中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 567-576.DOI: 10.16819/j.1001-7216.2024.230901
熊家欢1,2, 张义凯1, 向镜1, 陈惠哲1, 徐一成1, 王亚梁1, 王志刚1, 姚坚2, 张玉屏1,*()
收稿日期:
2023-09-04
修回日期:
2024-01-15
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email: cnrrizyp@163.com
基金资助:
XIONG Jiahuan1,2, ZHANG Yikai1, XIANG Jing1, CHEN Huizhe1, XU Yicheng1, WANG Yaliang1, WANG Zhigang1, YAO Jian2, ZHANG Yuping1,*()
Received:
2023-09-04
Revised:
2024-01-15
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: cnrrizyp@163.com
摘要:
【目的】研究炭基肥及增施生物炭对覆膜水稻产量、氮素利用的影响,以期为水稻覆膜技术可持续发展应用提供理论依据。【方法】以优质粳型常规水稻品种浙禾香2号和籼粳杂交稻甬优538为材料,2021年覆膜机插种植设置CK(不施氮)、T1(施用缓释肥)和T2(施用炭基肥)处理。2022年覆膜机插种植设置CK(不施氮)、T2(施用炭基肥)、T3(炭基肥增施 6 t/hm2生物炭)和T4(炭基肥增施 12 t/hm2 生物炭)处理,研究覆膜稻田施用炭基肥对水稻干物质积累、产量及产量构成和氮素吸收利用的影响。【结果】炭基肥促进了覆膜水稻的生长,提高了覆膜水稻产量。炭基肥显著增加水稻干物质积累量,与T1相比干物质积累显著增加5.40%~29.69%,增施生物炭与T2相比增加了覆膜水稻干物质积累量9.28%~46.91%。浙禾香2号整个生长期效果明显,甬优538在后期作用更显著。与T1相比,炭基肥能显著提高水稻产量3.84%~4.65%。增施生物炭较T2进一步提高了覆膜水稻产量7.97%~15.06%;炭基肥促进了覆膜水稻对氮素的吸收利用,提高水稻氮素利用效率。施用炭基肥显著增加覆膜水稻各生长关键时期的氮素积累量4.87%~31.68%,且氮素积累量随炭基肥增施生物炭量的增加而提高,炭基肥增施12 t/hm2 生物炭(T4)氮素积累最高,较施炭基肥(T2)增加11.87%~40.59%。炭基肥降低了覆膜水稻氮素干物质生产率和氮素稻谷生产率,提高了氮肥偏生产力、氮肥农学效率和氮肥吸收利用效率。增施生物炭处理进一步提高氮素利用,减少氮素损失。【结论】覆膜稻田施用炭基肥有利于水稻干物质量和氮素积累量增加,增施生物炭能够进一步提高其效果,从而增加产量,提高氮素利用效率。浙禾香2号增产主要通过增加穗数和每穗粒数,甬优538则通过增加穗数增产,炭基肥增施12 t/hm2 生物炭增产效果最好。
熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576.
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping. Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields[J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576.
图2 炭基肥对覆膜水稻茎蘖动态的影响 在2021年,CK处理不施氮;T1处理施用缓释肥750 kg/hm2,纯氮量195 kg/hm2;T2处理施用炭基肥1950 kg/hm2,纯氮量195 kg/hm2。在2022年,CK处理不施氮;CK处理不施氮,T2处理施炭基肥1950 kg/hm2,纯氮量195 kg/hm2;T3处理施炭基肥1950 kg/hm2,生物炭6 t/hm2,纯氮量195 kg/hm2;T4处理施炭基肥1950 kg/hm2,生物炭12 t/hm2,纯氮量195 kg/hm2。下同。
Fig. 2. Effect of biochar-based fertilizer on stem tiller dynamics of mulched rice In 2021, CK, Zero nitrogen application; T1, 750 kg/hm2 slow release fertilizers(195 kg/hm2 N); T2, 1950 kg/hm2 biochar-based fertilizer(195 kg/hm2 N). In 2022, CK, Zero nitrogen application; T2, 1950 kg/hm2 biochar-based fertilizer(195 kg/hm2 N); T3, 1950 kg/hm2 biochar-based fertilizer+6 t/hm2(195 kg/hm2 N); T4, 1950 kg/hm2 biochar-based fertilizer+12 t/hm2 biochar(195 kg/hm2 N).
年份 Year | 品种 Variety | 处理 Treatment | 干物质积累量Dry matter accumulation | |||
---|---|---|---|---|---|---|
分蘖期 Tillering stage | 穗分化始期 Panicle initiation stage | 齐穗期 Heading stage | 成熟期 Maturing stage | |||
2021 | 浙禾香2号 Zhehexiang 2 | CK | 1.7 ± 0.2 c | 3.0 ± 0.2 c | 6.7 ± 0.3 c | 13.8 ± 0.7 c |
T1 | 2.3 ± 0.2 b | 4.1 ± 0.3 b | 8.7 ± 0.2 b | 15.4 ± 0.3 b | ||
T2 | 3.0 ± 0.1 a | 5.0 ± 0.4 a | 9.7 ± 0.2 a | 18.5 ± 0.5 a | ||
甬优538 Yongyou 538 | CK | 1.8 ± 0.1 b | 3.2 ± 0.2 b | 7.6 ± 0.7 c | 14.7 ± 0.1 c | |
T1 | 3.2 ± 0.1 a | 4.5 ± 0.2 a | 9.3 ± 0.2 b | 16.3 ± 0.3 b | ||
T2 | 3.1 ± 0.2 a | 4.3 ± 0.3 a | 10.8 ± 0.2 a | 17.2 ± 0.1 a | ||
2022 | 浙禾香2号 Zhehexiang 2 | CK | 1.4 ± 0.2 b | 2.8 ± 0.3 d | 7.9 ± 0.9 c | 14.4 ± 0.4 c |
T2 | 2.6 ± 0.4 a | 4.4 ± 0.1 c | 10.5 ± 0.4 b | 17.6 ± 0.8 b | ||
T3 | 3.2 ± 0.6 a | 5.5 ± 0.2 b | 11.8 ± 0.8 b | 18.5 ± 0.4 b | ||
T4 | 3.0 ± 0.3 a | 6.4 ± 0.3 a | 14.3 ± 1.2 a | 20.8 ± 0.7 a | ||
甬优538 Yongyou 538 | CK | 2.0 ± 0.4 b | 4.1 ± 0.1 c | 10.0 ± 0.6 b | 17.3 ± 0.9 c | |
T2 | 2.9 ± 0.3 a | 5.6 ± 0.5 b | 13.5 ± 0.4 a | 19.7 ± 0.4 b | ||
T3 | 3.5 ± 0.2 a | 5.5 ± 0.1 b | 13.5 ± 0.5 a | 19.9 ± 0.7 b | ||
T4 | 3.0 ± 0.6 a | 7.4 ± 0.6 a | 14.3 ± 0.1 a | 21.5 ± 0.5 a |
表1 炭基肥对覆膜水稻干物质积累的影响
Table 1. Effect of biochar-based fertilizer on dry matter accumulation of mulched rice
年份 Year | 品种 Variety | 处理 Treatment | 干物质积累量Dry matter accumulation | |||
---|---|---|---|---|---|---|
分蘖期 Tillering stage | 穗分化始期 Panicle initiation stage | 齐穗期 Heading stage | 成熟期 Maturing stage | |||
2021 | 浙禾香2号 Zhehexiang 2 | CK | 1.7 ± 0.2 c | 3.0 ± 0.2 c | 6.7 ± 0.3 c | 13.8 ± 0.7 c |
T1 | 2.3 ± 0.2 b | 4.1 ± 0.3 b | 8.7 ± 0.2 b | 15.4 ± 0.3 b | ||
T2 | 3.0 ± 0.1 a | 5.0 ± 0.4 a | 9.7 ± 0.2 a | 18.5 ± 0.5 a | ||
甬优538 Yongyou 538 | CK | 1.8 ± 0.1 b | 3.2 ± 0.2 b | 7.6 ± 0.7 c | 14.7 ± 0.1 c | |
T1 | 3.2 ± 0.1 a | 4.5 ± 0.2 a | 9.3 ± 0.2 b | 16.3 ± 0.3 b | ||
T2 | 3.1 ± 0.2 a | 4.3 ± 0.3 a | 10.8 ± 0.2 a | 17.2 ± 0.1 a | ||
2022 | 浙禾香2号 Zhehexiang 2 | CK | 1.4 ± 0.2 b | 2.8 ± 0.3 d | 7.9 ± 0.9 c | 14.4 ± 0.4 c |
T2 | 2.6 ± 0.4 a | 4.4 ± 0.1 c | 10.5 ± 0.4 b | 17.6 ± 0.8 b | ||
T3 | 3.2 ± 0.6 a | 5.5 ± 0.2 b | 11.8 ± 0.8 b | 18.5 ± 0.4 b | ||
T4 | 3.0 ± 0.3 a | 6.4 ± 0.3 a | 14.3 ± 1.2 a | 20.8 ± 0.7 a | ||
甬优538 Yongyou 538 | CK | 2.0 ± 0.4 b | 4.1 ± 0.1 c | 10.0 ± 0.6 b | 17.3 ± 0.9 c | |
T2 | 2.9 ± 0.3 a | 5.6 ± 0.5 b | 13.5 ± 0.4 a | 19.7 ± 0.4 b | ||
T3 | 3.5 ± 0.2 a | 5.5 ± 0.1 b | 13.5 ± 0.5 a | 19.9 ± 0.7 b | ||
T4 | 3.0 ± 0.6 a | 7.4 ± 0.6 a | 14.3 ± 0.1 a | 21.5 ± 0.5 a |
年份 Year | 品种 Variety | 处理 Treatment | 有效穗数 Effective panicle (×104/hm2) | 每穗粒数 Panicle number per panicle | 结实率 Seed setting rate(%) | 千粒重 1000-grain weight(g) | 产量 Yield (t/hm2) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 浙禾香2号 | CK | 176.3 ± 14.7 c | 162.4 ± 6.3 a | 92.2 ± 0.8 a | 22.1 ± 0.6 a | 6.8 ± 0.3 c | ||||||||||||||
Zhehexiang 2 | T1 | 215.6 ± 3.0 b | 155.3 ± 8.8 a | 89.5 ± 4.2 a | 20.6 ± 0.4 b | 8.8 ± 0.2 b | |||||||||||||||
T2 | 243.8 ± 7.7 a | 156.4 ± 6.7 a | 92.4 ± 2.3 a | 21.2 ± 0.4 ab | 9.2 ± 0.1 a | ||||||||||||||||
甬优538 Yongyou 538 | CK | 165.6 ± 4.7 b | 386.8 ± 5.7 b | 74.2 ± 5.7 a | 20.7 ± 0.4 b | 8.8 ± 0.2 c | |||||||||||||||
T1 | 184.6 ± 5.7 a | 387.4 ± 4.9 b | 74.3 ± 5.4 a | 22.7 ± 0.7 a | 10.7 ± 0.1 b | ||||||||||||||||
T2 | 193.8 ± 6.5 a | 463.0 ± 8.6 a | 73.0 ± 4.6 a | 21.2 ± 0.1 b | 11.1 ± 0.2 a | ||||||||||||||||
方差分析 Analysis of variance | |||||||||||||||||||||
品种 Variety(V) | ** | ** | ** | ** | ** | ||||||||||||||||
处理 Treatment(T) | ** | ** | NA | * | ** | ||||||||||||||||
品种×处理 V×T | ** | ** | NA | ** | NA | ||||||||||||||||
2022 | 浙禾香2号 | CK | 217.4 ± 10.7 d | 131.8 ± 9.5 a | 91.3 ± 0.6 a | 22.4 ± 0.1 a | 6.7 ± 0.2 c | ||||||||||||||
Zhehexiang 2 | T2 | 254.0 ± 12.5 c | 129.6 ± 6.2 a | 87.8 ± 0.9 b | 22.5 ± 0.3 a | 8.3 ± 0.3 b | |||||||||||||||
T3 | 294.9 ± 10.6 b | 135.4 ± 3.8 a | 89.1 ± 0.9 b | 21.8 ± 0.1 a | 8.3 ± 0.2 b | ||||||||||||||||
T4 | 316.3 ± 12.7 a | 141.3 ± 4.5 a | 88.1 ± 0.8 b | 20.2 ± 0.8 b | 8.9 ± 0.1 a | ||||||||||||||||
甬优538 Yongyou 538 | CK | 169.7 ± 3.2 c | 339.4 ± 5.7 a | 81.4 ± 1.4 a | 21.8 ± 0.2 a | 9.9 ± 0.2 c | |||||||||||||||
T2 | 232.0 ± 6.9 b | 288.4 ± 8.6 bc | 73.2 ± 0.9 c | 20.9 ± 0.2 a | 11.7 ± 0.5 b | ||||||||||||||||
T3 | 232.7 ± 12.4 b | 296.7 ± 5.7 b | 74.2 ± 1.0 c | 21.4 ± 0.5 a | 12.4 ± 0.6 b | ||||||||||||||||
T4 | 252.3 ± 7.9 a | 277.0 ± 9.8 c | 76.5 ± 1.3 b | 21.3 ± 0.1 a | 13.5 ± 0.2 a | ||||||||||||||||
方差分析 Analysis of variance | |||||||||||||||||||||
品种Variety(V) | ** | ** | ** | ** | ** | ||||||||||||||||
处理Treatment(T) | ** | ** | ** | ** | ** | ||||||||||||||||
品种×处理V×T | ** | ** | ** | ** | * |
表2 炭基肥对覆膜水稻产量及产量构成的影响
Table 2. Effect of biochar-based fertilizer on yield and yield components of mulched rice
年份 Year | 品种 Variety | 处理 Treatment | 有效穗数 Effective panicle (×104/hm2) | 每穗粒数 Panicle number per panicle | 结实率 Seed setting rate(%) | 千粒重 1000-grain weight(g) | 产量 Yield (t/hm2) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 浙禾香2号 | CK | 176.3 ± 14.7 c | 162.4 ± 6.3 a | 92.2 ± 0.8 a | 22.1 ± 0.6 a | 6.8 ± 0.3 c | ||||||||||||||
Zhehexiang 2 | T1 | 215.6 ± 3.0 b | 155.3 ± 8.8 a | 89.5 ± 4.2 a | 20.6 ± 0.4 b | 8.8 ± 0.2 b | |||||||||||||||
T2 | 243.8 ± 7.7 a | 156.4 ± 6.7 a | 92.4 ± 2.3 a | 21.2 ± 0.4 ab | 9.2 ± 0.1 a | ||||||||||||||||
甬优538 Yongyou 538 | CK | 165.6 ± 4.7 b | 386.8 ± 5.7 b | 74.2 ± 5.7 a | 20.7 ± 0.4 b | 8.8 ± 0.2 c | |||||||||||||||
T1 | 184.6 ± 5.7 a | 387.4 ± 4.9 b | 74.3 ± 5.4 a | 22.7 ± 0.7 a | 10.7 ± 0.1 b | ||||||||||||||||
T2 | 193.8 ± 6.5 a | 463.0 ± 8.6 a | 73.0 ± 4.6 a | 21.2 ± 0.1 b | 11.1 ± 0.2 a | ||||||||||||||||
方差分析 Analysis of variance | |||||||||||||||||||||
品种 Variety(V) | ** | ** | ** | ** | ** | ||||||||||||||||
处理 Treatment(T) | ** | ** | NA | * | ** | ||||||||||||||||
品种×处理 V×T | ** | ** | NA | ** | NA | ||||||||||||||||
2022 | 浙禾香2号 | CK | 217.4 ± 10.7 d | 131.8 ± 9.5 a | 91.3 ± 0.6 a | 22.4 ± 0.1 a | 6.7 ± 0.2 c | ||||||||||||||
Zhehexiang 2 | T2 | 254.0 ± 12.5 c | 129.6 ± 6.2 a | 87.8 ± 0.9 b | 22.5 ± 0.3 a | 8.3 ± 0.3 b | |||||||||||||||
T3 | 294.9 ± 10.6 b | 135.4 ± 3.8 a | 89.1 ± 0.9 b | 21.8 ± 0.1 a | 8.3 ± 0.2 b | ||||||||||||||||
T4 | 316.3 ± 12.7 a | 141.3 ± 4.5 a | 88.1 ± 0.8 b | 20.2 ± 0.8 b | 8.9 ± 0.1 a | ||||||||||||||||
甬优538 Yongyou 538 | CK | 169.7 ± 3.2 c | 339.4 ± 5.7 a | 81.4 ± 1.4 a | 21.8 ± 0.2 a | 9.9 ± 0.2 c | |||||||||||||||
T2 | 232.0 ± 6.9 b | 288.4 ± 8.6 bc | 73.2 ± 0.9 c | 20.9 ± 0.2 a | 11.7 ± 0.5 b | ||||||||||||||||
T3 | 232.7 ± 12.4 b | 296.7 ± 5.7 b | 74.2 ± 1.0 c | 21.4 ± 0.5 a | 12.4 ± 0.6 b | ||||||||||||||||
T4 | 252.3 ± 7.9 a | 277.0 ± 9.8 c | 76.5 ± 1.3 b | 21.3 ± 0.1 a | 13.5 ± 0.2 a | ||||||||||||||||
方差分析 Analysis of variance | |||||||||||||||||||||
品种Variety(V) | ** | ** | ** | ** | ** | ||||||||||||||||
处理Treatment(T) | ** | ** | ** | ** | ** | ||||||||||||||||
品种×处理V×T | ** | ** | ** | ** | * |
年份 Year | 品种 Variety | 处理 Treatment | 氮素积累量Nitrogen accumulation | |||
---|---|---|---|---|---|---|
分蘖期 Tillering stage | 穗分化 Panicle initiation stage | 齐穗期 Heading stage | 成熟期 Maturing stage | |||
2021 | 浙禾香2号 Zhehexiang 2 | CK | 41.4 ± 5.4 c | 51.7 ± 3.4 c | 80.5 ± 4.0 b | 110.9 ± 7.6 b |
T1 | 69.0 ± 5.0 b | 82.9 ± 5.2 b | 134.8 ± 1.7 a | 173.7 ± 4.7 a | ||
T2 | 86.8 ± 3.6 a | 109.2 ± 10.5 a | 139.5 ± 3.4 a | 183.9 ± 3.7 a | ||
甬优538 Yongyou 538 | CK | 42.4 ± 3.4 b | 51.8 ± 2.8 b | 86.9 ± 6.6 b | 125.2 ± 2.9 b | |
T1 | 92.6 ± 4.2 a | 104.6 ± 3.9 a | 144.8 ± 9.3 a | 166.6 ± 9.2 a | ||
T2 | 90.5 ± 5.5 a | 103.7 ± 8.7 a | 151.8 ± 12.0 a | 183.1 ± 11.7 a | ||
2022 | 浙禾香2号 Zhehexiang 2 | CK | 37.8 ± 1.4 b | 54.8 ± 1.3 c | 97.2 ± 6.4 d | 106.7 ± 6.2 c |
T2 | 84.4 ± 6.0 a | 97.5 ± 12.6 b | 120.9 ± 9.1 c | 150.1 ± 6.6 b | ||
T3 | 96.6 ± 10.6 a | 101.5 ± 4.8 b | 140.8 ± 1.8 b | 167.0 ± 7.7 b | ||
T4 | 94.2 ± 4.3 a | 123.3 ± 3.6 a | 169.9 ± 7.6 a | 211.1 ± 16.7 a | ||
甬优538 Yongyou 538 | CK | 35.1 ± 4.9 b | 50.9 ± 4.9 c | 85.8 ± 8.0 c | 124.2 ± 4.5 d | |
T2 | 84.6 ± 5.6 a | 110.5 ± 4.2 b | 146.1 ± 4.3 b | 174.4 ± 6.3 c | ||
T3 | 91.9 ± 5.6 a | 116.9 ± 3.8 b | 142.7 ± 7.0 b | 185.8 ± 7.1 b | ||
T4 | 86.6 ± 6.1 a | 130.8 ± 5.8 a | 163.4 ± 6.9 a | 198.7 ± 5.8 a |
表3 炭基肥对覆膜水稻氮素积累总量的影响
Table 3. Effect of biochar-based fertilizer on total nitrogen accumulation in mulched rice
年份 Year | 品种 Variety | 处理 Treatment | 氮素积累量Nitrogen accumulation | |||
---|---|---|---|---|---|---|
分蘖期 Tillering stage | 穗分化 Panicle initiation stage | 齐穗期 Heading stage | 成熟期 Maturing stage | |||
2021 | 浙禾香2号 Zhehexiang 2 | CK | 41.4 ± 5.4 c | 51.7 ± 3.4 c | 80.5 ± 4.0 b | 110.9 ± 7.6 b |
T1 | 69.0 ± 5.0 b | 82.9 ± 5.2 b | 134.8 ± 1.7 a | 173.7 ± 4.7 a | ||
T2 | 86.8 ± 3.6 a | 109.2 ± 10.5 a | 139.5 ± 3.4 a | 183.9 ± 3.7 a | ||
甬优538 Yongyou 538 | CK | 42.4 ± 3.4 b | 51.8 ± 2.8 b | 86.9 ± 6.6 b | 125.2 ± 2.9 b | |
T1 | 92.6 ± 4.2 a | 104.6 ± 3.9 a | 144.8 ± 9.3 a | 166.6 ± 9.2 a | ||
T2 | 90.5 ± 5.5 a | 103.7 ± 8.7 a | 151.8 ± 12.0 a | 183.1 ± 11.7 a | ||
2022 | 浙禾香2号 Zhehexiang 2 | CK | 37.8 ± 1.4 b | 54.8 ± 1.3 c | 97.2 ± 6.4 d | 106.7 ± 6.2 c |
T2 | 84.4 ± 6.0 a | 97.5 ± 12.6 b | 120.9 ± 9.1 c | 150.1 ± 6.6 b | ||
T3 | 96.6 ± 10.6 a | 101.5 ± 4.8 b | 140.8 ± 1.8 b | 167.0 ± 7.7 b | ||
T4 | 94.2 ± 4.3 a | 123.3 ± 3.6 a | 169.9 ± 7.6 a | 211.1 ± 16.7 a | ||
甬优538 Yongyou 538 | CK | 35.1 ± 4.9 b | 50.9 ± 4.9 c | 85.8 ± 8.0 c | 124.2 ± 4.5 d | |
T2 | 84.6 ± 5.6 a | 110.5 ± 4.2 b | 146.1 ± 4.3 b | 174.4 ± 6.3 c | ||
T3 | 91.9 ± 5.6 a | 116.9 ± 3.8 b | 142.7 ± 7.0 b | 185.8 ± 7.1 b | ||
T4 | 86.6 ± 6.1 a | 130.8 ± 5.8 a | 163.4 ± 6.9 a | 198.7 ± 5.8 a |
年份 Year | 品种 Variety | 处理 Treatment | 氮素干物质生产率 Nitrogen dry matter production efficiency (kg/kg) | 氮素稻谷生产率 Nitrogen grain production efficiency(kg/kg) | 氮肥偏生产力 Nitrogen partial factor productivity (kg/kg) | 氮肥农学效率 Nitrogen agronomic efficiency (kg/kg) | 氮肥吸收利用率 Nitrogen recovery efficiency (%) |
---|---|---|---|---|---|---|---|
2021 | 浙禾香2号 Zhehexiang 2 | CK | 124.9 ± 2.2 a | 61.2 ± 2.3 a | |||
T1 | 88.4 ± 0.4 c | 50.7 ± 0.5 b | 45.2 ± 0.8 b | 10.4 ± 0.5 b | 32.2 ± 1.6 b | ||
T2 | 100.4 ± 2.0 b | 50.2 ± 0.8 b | 47.3 ± 0.4 a | 12.5 ± 1.0 a | 37.4 ± 3.4 a | ||
甬优538 Yongyou 538 | CK | 117.6 ± 2.4 a | 70.6 ± 0.8 a | ||||
T1 | 98.1 ± 3.8 b | 64.2 ± 2.8 b | 54.8 ± 0.6 b | 9.4 ± 0.7 b | 21.2 ± 3.2 b | ||
T2 | 94.1 ± 5.6 b | 60.7 ± 2.8 b | 56.9 ± 1.1 a | 11.5 ± 0.3 a | 29.7 ± 4.5 a | ||
2022 | 浙禾香2号 Zhehexiang 2 | CK | 135.2 ± 5.2 a | 62.8 ± 1.3 a | |||
T2 | 110.3 ± 1.3 b | 55.2 ± 1.0 b | 42.5 ± 1.6 b | 8.2 ± 0.7 b | 22.3 ± 2.4 c | ||
T3 | 104.7 ± 5.8 bc | 49.7 ± 1.0 c | 42.5 ± 1.1 b | 8.2 ± 1.1 b | 30.9 ± 2.3 b | ||
T4 | 99.3 ± 2.4 c | 45.0 ± 2.2 d | 45.8 ± 0.3 a | 11.5 ± 1.5 a | 47.4 ± 2.4 a | ||
甬优538 Yongyou 538 | CK | 139.5 ± 2.4 a | 79.5 ± 1.8 a | ||||
T2 | 113.1 ± 2.0 b | 67.1 ± 2.7 b | 60.0 ± 2.6 b | 9.4 ± 1.4 c | 25.8 ± 1.0 c | ||
T3 | 107.0 ± 0.7 c | 66.9 ± 1.1 b | 63.7 ± 3.0 b | 13.1 ± 2.1 b | 31.6 ± 1.8 b | ||
T4 | 108.5 ± 1.1 c | 67.7 ± 0.8 b | 69.0 ± 1.2 a | 18.4 ± 0.8 a | 38.2 ± 0.9 a |
表4 炭基肥对覆膜水稻氮素利用率的影响
Table 4. Effect of biochar-based fertilizer on nitrogen utilization in mulched rice
年份 Year | 品种 Variety | 处理 Treatment | 氮素干物质生产率 Nitrogen dry matter production efficiency (kg/kg) | 氮素稻谷生产率 Nitrogen grain production efficiency(kg/kg) | 氮肥偏生产力 Nitrogen partial factor productivity (kg/kg) | 氮肥农学效率 Nitrogen agronomic efficiency (kg/kg) | 氮肥吸收利用率 Nitrogen recovery efficiency (%) |
---|---|---|---|---|---|---|---|
2021 | 浙禾香2号 Zhehexiang 2 | CK | 124.9 ± 2.2 a | 61.2 ± 2.3 a | |||
T1 | 88.4 ± 0.4 c | 50.7 ± 0.5 b | 45.2 ± 0.8 b | 10.4 ± 0.5 b | 32.2 ± 1.6 b | ||
T2 | 100.4 ± 2.0 b | 50.2 ± 0.8 b | 47.3 ± 0.4 a | 12.5 ± 1.0 a | 37.4 ± 3.4 a | ||
甬优538 Yongyou 538 | CK | 117.6 ± 2.4 a | 70.6 ± 0.8 a | ||||
T1 | 98.1 ± 3.8 b | 64.2 ± 2.8 b | 54.8 ± 0.6 b | 9.4 ± 0.7 b | 21.2 ± 3.2 b | ||
T2 | 94.1 ± 5.6 b | 60.7 ± 2.8 b | 56.9 ± 1.1 a | 11.5 ± 0.3 a | 29.7 ± 4.5 a | ||
2022 | 浙禾香2号 Zhehexiang 2 | CK | 135.2 ± 5.2 a | 62.8 ± 1.3 a | |||
T2 | 110.3 ± 1.3 b | 55.2 ± 1.0 b | 42.5 ± 1.6 b | 8.2 ± 0.7 b | 22.3 ± 2.4 c | ||
T3 | 104.7 ± 5.8 bc | 49.7 ± 1.0 c | 42.5 ± 1.1 b | 8.2 ± 1.1 b | 30.9 ± 2.3 b | ||
T4 | 99.3 ± 2.4 c | 45.0 ± 2.2 d | 45.8 ± 0.3 a | 11.5 ± 1.5 a | 47.4 ± 2.4 a | ||
甬优538 Yongyou 538 | CK | 139.5 ± 2.4 a | 79.5 ± 1.8 a | ||||
T2 | 113.1 ± 2.0 b | 67.1 ± 2.7 b | 60.0 ± 2.6 b | 9.4 ± 1.4 c | 25.8 ± 1.0 c | ||
T3 | 107.0 ± 0.7 c | 66.9 ± 1.1 b | 63.7 ± 3.0 b | 13.1 ± 2.1 b | 31.6 ± 1.8 b | ||
T4 | 108.5 ± 1.1 c | 67.7 ± 0.8 b | 69.0 ± 1.2 a | 18.4 ± 0.8 a | 38.2 ± 0.9 a |
[1] | 朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259-273. |
Zhu Z L, Jin J Y. Fertilizer use and food security in China[J]. Plant Nutrition and Fertitizer Science, 2013, 19(2): 259-273. (in Chinese with English abstract) | |
[2] | 石吕, 薛亚光, 韩笑, 石晓旭, 魏亚凤, 杨美英, 刘建. 不同土壤类型条件下生物炭施用量对水稻产量、品质和土壤理化性状的影响[J]. 江苏农业科学, 2022, 50(23): 222-228. |
Shi L, Xue Y G, Han X, Shi X X, Wei Y F, Yang M Y, Liu J. Impacts of biochar application rate on rice yield, quality and soil physicochemical properties under differernt soil types[J]. Jiangsu Agricultural Sciences, 2022, 50(23): 222-228. (in Chinese with English abstract) | |
[3] | 王耀锋, 刘玉学, 吕豪豪, 杨生茂. 水洗生物炭配施化肥对水稻产量及养分吸收的影响[J]. 植物营养与肥料学报, 2015, 21(4): 1049-1055. |
Wang Y F, Liu Y X, Lu H H, Yang S M. Effect of washing biochar and chemical fertilizers on rice yield and nutrient uptake[J]. Journal of Plant Nutrition and Fertitizer, 2015, 21(4): 1049-1055. (in Chinese with English abstract) | |
[4] | 何大卫, 赵艳泽, 高继平, 隋阳辉, 辛威, 易军, 张文忠. 生物炭和氮肥配施对粳稻产量形成、氮肥当季效应及其后效的影响[J]. 植物营养与肥料学报, 2021, 27(12): 2114-2124. |
He D W, Zhao Y Z, Gao J P, Sui Y H, Xin W, Yi J, Zhang W Z. Effects of biochar application combined with nitrogen fertilizer on yield formation of japonica rice and the immediate and residual effects of nitrogen[J]. Journal of Plant Nutrition and Fertitizer, 2021, 27(12): 2114-2124. (in Chinese with English abstract) | |
[5] | Roy A, Chaturvedi S, Singh S V. Preparation and evaluation of two enriched biochar-based fertilizers for nutrient release kinetics and agronomic effectiveness in direct-seeded rice[J]. Biomass Conversion and Biorefinery, 2022, 14(8): 1-12. |
[6] | 徐彬, 王小利, 蒙婼熙, 杨宏伟, 龙大勇, 梅婷婷, 段建军. 减氮配施生物炭对水稻产量及不同生育期氮素累积的影响[J]. 福建农业学报, 2022, 37(12): 1528-1535. |
Xu B, Wang X L, Meng R X, Yang H W, Long D Y, Mei T T, Duan J J. Effects of nitrogen fertilizer reduction accompanied by biochar application on yield and nitrogen accumulation of rice at various growth stages[J]. Fujian Journal of Agricultural Sciences, 2022, 37(12): 1528-1535. (in Chinese with English abstract) | |
[7] | 段建军, 郭琴波, 徐彬, 蒙婼熙, 刘安凯, 侯再芬, 梁国太, 王小利. 氮肥减量施生物炭对水稻产量和养分利用的影响[J]. 水土保持学报. 2022, 36(6): 298-308. |
Duan J J, Guo Q B, Xu B, Meng R X, Liu A H, Hou Z F, Liang G T, Wang X X. Effects of biochar application with reduced nitrogen fertilizer on rice yield and nutrient utilization[J]. Journal of Soil and Water Conservation, 2022, 36(6): 298-308. (in Chinese with English abstract) | |
[8] | 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008(5): 915-924. |
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese with English abstract) | |
[9] | 徐富贤, 熊洪, 谢戎, 张林, 朱永川, 郭晓艺, 杨大金, 周兴兵, 刘茂. 水稻氮素利用效率的研究进展及其动向[J]. 植物营养与肥料学报, 2009, 15(5): 1215-1225. |
Xu F X, Xiong H, Xie L, Zhang L, Zhu Y C, Guo X Y, Yang D J, Zhou X B, Liu M. Advance of rice fertilizer-nitrogen use efficiency[J]. Plant Nutrition and Fertitizer Science, 2009, 15(5): 1215-1225. (in Chinese with English abstract) | |
[10] | Nan Q, Wang C, Wang H. Biochar drives microbially- mediated rice production by increasing soil carbon[J]. Journal of Hazardous Materials, 2020, 387: 121680. |
[11] | 索猛利, 吴建富, 刘方平, 徐涛, 苏甜, 张庚金, 熊江花. 不同水肥管理与耕作措施对涝渍灾后稻田土壤养分和水稻产量的影响[J]. 江西农业大学学报, 2023, 45(1): 17-27. |
Suo M L, Wu J F, Liu F P, Xu T, Su T, Zhang G J, Xiong J H. Effects of different water and fertilizer management and tillage practices on soil nutrients and rice yield in post-flooded rice fields[J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(1): 17-27. (in Chinese with English abstract) | |
[12] | Bai S H, Omidvar N, Gallart M. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis[J]. Science of the Total Environment, 2022, 808: 152073. |
[13] | Liu Y, Li H, Hu T. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis[J]. Science of the Total Environment, 2022, 830: 154792. |
[14] | Li X, Yao T, Huang X. Biochar increases rice yield by improving root morphological and root physiological functions in heavily saline-sodic paddy soil of northeast China[J]. Bioresources, 2022, 17(1): 1241-1256. |
[15] | Binh T N, Vinh N N, Tong X N, My H N, Hao P D, Gai D D, Nghia V N, Tan-Viet P. High biochar rates may suppress rice (Oryza sativa) growth by altering the ratios of C to N and available N to P in paddy soils[J]. Soil Use and Management, 2022, 39(1): 415-428. |
[16] | Chu L, Zhang Y, Qian L. Influence of biochar on nitrogen use efficiency and root morphology of rice-seedling in two contrasting paddy soils[J]. Phyton-International Journal of Experimental Botany. 2020, 89(4): 1035-1042. |
[17] | Selvarajh G, Ch'ng H Y. Enhancing soil nitrogen availability and rice growth by using urea fertilizer amended with rice straw biochar[J]. Agronomy(Basel), 2021, 11(7): 1352. |
[18] | Lü R, Wang Y, Wang Q. Residual effect of straw biochar on grain yield and yield attributes in a double rice cropping system of subtropical China[J]. Plant Soil and Environment, 2022, 68(7): 328-337. |
[19] | 陈琳, 乔志刚, 李恋卿, 潘根兴. 施用生物质炭基肥对水稻产量及氮素利用的影响[J]. 生态与农村环境学报, 2013, 29(5): 671-675. |
Chen L, Qiao Z G, Li L Q, Pan G X. Effects of biochar-based fertilizers on rice yield and nitrogen use efficiency[J]. Journal of Ecology and Rural Environment, 2013, 29(5): 671-675. (in Chinese with English abstract) | |
[20] | Danso F, Agyare W A. Modelling rice yield from biochar-inorganic fertilizer amended fields[J]. Journal of Agriculture and Food Research, 2021, 4: 100123. |
[21] | 杨天昱. 生物炭基肥对水稻产量及稻田土壤肥力特性的影响[D]. 沈阳: 沈阳农业大学, 2020. |
Yang T Y. Effects of biochar-based fertilizer on rice yield and paddy soil fertility characteristic[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese with English abstract) | |
[22] | 金丹丹, 宫亮, 李波, 曲航, 孙文涛, 张文忠. 2种缓/控释肥对滨海盐碱地区水稻产量及氮代谢的影响[J]. 水土保持学报, 2020, 34(4): 334-339. |
Jin D D, Gong L, Li B, Qu H, Sun W T, Zhang W Z. The effects of two slow/controlled release fertilizers on the productivity and nitrogen metabolism of rice in coastal saline-alkaline regions[J]. Journal of Soil and Water Conservation, 2020, 34(4): 334-339. (in Chinese with English abstract) | |
[23] | Yin X, Chen J, Cao F. Short-term application of biochar improves post-heading crop growth but reduces pre-heading biomass translocation in rice[J]. Plant Production Science, 2020, 23(4): 522-528. |
[24] | 谢志坚, 吴佳, 段金贵, 喻成龙, 郑琴, 倪国荣, 荣勤雷, 赵尊康, 周春火. 生物炭基肥与紫云英联合还田对红壤区早稻干物质累积和氮素利用特征的影响[J]. 植物营养与肥料学报, 2020, 26(9): 1732-1739. |
Xie Z J, Wu J, Duan J G, Yu C L, Zheng Q, Ni G R, Rong Q L, Zhao Z K, Zhou C H. Effects of combining biochar-based fertilizer and milk vetch on dry matter accumulation and N use efficiencies of early rice in reddish paddy field of south China[J]. Journal of Plant Nutrition and Fertitizer, 2020, 26(9): 1732-1739. (in Chinese with English abstract) | |
[25] | 原鲁明, 赵立欣, 沈玉君, 尚书旗, 孟海波. 我国生物炭基肥生产工艺与设备研究进展[J]. 中国农业科技导报, 2015, 17(4): 107-113. |
Yuan L M, Zhao L X, Shen Y J, Shang S Q, Meng H B. Progress on biochar-based fertilizer production technology and equipment in China[J]. Journal of Agricultural Science and Technology (Beijing), 2015, 17(4): 107-113. (in Chinese with English abstract) | |
[26] | Kimani S M, Bimantara P O, Kautsar V. Poultry litter biochar application in combination with chemical fertilizer and Azolla green manure improves rice grain yield and nitrogen use efficiency in paddy soil[J]. Biochar, 2021, 3(4): 591-602. |
[27] | Roy A, Pyne S. Chaturvedi S. Effect of enriched biochar based fertilizers on growth, yield and nitrogen use efficiency in direct-seeded rice (Oryza sativa)[J]. Indian Journal of Agricultural Sciences, 2021, 91(3): 459-463. |
[28] | Jia Y, Hu Z, Ba Y. Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency[J]. Chemical and Biological Technologies in Agriculture, 2021, 8(1): 3. |
[29] | Dong D, Wang C, van Zwieten L. An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields[J]. Journal of Soils and Sediments, 2020, 20(8): 3027-3040. |
[30] | 武玉, 徐刚, 吕迎春, 邵宏波. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展. 2014, 29(1): 68-79. |
Wu Y, Xu G, Lu Y C, Shao H B. Effects of biochar amendment on soil physical and chemical properties[J]. Advance in Earth Sciences, 2014, 29(1): 68-79. (in Chinese with English abstract) | |
[31] | 乔志刚, 陈琳, 李恋卿, 刘福礼, 胡仁健, 郑金伟, 俞欣妍, 王家芳, 潘根兴. 生物质炭基肥对水稻生长及氮素利用率的影响[J]. 中国农学通报, 2014, 30(5): 175-180. |
Qiao Z G, Chen L, Li L Q, Liu F L, Hu R J, Zheng J W, Yu X Y, Wang J F, Pan G X. Effects of biochar fertilizer on growth and nitrogen utilizing rate of rice[J]. Chinese Agricultural Science Bulletin, 2014, 30(5): 175-80. (in Chinese with English abstract) | |
[32] | Chew J, Joseph S, Chen G. Biochar-based fertiliser enhances nutrient uptake and transport in rice seedlings[J]. Science of the Total Environment, 2022, 826: 154174. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点[J]. 中国水稻科学, 2024, 38(5): 544-554. |
[7] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[8] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[9] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[10] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[11] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[12] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[13] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[14] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[15] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||