中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 463-474.DOI: 10.16819/j.1001-7216.2024.231008
• 综述与专论 • 下一篇
收稿日期:
2023-10-25
修回日期:
2024-01-02
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email: znyang@shnu.edu.cn
基金资助:
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan*()
Received:
2023-10-25
Revised:
2024-01-02
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: znyang@shnu.edu.cn
摘要:
本文回顾了中国两系杂交水稻的发展历史;介绍了两系法中光/温敏型核不育系遗传资源的发现和选育;总结了植物中光温敏型雄性不育的遗传学和细胞学机制;并对水稻两系法中光/温敏型雄性不育系的遗传资源优化及育种策略提出了建议。
汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474.
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan. Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice[J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474.
图1 植物光温敏不育的细胞学机制 光温敏型雄性不育是高温下花粉形成相关基因突变导致的不育。不育系在低温或短光照条件下形成有功能的花粉从而恢复育性,因此是一个细胞学的问题。A: 在限制条件(高温/长日照)下,花粉形成经历从四分体壁到花粉壁的细胞壁转换过程。光温敏相关基因保证了细胞壁的转换。B: 在限制条件(高温/长日照)下,这些光温敏基因的突变导致细胞壁保护作用下降,无法满足小孢子发育的需求,导致花粉破裂,雄性不育。C: 温和条件(低温/短日照)下,缓慢发育导致小孢子发育对细胞壁保护的要求下降。在此情况下,光温敏不育系中的小孢子在基因突变的情况下仍能获得足够的保护,从而形成有功能的花粉,恢复育性。水稻与拟南芥光温敏基因存在很大的差异,提示水稻等作物除了缓慢发育以外还存在其他的机制。图中绿色字体表示拟南芥中发现的光温敏不育基因,黄色字体表示水稻中发现的光温敏不育基因。花粉示意图中的箭头指向表示光温敏基因的影响的细胞壁成分。红色箭头表示野生型光温敏基因可以提供完整的保护。虚线箭头表示光温敏不育系无法提供完整功能。蓝色箭头表示在温和条件下光温敏基因可以为植物提供足够保护。
Fig. 1. Cellular mechanisms of P/TGMS in plants P/TGMS is caused by genetic mutations related to pollen formation under high temperature. The P/TGMS line forms functional pollen and restores fertility under low-temperature or short-light conditions, making it a cytological issue. A, Under restrictive conditions (high temperature/long photoperiod), the pollen undergoes a cell wall transition process from tetrad wall to pollen wall. P/TGMS genes ensure the proper transition of the cell wall. B, Under restrictive conditions (high temperature/long photoperiod), mutations in these P/TGMS genes reduce the protection of cell wall, leading to insufficient support for the development of microspores and causing pollen rupture, resulting in male sterility. C, Slow development under permissive conditions (low temperature/short photoperiod) reduces the requirements for cell wall protection during microspore development. P/TGMS lines are able to meet the requirements for their wall protection and thus support their development into functional pollens, leading to restored fertility. There are significant differences between rice and Arabidopsis in P/TGMS genes, suggesting the presence of a distinct P/TGMS mechanism in rice other than slow development. Green font represents P/TGMS genes in Arabidopsis. Yellow font represents P/TGMS genes in rice. The arrows indicate the impact of P/TGMS genes on cell wall components. The red arrow indicates that the P/TGMS gene can provide full protection in the wild type. The dotted arrow indicates the insufficient protection provided by P/TGMS lines. Blue arrows indicate that under permissive conditions, P/TGMS genes can provide sufficient protection for plants.
[1] | Huang X, Kurata N, Wei X, Wang Z X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497-501. |
[2] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
Wu B, Hu W, Xing Y Z. The history and prospect of rice genetic breeding in China[J]. Hereditas, 2018, 40(10): 841-857. (in Chinese with English abstract) | |
[3] | Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622): 629-633. |
[4] | Yuan L P. Hybrid rice technology for food security in the world[J]. Crop Research, 2004(4): 185-186. |
[5] | Jones J W. Hybrid vigor in rice[J]. Agronomy Journal, 1926, 18(5): 423-428. |
[6] | 袁隆平. 水稻的雄性不孕性[J]. 科学通报, 1966(4): 185-188. |
Yuan L P. A Preliminary report on male sterility in rice, Oryza sativa L[J]. Science Bulletin, 1966(4): 185-188. (in Chinese with English abstract) | |
[7] | 胡忠孝, 田妍, 徐秋生. 中国杂交水稻推广历程及现状分析[J]. 杂交水稻, 2016, 31(2): 1-8. |
Hu Z X, Tian Y, Xu Q S. Review of extension and analysis on current status of hybrid rice in China[J]. Hybrid Rice, 2016, 31(2): 1-8. (in Chinese with English abstract) | |
[8] | Chen L, Liu Y G. Male sterility and fertility restoration in crops[J]. Annual Review of Plant Biology, 2014, 65: 579-606. |
[9] | 袁隆平. 杂交水稻发展的战略[J]. 杂交水稻, 2018, 33(5): 1-2. |
Yuan L P. The strategy for hybrid rice development[J]. Hybrid Rice, 2018, 33(5): 1-2. (in Chinese with English abstract) | |
[10] | 欧阳亦聃, 陈乐天. 作物育性调控和分子设计杂交育种前沿进展与展望[J]. 中国科学: 生命科学, 2021, 51(10): 1385-1395. |
Ouyang Y D, Chen L T. Fertility regulation and molecular design hybrid breeding in crops[J]. Scientia Sinica Vitae, 2021, 51(10): 1385-1395. (in Chinese with English abstract) | |
[11] | 石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究[J]. 中国农业科学, 1985(2): 44-48. |
Shi M S. The discovery and study of the photosensitive recesseive male-sterile rice[J]. Scientia Agricultura Sinica, 1985(2): 44-48. (in Chinese with English abstract) | |
[12] | 石明松. 晚粳自然两用系选育及应用初报[J]. 湖北农业科学, 1981(7): 1-3. |
Shi M S. A perliminary report on selection and application of natural dual-purpose lines of late japonica. Hubei Agricultrual Sciences, 1981(7): 1-3. (in Chinese with English abstract) | |
[13] | 杨仕华, 程本义, 沈伟峰, 夏俊辉. 中国两系杂交水稻选育与应用进展[J]. 杂交水稻, 2009, 24(1): 5-9. |
Yang S H, Cheng B Y, Shen W F, Xia J H. Progress of application and breeding on two-line hybrid rice in China[J]. Hybrid Rice, 2009, 24(1): 5-9. (in Chinese with English abstract) | |
[14] | 袁隆平. 两系法杂交水稻研究的进展[J]. 中国农业科学, 1990(3): 1-6. |
Yuan L P. Research progress on two-line hybrid rice[J]. Scientia Agricultura Sinica, 1990(3): 1-6. (in Chinese with English abstract) | |
[15] | 斯华敏, 刘文真, 付亚萍, 孙宗修, 胡国成. 我国两系杂交水稻发展的现状和建议[J]. 中国水稻科学, 2011, 25(5): 544-552. |
Si H M, Liu W Z, Fu Y P, Sun Z X, Hu G C. Current situation and suggestions for development of two-line hybrid rice in China[J]. Chinese Journal of Rice Science, 2011, 25(5): 544-552. (in Chinese with English abstract) | |
[16] | Huang J Z, E Z G, Zhang H L, Shu Q Y. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization[J]. Rice, 2014, 7: 1-14. |
[17] | 郑兴飞, 董华林, 郭英, 殷得所, 王红波, 胡建林, 查中萍, 曹鹏, 徐得泽. 两系法杂交水稻的育种成就与展望[J]. 作物研究, 2021, 35(5): 509-513. |
Zheng X F, Dong H L, Guo Y, Yin D S, Wang H B, Hu J L, Zha Z P, Cao P, Xu D Z. Achievements and prospects of two-line system hybrid rice breeding[J]. Crop Research, 2021, 35(5): 509-513. (in Chinese with English abstract) | |
[18] | 中华人民共和国农业农村部. 国家农作物优良品种推广目录2023[EB/OL]. (2023-04-18) [2023-8-20] https://www.moa.gov.cn/xw/bmdt/202303/t20230302_6422033.htm. |
Ministry of Agriculture and Rural Affairs of the Prople’s Republic of China. National Crop Variety Promotion Catalogue 2023[EB/OL]. (2023-04-18) [2023-8-20] https://www.moa.gov.cn/xw/bmdt/202303/t20230302_6422033.htm. (in Chinese) | |
[19] | 程本义, 夏俊辉, 沈伟峰. 长江中下游稻区籼型两系与三系杂交水稻组合的比较分析[J]. 杂交水稻, 2009, 24(5): 61-65. |
Cheng B Y, Xia J H, Shen W F. Comparison analysis between two-line and three-line indica hybrid rice combinations in the middle and down area of the Yangtse Valley of China[J]. Hybrid Rice, 2009, 24(5): 61-65. (in Chinese with English abstract) | |
[20] | 林海, 李红英, 鄂志国, 庞乾林. 2020年我国审定的水稻品种基本特性分析[J]. 中国稻米, 2021, 27(6): 6-11. |
Lin H, Li H Y, E Z G, Pang Q L. Analysis on Characteristics of Rice Varieties Registered in China in 2020[J]. China Rice, 2021, 27(6): 6-11. (in Chinese) | |
[21] | 唐世军, 吴霞, 文斌, 陶诗顺. 两系和三系杂交水稻产量性状差异性比较[J]. 杂交水稻, 2022, 37(4): 139-142. |
Tang S J, Wu X, Wen B, Tao S S. Comparison of difference in yield characters between two-line and three-line hybrid rice[J]. Hybrid Rice, 2022, 37(4): 139-142. (in Chinese with English abstract) | |
[22] | 袁隆平. 超级杂交水稻育种研究的进展[J]. 中国稻米, 2008, 81(1): 1-3. |
Yuan L P. Research progress on super hybrid rice breeding[J]. China Rice, 2008, 81(1): 1-3. (in Chinese with English abstract) | |
[23] | 杨振玉, 张国良, 张从合, 陈金节, 王合勤, 张金家, 严志. 中籼型优质光温敏核不育系广占63S的选育[J]. 杂交水稻, 2002, 17(4): 8-10. |
Yang Z Y, Zhang G L, Zhang C H, Chen J J, Wang H Q, Zhang J J, Yan Z. Breeding of fine quality PTGMS line Guangzhan 63S in medium indica rice[J]. Hybrid Rice, 2002, 17(4): 4-6. (in Chinese with English abstract) | |
[24] | 斯华敏, 付亚萍, 刘文真, 孙宗修, 胡国成. 水稻光温敏雄性核不育系的系谱分析[J]. 作物学报, 2012, 38(3): 394-407. |
Si H M, Fu Y P, Liu W Z, Sun Z X, Hu G C. Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice[J]. Acta Agronomica Sinica, 2012, 38(3): 394-407. (in Chinese with English abstract) | |
[25] | 邓启云. 广适性水稻光温敏不育系Y58S的选育[J]. 杂交水稻, 2005, 20(2): 18-21. |
Deng Q Y. Breeding of the PTGMS line Y58S with wide adaptability in rice[J]. Hybrid Rice, 2005, 20(2): 15-18. (in Chinese with English abstract) | |
[26] | 符辰建, 胡小淳, 符星学, 秦鹏, 王凯, 黎琛子, 吴挺飞, 刘珊珊, 杨远柱. 优质抗病高配合力中籼两用核不育系隆科638S的选育及应用[J]. 中国稻米, 2021, 27(3): 61-66. |
Fu C J, Hu X C, Fu X X, Qin P, Wang K, Li C Z, Wu T F, Liu S S, Yang Y Z. Breeding and application of TGMS line Longke 638S with blast-resistance, good-quality and high combining-ability in middle-season indica rice[J]. China Rice, 2021, 27(3): 61-66. (in Chinese with English abstract) | |
[27] | 符辰建, 胡小淳, 秦鹏, 符星学, 孙振彪, 杨广, 王凯, 杨远柱. 抗病优质高配合力中籼型两用核不育系晶4155S的选育及应用[J]. 杂交水稻, 2021, 36(4): 18-24. |
Fu C J, Hu X C, Qin P, Fu X X, Sun Z B, Yang G, Wang K, Yang Y Z. Breeding and application of medium indica TGMS line Jing 4155S with blast resistence, good grain quality and high conbining ability in rice[J]. Hybrid Rice, 2021, 36(4): 18-24. (in Chinese with English abstract) | |
[28] | Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2654-2659. |
[29] | Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu Y G, Zhuang C. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4): 649-660. |
[30] | Fan Y, Yang J, Mathioni S M, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyers B C, Zhang Q. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15144-15149. |
[31] | 邓华凤, 舒福北, 袁定阳. 安农S-1的研究及其利用概况[J]. 杂交水稻, 1999, 14(3): 3-5. |
Deng H F, Shu F B, Yuan D Y. An overview of research and utilization of Annong S-1[J]. Hybrid Rice, 1999, 14(3): 3-5. (in Chinese with English abstract) | |
[32] | Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L, Feng M, Qin P, Hu X, Song C, Shi J, Song X, Ni E, Wu X, Deng Q, Liu Z, Chen M, Liu Y G, Cao X, Zhuang C. RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice[J]. Nature Communications, 2014, 5: 4884. |
[33] | 蒋佐升, 徐庆国, 董延瑜. 籼型两用不育系衡农S-1育性转换及育性遗传的研究[J]. 作物研究, 1992(2): 12-14. |
Jiang Z S, Xu Q G, Dong Y Y. Study on fertility conversion and fertility inheritance of indica TGMS line Hengnong S-1[J]. Crop Research, 1992(2): 12-14. (in Chinese with English abstract) | |
[34] | 黄惠芳, 鄂志国, 祁永斌, 管耀祖. 中国两系杂交稻的发展现状及光温敏雄性不育基因研究进展[J]. 浙江农业学报, 2015, 27(5): 893-899. |
Huang H F, E Z G, Qi Y B, Guan Y Z. Current situation for development of two-line hybrid rice in China and research progress of rice photoperiod- and thermo- sensitive genic male sterility gene[J]. Acta Agriculturae Zhejiangensis, 2015, 27(5): 893-899. (in Chinese with English abstract) | |
[35] | Qi Y, Liu Q, Zhang L, Mao B, Yan D, Jin Q, He Z. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice[J]. Theoretical and Applied Genetics, 2014, 127(5): 1173-1182. |
[36] | Wu L, Jing X, Zhang B, Chen S, Xu R, Duan P, Zou D, Huang S, Zhou T, An C, Luo Y, Li Y. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility[J]. Nature Communications, 2022, 13(1): 2055. |
[37] | Yu J, Han J, Kim Y J, Song M, Yang Z, He Y, Fu R, Luo Z, Hu J, Liang W, Zhang D. Two rice receptor-like kinases maintain male fertility under changing temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): 12327-12332. |
[38] | Chang Z, Chen Z, Wang N, Xie G, Lu J, Yan W, Zhou J, Tang X, Deng X W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 14145-14150. |
[39] | Zhang Y F, Li Y L, Zhong X, Wang J J, Zhou L, Han Y, Li D D, Wang N, Huang X H, Zhu J, Yang Z N. Mutation of glucose-methanol-choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis[J]. Plant Biotechnology Journal, 2022, 20(10): 2023-2035. |
[40] | Han Y, Jiang S Z, Zhong X, Chen X, Ma C K, Yang Y M, Mao Y C, Zhou S D, Zhou L, Zhang Y F, Huang X H, Zhang H, Li L G, Zhu J, Yang Z N. Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15[J]. Plant Biotechnology Journal, 2023, 21(8): 1659-1670. |
[41] | Zhang Q, Shen B, Dai X, Mei M, Saghai Maroof M, Li Z. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(18): 8675-8679. |
[42] | Huang T Y, Wang Z, Hu Y G, Shi S P, Peng T, Chu X D, Shi J, Xiang Z F, Liu D Y. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa)[J]. Rice Science, 2008, 15(2): 153-156. |
[43] | 李仕贵, 周开达, 朱立煌. 水稻温敏显性核不育基因的遗传分析和分子标记定位[J]. 科学通报, 1999(9): 955-958. |
Li S F, Zhou K D, Zhu L H. Genetic analysis and location of molecular markers for thermo-sensitive dominant genic sterility genes in rice[J]. Science Bulletin, 1999(9): 955-958. (in Chinese with English abstract) | |
[44] | Wang B, Xu W W, Wang J Z, Wu W, Zheng H G, Yang Z Y, Ray J D, Nguyen H T. Tagging and mapping the thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.) with molecular markers[J]. Theoretical and Applied Genetics, 1995, 91(6-7): 1111-1114. |
[45] | Subudhi P K, Borkakati R P, Virmani S S, Huang N. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis[J]. Genome, 1997, 40(2): 188-194. |
[46] | Dong N V, Subudhi P K, Luong P N, Quang V D, Quy T D, Zheng H G, Wang B, Nguyen H T. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques[J]. Theoretical and Applied Genetics, 2000, 100(5): 727-734. |
[47] | Wang C, Zhang P, Ma Z, Zhang M, Sun G, Ling D. Development of a genetic marker linked to a new thermo-sensitive male sterile gene in rice(Oryza sativa L.)[J]. Euphytica, 2004, 140(3): 217-222. |
[48] | Lee D S, Chen L J, Suh H S. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111(7): 1271-1277. |
[49] | Koh H J, Son Y H, Heu M H, Lee H S, McCouch S R. Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice(Oryza sativa L.)[J]. Euphytica, 1999, 106(1): 57-62. |
[50] | 杨远柱, 符辰建, 胡小淳, 张章, 周永祥, 宋永帮. 株1S温敏核不育基因的发现及超级杂交早稻育种研究[J]. 中国稻米, 2007, 80(6): 17-22. |
Yang Y Z, Fu C J, Hu X C, Zhang Z, Zhou Y X, Song Y B. Discovery of a thermo-sensitive genic male sterility gene in Zhu 1S and research on the super hybrid breeding of early rice[J]. China Rice, 2007, 80(6): 17-22. (in Chinese with English abstract) | |
[51] | Zhang H L, Huang J Z, Liu Q L, Nawaz Z, Lu H P, Gong J Y, Zhu Y J, Yan W, Shu Q Y. Characterization of an RNase Z nonsense mutation identified exclusively in environment-conditioned genic male sterile rice[J]. Molecular Breeding, 2014, 34(2): 481-489. |
[52] | 严维, 周涵, 何航, 邓兴旺. 基于全基因组多态性的安农S-1与株1S亲缘关系分析[J]. 杂交水稻, 2019, 34(1): 57-61. |
Yan W, Zhou H, He H, Deng X W. Analysis of the genetic relationship between annong S-1 and Zhu 1S based on genome-wide polymmophism[J]. Hybrid Rice, 2019, 34(1): 57-61. (in Chinese with English abstract) | |
[53] | 张华丽, 陈晓阳, 黄建中, 鄂志国, 龚俊义, 舒庆尧. 中国两系杂交水稻光温敏核不育基因的鉴定与演化分析[J]. 中国农业科学, 2015, 48(1): 1-9. |
Zhang H L, Chen X Y, Huang J Z, E Z G, Gong J Y, Shu Q Y. Identification and transition analysis of photo-/ thermo-sensitive genic male sterile genes in two-line hybrid rice in China[J]. Scientia Agricultura Sinica, 2015, 48(1): 1-9. (in Chinese with English abstract) | |
[54] | 李任华, 王象坤, 罗孝和, 罗治华. 光敏核不育系轮回422S的选育[J]. 杂交水稻, 1995(6): 7-9. |
Li R H, Wang X K, Luo X H, Luo Z H. Selection of photoperiod-sensitive male sterile line Lunhui 422S[J]. Hybrid Rice, 1995(6): 7-9. (in Chinese with English abstract) | |
[55] | Yao X, Hu W, Yang Z N. The contributions of sporophytic tapetum to pollen formation[J]. Seed Biology, 2022, 1(1): 1-13. |
[56] | Xu T, Zhang C, Zhou Q, Yang Z N. Pollen wall pattern in Arabidopsis[J]. Science Bulletin, 2016, 61(11): 832-837. |
[57] | Zhu J, Lou Y, Shi Q S, Zhang S, Zhou W T, Yang J, Zhang C, Yao X Z, Xu T, Liu J L, Zhou L, Hou J Q, Wang J Q, Wang S, Huang X H, Yang Z N. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines[J]. Nature Plants, 2020, 6(4): 360-367. |
[58] | Shi Q S, Lou Y, Shen S Y, Wang S H, Zhou L, Wang J J, Liu X L, Xiong S X, Han Y, Zhou H S, Huang X H, Wang S, Zhu J, Yang Z N. A cellular mechanism underlying the restoration of thermo/photoperiod- sensitive genic male sterility[J]. Molecular Plant, 2021, 14(12): 2104-2114. |
[59] | Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma D P. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis[J]. Plant Journal, 2005, 42(3): 315-328. |
[60] | Chang H S, Zhang C, Chang Y H, Zhu J, Xu X F, Shi Z H, Zhang X L, Xu L, Huang H, Zhang S, Yang Z N. No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis[J]. Plant Physiology, 2012, 158(1): 264-272. |
[61] | Sun M X, Huang X Y, Yang J, Guan Y F, Yang Z N. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage[J]. Plant Reproduction, 2013, 26(2): 83-91. |
[62] | de Azevedo Souza C, Kim S S, Koch S, Kienow L, Schneider K, Mckim S M, Haughn G W, Kombrink E, Douglas C J. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis[J]. Plant Cell, 2009, 21(2): 507-525. |
[63] | Morant M, Jørgensen K, Schaller H, Pinot F, Møller B L, Werck-reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen[J]. Plant Cell, 2007, 19(5): 1473-1487. |
[64] | Quilichini T D, Douglas C J, Samuels A L. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana[J]. Annals of Botany, 2014, 114(6): 1189-1201. |
[65] | Xu X F, Qian X X, Wang K Q, Yu Y H, Guo Y Y, Zhao X, Wang B, Yang N Y, Huang J R, Yang Z N. Slowing development facilitates Arabidopsis mgt mutants to accumulate enough magnesium for pollen formation and fertility restoration[J]. Frontiers in Plant Science, 2020, 11: 621338. |
[66] | Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson Z A, Zhang D. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice[J]. Plant Physiology, 2011, 156(2): 615-630. |
[67] | Iwakawa H, Shinmyo A, Sekine M. Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis[J]. Plant Journal, 2006, 45(5): 819-831. |
[68] | Wijnker E, Harashima H, Muller K, Parra-Nunez P, De Snoo C B, Van De Belt J, Dissmeyer N, Bayer M, Pradillo M, Schnittger A. The Cdk1/Cdk2homolog CDKA;1 controls the recombination landscape in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25): 12534-12539. |
[69] | Zhang C, Ren M Y, Han W J, Zhang Y F, Huang M J, Wu S Y, Huang J, Wang Y, Zhang Z, Yang Z N. Slow development allows redundant genes to restore the fertility of rpg1, a TGMS line in Arabidopsis[J]. Plant Journal, 2022, 109(6): 1375-1385. |
[70] | Wang K Q, Yu Y H, Jia X L, Zhou S D, Zhang F, Zhao X, Zhai M Y, Gong Y, Lu J Y, Guo Y, Yang N Y, Wang S, Xu X F, Yang Z N. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis[J]. Journal of Integrative Plant Biology, 2022, 64(3): 717-730. |
[71] | Dobritsa A A, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller B L, Preuss D. CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis[J]. Plant Physiology, 2009, 151(2): 574-589. |
[72] | Li Y, Li D, Guo Z, Shi Q, Xiong S, Zhang C, Zhu J, Yang Z. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice[J]. BMC Plant Biology, 2016, 16(1). |
[73] | Zhao J, Long T, Wang Y, Tong X, Tang J, Li J, Wang H, Tang L, Li Z, Shu Y, Liu X, Li S, Liu H, Li J, Wu Y, Zhang J. RMS2 encoding a GDSL lipase mediates lipid homeostasis in anthers to determine rice male fertility[J]. Plant Physiology, 2020, 182(4): 2047-2064. |
[74] | Zhu L, Shi J, Zhao G, Zhang D, Liang W. Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice[J]. Journal of Plant Biology, 2013, 56(1): 59-68. |
[75] | Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors[J]. Plant Journal, 2001, 28(1): 27-39. |
[76] | Ito T, Shinozaki K. The MALE STERILITY1gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation[J]. Plant Cell Physiology, 2002, 43(11): 1285-1292. |
[77] | 吴亚先, 符辰建, 符星学, 孙毛山, 邓冰, 周延彪, 杨远柱. 水稻温敏核不育系株1S及其衍生系育性对低温的敏感性差异比较研究[J]. 杂交水稻, 2021, 36(4): 69-75. |
Wu Y X, Fu C J, Fu X X, Sun M S, Deng B, Zhou Y B, Yang Y Z. Comparative studies on the difference of fertility sensitivity to low temperarure of Zhu 1S and its derived TGMS lines in rice[J]. Hybrid Rice, 2021, 36(4): 69-75. (in Chinese with English abstract) | |
[78] | 陈立云, 雷东阳, 唐文邦, 肖应辉. 两系法杂交水稻研究和应用中若干问题的思与行[J]. 中国水稻科学, 2010, 24(6): 641-646. |
Chen L Y, Lei D Y, Tang W B, Xiao Y H. Thoughts and practice on some problems about research and application of two-line hybrid rice[J]. Chinese Journal of Rice Science, 2011, 18(2): 79-85. (in Chinese with English abstract) | |
[79] | 王芳权, 范方军, 夏士健, 宗寿余, 郑天清, 王军, 李文奇, 许扬, 陈智慧, 蒋彦婕, 陶亚军, 仲维功, 杨杰. 水稻光温敏核不育基因tms5与pms3的互作效应[J]. 作物学报, 2020, 46(3): 317-329. |
Wang F Q, Fan F J, Xia S J, Zong S Y, Zheng T Q, Wang J, Li W Q, Xu Y, Chen Z H, Jiang Y J, Tao Y J, Zhong W G, Yang J. Interactive effects of the photoperiod-/ thermo-sensitive genic male sterile genes tms5 and pms3 in rice[J]. The Crop Journal, 2020, 46(3): 317-329. (in Chinese with English abstract) | |
[80] | Wei C, Wang C, Jia M, Guo H X, Luo P Y, Wang M G, Zhu J K, Zhang H. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor[J]. Journal of Integrative Plant Biology, 2021, 63(9): 1595-1599. |
[81] | Zhan X, Lu Y, Zhu J K, Botella J R. Genome editing for plant research and crop improvement[J]. Journal of Integrative Plant Biology, 2021, 63(1): 3-33. |
[82] | Chen H, Zhang Z, Ni E, Lin J, Peng G, Huang J, Zhu L, Deng L, Yang F, Luo Q, Sun W, Liu Z, Zhuang C, Liu Y G, Zhou H. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa)[J]. New Phytologist, 2020, 225(5): 2077-2093. |
[83] | Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, Liu D, Zhao B, Duan L, Qi X. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice[J]. Nature Communications, 2018, 9(1): 604. |
[1] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[2] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[3] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[4] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[5] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[6] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[7] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[8] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[9] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[10] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[11] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[12] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[13] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[14] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[15] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||