCTGAA | CTCTCGTCTCGTCTTAGGCAG | qRT-PCR | |
OSC6 | TGCCACATCGTGAACCACACCCTG | ATGTTGAAATCCCTCCTTTGGTA | qRT-PCR |
Table 1 Primers used in the research.
引物名称 Primer name | 上游引物 Forward primer(5'-3') | 下游引物 Reverse primer(5'-3') | 实验目的 Purpose | |
---|---|---|---|---|
InD40 | CTGCACCGGAGAAATTTGAT | CGCATGCAGATGAATAGGTG | 精细定位 Fine maping | |
InD41 | TAATTTCGGCTCATCCAAGC | GAAGCTCCGCAGGTTCAG | 精细定位 Fine maping | |
RM14436 | CTGACGCCGTCTTGCGTTATTCC | CGGCGACTTCGACTACTCAAGC | 精细定位 Fine maping | |
RM14442 | CGACACGGGCAAGAACTTATACGG | ATCCGATGACGGAGCATGATAGC | 精细定位 Fine maping | |
XD-5 | TGTCTTGTACCACTGCAATCAT | AACCCAAATCTAACAACTGACG | 精细定位 Fine maping | |
XD-11 | ACATAAATGATTGTTTCGTGGAG | CCTTTGAGTCAAAAAAAATAGGCA | 精细定位 Fine maping | |
XD-12 | CACTCAGTGGCAGATCCAAG | GTGCGTGAGTTCGTAAAGATGA | 精细定位 Fine maping | |
GWHF41 | GAGACGCTCCGCCTCTACC | ACTCCATCCTCCCCATGGA | 突变位点检测 Mutation site detection | |
LOC_Os06g03930 | CTGCTGTCCCAGTGGATGCTA | CCTCACCCCAAAGGTATGTCA | qRT-PCR | |
LOC_Os04g48460 | CAAGTTCACGGCGTTCCAG | CGTCATCCCACATCTCGAATCTGAA | qRT-PCR | |
CYP704B2 | AGCGGCAAGCAAGAGAAGA | GCCATCTTCATCTGGAGGTA | qRT-PCR | |
CYP703A3 | TTTGATGCAGGACATGATT | TTGCCGGCGCTGAAGGGGA | qRT-PCR | |
GAMYB | CTCTCCAAAGTTTCCCCAGC | GAACATGATACCGTCGCCAA | qRT-PCR | |
WDA1 | CAGATCATCCTGAGCGGTAT | CGAGTGGTAGTGGGTGTAGA | qRT-PCR | |
OSC4 | GAGTGCGTGCCGCAGCTGAA | CTCTCGTCTCGTCTTAGGCAG | qRT-PCR | |
OSC6 | TGCCACATCGTGAACCACACCCTG | ATGTTGAAATCCCTCCTTTGGTA | qRT-PCR |
Fig. 1. Phenotypic comparison of wild type Zhonghui 8015(WT) and the whf41 mutant. A, Flower of wild type Zhonghui 8015 and the whf41 mutant with the lemma and palea removed; B, Anther of wild type and the whf41 mutant; C, Anther tablet of wild type and the whf41 mutant; D, I2-KI staining of pollen grains of wild type and the whf41 mutant.
Fig. 2. Transverse section of anthers of the wild type and whf41 at different developmental stages. A to E, Wild type; F to J, whf41 mutant; A and F, Cross-section of anthers at the stage 8; B and G, Cross-section of anthers at the stage 9; C and H, Cross-section of anthers at the stage 10; D and I, Cross-section of anthers at the stage 11; E and J, Cross-section of anthers at the stage 12. Ep, Epidermis; En, Endothecium; T, Tapetum; ST, Swollen tapetum; Tds, Tetrads; Msp, Microspores; DMs, Degenerated microspores; BP, Biceullar pollen; MP, Mature pollen. Bar=20 μm.
Fig. 3. SEM observation of the anther and pollen grains in wild type and the whf41 mutant. A, Anthers at stage 13 of the wild type and the mutant whf41, respectively; C, D and G, H, The outmost surface on epidermis of anthers at stage 13 of the wild type and whf41, respectively. E, F and I, J, The innermost surface on tapetum of anthers at stage 13 of the wild type and whf41, respectively. K and L, The pollen grain of anthers at stage 13 of the wild type and whf41. M, O and N, P, The pollen exine of anthers at stage 13 of the wild type and whf41, respectively. Bar= 20 mm in A and B, 5 mm in C to N, and 200 μm in O and P.
组合 Combination | F1结实率 Seed-setting rate of F1/% | F2 | χ2(3:1) | χ20.05 | |
---|---|---|---|---|---|
野生型植株数 No. of wild-type plants | 突变表型植株数 No. of mutant-type plants | ||||
whf41/中恢8015 whf41/Zhonghui 8015 | 78.73 | 309 | 91 | 1.19 | 3.84 |
whf41/02428 | 80.51 | 3936 | 1278 | 0.63 | 3.84 |
中恢8015/02428 Zhonghui 8015/02428 | 85.98 | 6648 | 0 | - | 3.84 |
Table 2 Genetic analysis of the whf41 locus.
组合 Combination | F1结实率 Seed-setting rate of F1/% | F2 | χ2(3:1) | χ20.05 | |
---|---|---|---|---|---|
野生型植株数 No. of wild-type plants | 突变表型植株数 No. of mutant-type plants | ||||
whf41/中恢8015 whf41/Zhonghui 8015 | 78.73 | 309 | 91 | 1.19 | 3.84 |
whf41/02428 | 80.51 | 3936 | 1278 | 0.63 | 3.84 |
中恢8015/02428 Zhonghui 8015/02428 | 85.98 | 6648 | 0 | - | 3.84 |
Fig. 4. Positional cloning of the whf41 mutated gene. A, Preliminary mapping of whf41; B, Fine mapping of whf41; C, The ORFs within the fine-mapped region; D, The structure candidate gene LOC_Os03g07250; E, The mutation site and translation sequence in whf41 mutant.
Fig. 5. Expression profile of the genes involved in anther development in wild type and whf41 plants. OsActin1 was used as an internal control. Error bars show the SD (n = 3). S8, S9, S11, and S12 indicated stage 8, stage 9, stage 11 and stage 12 of anther development; WT, Wild type.
[1] | 朱英国. 水稻雄性不育生物学. 武汉: 武汉大学出版社, 2000: 1-2. |
Zhu Y G.Biology of Male Sterility in Rice. Wuhan: Wuhan University Press, 2000: 1-2. (in Chinese) | |
[2] | Raghavan V.Anther developmental biology in molecular embryology of flowering plants.Plant Physiol, 1997: 17-60. |
[3] | Ma H.Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants.Annu Rev Plant Boil, 2005, 56: 393-434. |
[4] | Zhang D B, Wilson Z A.Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353. |
[5] | Zhang D B, Luo X, Zhu L.Cytological analysis and genetic control of rice anther development.J Gen Genom, 2011, 38(9): 379-390. |
[6] | Kinoshita T.Gene symbols and information on male sterility.Rice Genet Newsl, 1997, 14: 13-22. |
[7] | Okamuro J K, Boer B G, Jofuku K D.Regulation of Arabidopsis flower development.Plant Cell, 1993, 5: 1183-1193. |
[8] | 马西青, 方才臣, 邓联武, 万向元. 水稻隐性核雄性不育研究进展及育种应用探讨.中国水稻科学,2012, 25(5): 511-520. |
Ma X Q, Fang C C, Deng L W, Wan X Y.Research progress and breeding application of recessive genic male sterility gene in rice.Chin J Rice Sci, 2012, 25(5): 511-520. (in Chinese with English abstract) | |
[9] | Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N.The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice.Plant Cell, 2003, 15(8): 1728-1739. |
[10] | Nonomura K I, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N.The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis.Plant J, 2004, 16(4): 1008-1020. |
[11] | Nonomura K I, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N.An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis.Mol Gen Genom, 2004, 271(2): 121-129. |
[12] | Yuan W Y, Li X W, Chang Y X, Wen R Y, Chen G X, Zhang Q F, Wu C.Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis.Plant J, 2009, 59(2): 303-315. |
[13] | Wang M, Wang K J, Tang D, Wei C X, Li M, Shen Y, Chi Z C, Gu M H, Cheng Z K.The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice.Plant Cell, 2010, 22: 417-430. |
[14] | Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N.A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice.Plant Cell, 2007, 19(8): 2583-2594. |
[15] | Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman S D, Shou H.Rice SPX-Major facility superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice.Plant Physiol, 2015, 169(4): 2822-2831. |
[16] | He Y, Wang C, Higgins J D, Yu J, Zong J, Lu P, Zhang D, Liang W.MEIOTIC F-BOX is essential for male meiotic DNA double-strand break repair in rice.Plant Cell, 2016, 28(8): 1879-1893. |
[17] | Li L, Li Y, Song S, Deng H, Li N, Fu X, Chen G, Yuan L.An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development.Planta, 2015, 241(1): 157-166. |
[18] | Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G.Rice Undeveloped Tapetum1 is a major regulator of early tapetum development.Plant Cell, 2005, 17(10): 2705-2722. |
[19] | Liu Z, Bao W, Liang W, Yin J, Zhang D.Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development.J Integr Plant Biol, 2010, 52(7): 670-678. |
[20] | Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson Z A, Zhang D.PERSISTENT TAPETAL CELL1 encodes a PHD-Finger protein that is required for tapetal cell death and pollen development in rice.Plant Physiol, 2011, 156(2): 615-630. |
[21] | Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C.Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5′-triphosphate- dependent RNA helicases regulates tapetum degeneration.Plant Cell, 2011, 23(4): 1416-1434. |
[22] | Niu N, Liang W, Yang X, Jin W, Wilson Z A, Hu J, Zhang D.EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Comm, 2013, 4: 1445. |
[23] | Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W.The rice basic Helix-Loop-Helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development.Plant Cell, 2014, 26(4): 1512-1524. |
[24] | Niu B X, He F R, He M, Ren D, Chen L T, Liu Y G.The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice.J Integr Plant Biol, 2013, 55(8): 710-720. |
[25] | Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhu L, Qu G, Chen M, Schreiber L, Zhang D.Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction.Plant Physiol, 2015, 169(3): 2064-2079. |
[26] | Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D.OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice.Plant Physiol, 2010, 154(1): 149-162. |
[27] | Jung K H, Han M J, Lee D Y, Lee Y S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y W, Hwang I, An G.Wax-Deficient Anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development.Plant Cell, 2006, 18(11): 3015-3032. |
[28] | Shi J, Tan H, Yu X H, Liu Y, Liang W, Ranathunge K, Franke R B, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D.Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase.Plant Cell, 2011, 23(6): 2225-2246. |
[29] | Xu D W, Shi J X, Rautengarten C, Yang L, Qian X L, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Schreiber L, Heazlewood J L, Scheller H V, Hu J P, Zhang D B, Liang W Q.Defective Pollen Wall 2 (DPW2) encodes an acyl transferase required for rice pollen development.Plant Physiol, 2017, 173(1): 240-255. |
[30] | Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D.Cytochrome P450 family member CYP704B2 catalyzes the ω -hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22(1): 173-190. |
[31] | Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D.Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine.J Integr Plant Biol, 2014, 56(10): 979-994. |
[32] | Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M.The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice.Plant Physiol, 2004, 135(3): 1514-1525. |
[33] | Kent B, Erin C, Nina D, David H, Young J K, Zhong Cathy X Y. Plant genomic DNA flanking SPT event and methods for identifying SPT event. United States Patent, US008257930B2, 20120904. |
[34] | Chang Z Y, Chen Z F, Wang N, Xie G, Lu J W, Yan W, Zhou J L, Tang X Y, Deng X W.Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene.Proc Natl Acad Sci USA, 2016, 113(49): 14145. |
[35] | Sun L P, Zhang Y X, Zhang P P, Yang Z F, Zhan X D, Shen X H, Zhang Z H, Hu X, Xuan D D, Wu W X, Li Z H, Cao L Y, Cheng S H.K-Domain splicing factor OsMADS1 regulates open hull male sterility in rice.Rice Sci, 2015, 22(5): 207-216. |
[36] | Orjuela J, Garavito A, Bouniol M, Arbelaez J D, Moreno L, Kimball J, Wilson G, Rami J F, Tohme J, McCouch S R, Lorieux M. A universal core genetic map for rice.Theor Appl Genet, 2010, 120: 563-572 |
[37] | Wu D H, Wu H P, Wang C S, Tseng H Y, Hwu K K.Genome-wide InDel marker system for application in rice breeding and mapping studies.Euphytica, 2013, 192: 131-143 |
[38] | Yamanaka S, Suzuki E, Tanaka M, Takeda Y, Watanabe J A, Watanabe K N.Assessment of cytochrome P450 sequences offers a useful tool for determining genetic diversity in higher plant species.Theor Appl Genet, 2003, 108(1): 1-9. |
[39] | Tang W, Wu T, Ye J, Sun J, Jiang Y, Yu J, Tang J, Chen G, Wang C, Wan J.SNP-based analysis of genetic diversity reveals important alleles associated with seed size in rice.BMC Plant Biol, 2016, 16(1): 93. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||