中国水稻科学 ›› 2024, Vol. 38 ›› Issue (4): 350-363.DOI: 10.16819/j.1001-7216.2024.240205
韦还和1, 马唯一1, 左博源1, 汪璐璐1,2, 朱旺1,2, 耿孝宇1, 张翔1, 孟天瑶2, 陈英龙1, 高平磊1, 许轲1, 霍中洋1, 戴其根1,2,*()
收稿日期:
2024-02-16
修回日期:
2024-05-22
出版日期:
2024-07-10
发布日期:
2024-07-11
通讯作者:
*email: qgdai@yzu.edu.cn
基金资助:
WEI Huanhe1, MA Weiyi1, ZUO Boyuan1, WANG Lulu1,2, ZHU Wang1,2, GENG Xiaoyu1, ZHANG Xiang1, MENG Tianyao2, CHEN Yinglong1, GAO Pinglei1, XU Ke1, HUO Zhongyang1, DAI Qigen1,2,*()
Received:
2024-02-16
Revised:
2024-05-22
Online:
2024-07-10
Published:
2024-07-11
Contact:
*email: qgdai@yzu.edu.cn
摘要:
滨海盐碱地水稻生产受限于淡水资源和水利基础设施,盐害和干旱往往交织出现,极易遭受盐−旱复合胁迫,严重制约了滨海盐碱地水稻丰产优质目标的实现。全面剖析盐、干旱胁迫及其复合胁迫对水稻产量和品质形成的影响及其生理机制,可为滨海盐碱地水稻高产与品质调优栽培提供科学支撑。本文概述了盐、干旱及其复合胁迫对水稻生长发育、产量形成和稻米品质的影响,从渗透调节、离子平衡、光合作用、抗氧化酶系统、内源激素、蔗糖-淀粉代谢关键酶活性和分子机制等方面阐述其影响水稻产量和品质形成的作用机制,从耐盐耐旱品种选育及栽培调控等方面提出了减轻水稻盐/干旱胁迫的调控措施,为今后深入开展水稻耐盐和干旱的研究提出建议。
韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363.
WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation[J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363.
图1 盐、干旱及其复合胁迫对水稻生长发育及产量和品质形成的影响
Fig. 1. Effects of salinity, drought, and the combined stress on rice growth and development, grain yield, and grain quality
[1] | Scudiero E, Corwin D L, Anderson R G, Yemoto K, Clary W, Wang Z, Skaggs T H. Remote sensing is a viable tool for mapping soil salinity in agricultural lands[J]. California Agriculture, 2017, 71(4): 231-238. |
[2] | Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production[J]. Frontiers in Plant Science, 2015, 6: 978. |
[3] | 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的相应及耐盐机理研究进展[J]. 中国水稻科学, 2022, 36(2): 105-117. |
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Rice response to salt stress and research progress in salt tolerance mechanism[J]. Chinese Journal of Rice Science, 2022, 36(2): 105-117. (in Chinese with English abstract) | |
[4] | 王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米, 2019, 25(1): 1-6. |
Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C F, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice[J]. China Rice, 2019, 25(1): 1-6. (in Chinese with English abstract) | |
[5] | Liu Z G, Ma C Y, Hou L, Wu X Z, Wang D, Zhang L, Liu P. Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis[J]. International Journal of Molecular Sciences Biology, 2022, 23(6): 3293. |
[6] | Chen G J, Zheng D F, Feng N J, Zhou H, Mu D W, Zhao L M, Shen X F, Rao G S, Meng F Y, Huang A Q. Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice[J]. Scientific Reports, 2022, 12: 8228. |
[7] | Frukh A, Siddiqi T O, Khan M I R, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress[J]. Plant Physiology and Biochemistry, 2020, 146: 55-70. |
[8] | 周根友, 翟彩娇, 邓先亮, 张蛟, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学, 2018, 32(2): 146-154. |
Zhou G Y, Zhai C J, Deng X L, Zhang J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots[J]. Chinese Journal of Rice Science, 2018, 32(2): 146-154. (in Chinese with English abstract) | |
[9] | Radanielson A M, Gaydon D S, Khan M M R, Chaki A K, Rahman M A, Angeles O, Li T, Ismail A. Varietal improvement options for higher rice productivity in salt affected areas using crop modelling[J]. Field Crops Research, 2018, 229: 27-36. |
[10] | 张娟伟, 石亚飞, 路旭平, 杨文伟, 田蕾, 李培富, 张振海, 罗成科. 种子萌发期粳稻种质资源耐旱性综合评价[J]. 核农学报, 2022, 36(11): 2093-2103. |
Zhang J W, Shi Y F, Lu X P, Yang W W, Tian L, Li P F, Zhang Z H, Luo C K. Comprehensive evaluation of drought tolerance of japonica rice germplasm resources at seed germination stage[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(11): 2093-2103. (in Chinese with English abstract) | |
[11] | Wang B X, Xu B, Liu Y, Chen X B, Liu J W, Zhi W F, Xing Y A, Yang B, Li J, Chi M, Liu J B, Chen T M, Xu D Y, Zhu G L. Variation of drought resistance of rice genotypes released in different years in China[J]. Journal of the Science of Food and Agriculture, 2019, 99(9): 4430-4438. |
[12] | Mukamuhirwa A, Hovmalm H P, Oritz R, Nyamangyoku O, Prieto-Linde M L, Ekholm A, Johansson E. Effect of intermittent drought on grain yield and quality of rice (Oryza sativa L.) grown in Rwanda[J]. Journal of Agronomy and Crop Science, 2020, 206(2): 252-262. |
[13] | 杨永杰, 张彩霞, 宋建, 熊杰, 王熹, 章秀福, 符冠富, 陶龙兴. 花期干旱胁迫对籼稻近等基因系水分和光合生理的影响[J]. 中国农业科学, 2013, 46(7): 1481-1491. |
Yang Y J, Zhang C X, Song J, Xiong J, Wang X, Zhang X F, Fu G F, Tao L X. Effects of drought stress on water and photosynthetic physiology activities of near-isogenic indica rice lines at flowering stage[J]. Scientia Agricultura Sinica, 2013, 46(7): 1481-1491. (in Chinese with English abstract) | |
[14] | Katerji N, Mastrorilli M, van Hoorn J W, Lahmer F Z, Hamdy A, Oweis T. Durum wheat and barley productivity in saline-drought environments[J]. European Journal of Agronomy, 2009, 31(1): 1-9. |
[15] | Sun C X, Gao X X, Fu J Q, Zhou J H, Wu X F. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress[J]. Plant and Soil, 2015, 388(1-2): 99-117. |
[16] | 姚海梅, 李永生, 张同祯, 赵娟, 王婵, 王汉宁, 方永丰. 旱-盐复合胁迫对玉米种子萌发和生理特性的影响[J]. 应用生态学报, 2016, 27(7): 2301-2307. |
Yao H M, Li Y S, Zhang T Z, Zhao J, Wang C, Wang H N, Fang Y F. Effects of combined drought and salinity stress on germination and physiological characteristics of maize (Zea mays)[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2301-2307. (in Chinese with English abstract) | |
[17] | 翁亚伟, 张磊, 张姗, 田中伟, 靳雪莹, 李梦雅, 余钟毓, 姜东, 戴廷波. 盐旱复合胁迫对小麦幼苗生长和水分吸收的影响[J]. 生态学报, 2017, 37(7): 2244-2252. |
Weng Y W, Zhang L, Zhang S, Tian Z W, Jin X Y, Li M Y, Yu Z Y, Jiang D, Dai T B. Effects of salt with drought stress on growth and water uptake of wheat seedlings[J]. Acta Ecologica Sinica, 2017, 37(7): 2244-2252. (in Chinese with English abstract) | |
[18] | 张徐彬, 陈熙, 葛佳琳, 陈英龙, 戴其根, 孟天瑶, 韦还和. 盐-旱复合胁迫对水稻种子萌发和幼苗生长的影响[J]. 扬州大学学报: 农业与生命科学版, 2022, 43(2): 19-35. |
Zhang X B, Chen X, Ge J L, Chen Y L, Dai Q G, Meng T Y, Wei H H. Effects of salinity-drought combined stress on seed germination and seedling growth of rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2022, 43(2): 19-35. (in Chinese with English abstract) | |
[19] | Zheng C, Liu C T, Liu L, Tan Y N, Sheng X B, Yu D, Sun Z Z, Sun X W, Chen J, Yuan D Y, Duan M J. Effect of salinity stress on rice yield and grain quality: A meta-analysis[J]. European Journal of Agronomy, 2023, 144: 126765. |
[20] | 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾俊飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制[J]. 中国水稻科学, 2023, 37(2): 153-165. |
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms[J]. Chinese Journal of Rice Science, 2023, 37(2): 153-165. (in Chinese with English abstract) | |
[21] | Aguilar M, Fernández-Ramírez J L, Aguilar-Blanes M, Ortiz-Romero C. Rice sensitivity to saline irrigation in southern Spain[J]. Agricultural Water Management, 2017, 188: 21-28. |
[22] | 韦还和, 葛佳琳, 张徐彬, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247. |
Wei H H, Ge J L, Zhang X B, Meng T Y, Lu Y, Li X Y, Tao Y, Ding E H, Chen Y L, Dai Q G. Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress[J]. Acta Agronomica Sinica, 2020, 46(8): 1238-1247. (in Chinese with English abstract) | |
[23] | 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480. |
Wei H H, Zhang X B, Ge J L, Chen X, Meng T Y, Yang Y, Xiong F, Chen Y L, Dai Q G. Effects of salinity stress on spikelets formation and grains filling in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2021, 47(12): 2471-2480. (in Chinese with English abstract) | |
[24] | 杨晓龙, 程建平, 汪本福, 李阳, 张枝盛, 李进兰, 李萍. 灌浆期干旱胁迫对水稻生理性状和产量的影响[J]. 中国水稻科学, 2021, 35(1): 38-46. |
Yang X L, Cheng J P, Wang B F, Li Y, Zhang Z S, Li J L, Li P. Effects of drought stress at grain filling stage on rice physiological characteristics and yield[J]. Chinese Journal of Rice Science, 2021, 35(1): 38-46. (in Chinese with English abstract) | |
[25] | Gao Y, Hu T S, Wang Q, Yuan H W, Yang J W. Effect of drought-flood abrupt alternation on rice yield and yield components[J]. Crop Science, 2019, 59(1): 280-292. |
[26] | Liao Q, Chebotarov D, Islam M S, Quintana M R, Natividad M A, De Ocampo M, Beredo J C, Torres R O, Zhang Z H, Song H X, Price A H, McNally K L, Henry A. Aus rice root architecture variation contributing to grain yield under drought suggests a key role of nodal root diameter class[J]. Plant Cell and Environment, 2022, 45(3): 854-870. |
[27] | Zhao H F, Ni S J, Cai S G, Zhang G P. Comprehensive dissection of primary metabolites in response to diverse abiotic stress in barley at seedling stage[J]. Plant Physiology and Biochemistry, 2021, 161: 54-64. |
[28] | 张晨, 戴良香, 张冠初, 丁红, 徐扬, 郭庆, 张智猛, 石书兵. 旱盐复合胁迫对花生荚果发育特性、产量和品质的影响[J]. 花生学报, 2023, 52(1): 72-79. |
Zhang C, Dai L X, Zhang G C, Ding H, Xu Y, Guo Q, Zhang Z M, Shi S B. Effects of drought-salt combined stress on pod development, yield and quality of peanut[J]. Journal of Peanut Science, 2023, 52(1): 72-79. (in Chinese with English abstract) | |
[29] | Ibrahim W, Qiu C W, Zhang C, Cao F B, Zhu S J, Wu F B. Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance[J]. Physiologia Plantarum, 2019, 165(2): 155-168. |
[30] | 张徐彬. 盐-旱复合胁迫下水稻产量形成特征的研究[D]. 扬州: 扬州大学, 2023. |
Zhang X B. Yield formation characteristics of rice under combined salinity-drought stress[J]. Yangzhou: Yangzhou University, 2023. | |
[31] | Marcos M, Sharifi H, Grattan S R, Linquist B A. Spatio-temporal salinity dynamics and yield response of rice in water-seeded rice fields[J]. Agricultural Water Management, 2018, 195: 37-46. |
[32] | Sangwongchai W, Krusong K, Thitisaksakul M. Salt tolerance at vegetative stage is partially associated with changes in grain quality and starch physicochemical properties of rice exposed to salinity stress at reproductive stage[J]. Journal of the Science of Food and Agriculture, 2022, 102(1): 370-382155-168. |
[33] | Mumtaz M Z, Saqib M, Abbas G, Akhtar J, UI-Qamar Z. Drought stress impairs grain yield and quality of rice genotypes by impaired photosynthetic attributes and K nutrition[J]. Rice Science, 2020, 27(1): 5-9. |
[34] | Tong H, Duan H, Wang S J, Su J P, Sun Y, Liu Y Q, Tang L, Liu X J, Chen W F. Moderate drought alleviates the damage to grain quality at high temperatures by improving the starch synthesis of inferior grains in japonica rice[J]. Journal of Integrative Agriculture, 2022, 21(10): 3094-3101. |
[35] | Xu Y J, Gu D J, Li K, Zhang W Y, Zhang H, Wang Z Q, Yang J C. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice[J]. Crop Science, 2019, 59(3): 1261-1272. |
[36] | Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance[J]. Plant Physiology and Biochemistry, 2020, 156: 64-77. |
[37] | Price L, Han Y, Angessa T, Li C D. Molecular pathways of WRKY genes in regulating plant salinity tolerance[J]. International Journal of Molecular Sciences, 2022, 23(18): 10947. |
[38] | Bodner G, Nakhforoosh A, Kual H P. Management of crop water under drought: a review[J]. Agronomy for Sustainable Development, 2015, 35(2): 401-442. |
[39] | Ozturk M, Unal B T, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants[J]. Physiologia Plantarum, 2021, 172(2): 1321-1335. |
[40] | Swapna S, Shylaraj K S. Screening for osmotic stress responses in rice varieties under drought condition[J]. Rice Science, 2017, 24(5): 253-263. |
[41] | Wang X X, Wang W C, Huang J L, Peng S B, Xiong D L. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa)[J]. Physiologia Plantarum, 2018, 163(1): 45-58. |
[42] | Radanielson A M, Angeles O, Li T, Ismail A M, Gaydon D S. Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions[J]. Field Crops Research, 2018, 220: 46-56. |
[43] | Yan F Y, Zhang J Y, Li W W, Ding Y F, Zhong Q Y, Xu X, Wei H M, Li G H. Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings[J]. Plant Physiology and Biochemistry, 2021, 163: 363-375. |
[44] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
Yan J Q, Gu Y B, Xue Z Y, Zhou T Y, Ge Q Q, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C, Zhou Z L, Xu D Y. Different responses of rice cultivars to salt stress and the underlying mechanisms[J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. (in Chinese with English abstract) | |
[45] | Zhang Q Q, Tang W, Xiong Z, Peng S B, Li Y. Stomatal conductance in rice leaves and panicles responds differently to abscisic acid and soil drought[J]. Journal of Experimental Botany, 2023, 74(5): 1551-1563. |
[46] | Wang X X, Du T T, Huang J L, Peng S B, Xiong D L. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice[J]. Journal of Experimental Botany, 2018, 69(16): 4033-4045. |
[47] | Sakoda K, Tanlyoshi K, Yamori W, Tanaka Y. Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions[J]. Physiologia Plantarum, 2022, 174(1): e13603. |
[48] | Wang Z H, Wei Y Q. Physiological and transcriptomic analysis of antioxidant mechanisms in sweet sorghum seedling leaves in response to single and combined drought and salinity stress[J]. Journal of Plant Interactions, 2022, 17(1): 1006-1016. |
[49] | Li P D, Zhu Y F, Song X L, Song F P. Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of hybrid pennisetum[J]. Plant Physiology and Biochemistry, 2020, 155: 93-104. |
[50] | Wei H H, Geng X Y, Zhang X, Zhu W, Zhang X B, Chen Y L, Huo Z Y, Zhou G S, Meng T Y, Dai Q G. Grain yield, biomass accumulation, and leaf photosynthetic characteristics of rice under combined salinity-drought stress[J]. Rice Science, 2024, 31(1): 118-128. |
[51] | Sharma I, Bhardwaj R, Pati P K. Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1[J]. Journal of Plant Growth Regulation, 2015, 34(3): 509-518. |
[52] | Yong M T, Solis C A, Rabbi B, Huda S, Liu R, Zhou M X, Shabala L, Venkataraman G, Shabala S, Chen Z H. Leaf mesophyll K+ and Cl- fluxes and reactive oxygen species production predict rice salt tolerance at reproductive stage in greenhouse and field conditions[J]. Plant Growth Regulation, 2020, 92(1): 53-64. |
[53] | Tuteja N, Sahoo R K, Garg B, Tuteja R. OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64)[J]. Plant Journal, 2013, 76(1): 115-127. |
[54] | Gupta B K, Sahoo K K, Anwar K, Nongpiur R C, Deshmukh R, Pareek A, Singla-Pareek S L. Silicon nutrition stimulates salt-overly sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice[J]. Plant Physiology and Biochemistry, 2021, 166: 593-604. |
[55] | Yuan X, Wang H, Cai J T, Bi Y, Li D Y, Song F M. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response[J]. BMC Plant Biology, 2019, 19: 278. |
[56] | Yang S Q, Xu K, Chen S J, Li T F, Xia H, Chen L, Liu H Y, Luo L J. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19: 260. |
[57] | Shen W, Chen G X, Xu J G, Jiang Y, Liu L, Gao Z P, Ma J, Chen X, Chen T H, Lv C F. Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane[J]. Photosynthetica, 2015, 53(3): 436-446. |
[58] | Iseki K, Homma K, Shiraiwa T, Jongdee B, Mekwatanakarn P. The effects of cross-tolerance to oxidative stress and drought stress on rice dry matter production under aerobic conditions[J]. Field Crops Research, 2014, 163: 18-23. |
[59] | 王志恒, 杨秀柳, 邹芳, 黄思麒, 周吴艳, 徐中伟, 魏玉清. 旱盐交叉胁迫对甜高粱种子萌发和生理特性的影响[J]. 中国农业科技导报, 2021, 23(2): 37-49. |
Wang Z H, Yang X L, Zhou F, Huang S Q, Zhou W Y, Xu Z W, Wei Y Q. Effects of salt and drought cross stress on germination and physiology characteristics of sweet sorghum seeds[J]. Journal of Agricultural Science and Technology, 2021, 23(2): 37-49. (in Chinese with English abstract) | |
[60] | 张宇君, 赵丽丽, 王普昶, 陈超. 盐旱交互对燕麦种子萌发及幼苗生理特性的影响[J]. 草业学报, 2018, 27(5): 141-152. |
Zhang Y J, Zhao L L, Wang P C, Chen C. Effects of interaction between Ca2+ salt and drought stress on seed germination and seedling physiology of oatss[J]. Acta Prataculturae Sinica, 2018, 27(5): 141-152. (in Chinese with English abstract) | |
[61] | Khan M I R, Kumari S, Nazir F, Khanna R R, Gupta R, Chhillar H. Defensive role of plant hormones in advancing abiotic stress-resistant rice plants[J]. Rice Science, 2023, 30: 15-35. |
[62] | Joshi-Saha A, Valon C, Leung J. Abscisic acid signal off the starting block[J]. Molecular Plant, 2011, 4: 562-580. |
[63] | Xu N, Chu Y, Chen H, et al. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging[J]. PLoS Genetics, 2018, 14: e1007662. |
[64] | Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Flokovά K, Abuauf H, Ntui V O, Guo X J, Charnikhova T, Al-Babili S, Bouwmeester H J, Ruyter-Spira C. The interaction of strigolactones with abscisic acid during the drought response in rice[J]. Journal of Experimental Botany, 2018, 69: 2403-2414. |
[65] | Aslam M M, Rashid M A R, Siddiqui M A, Khan M T, Farhat F, Yasmeen S, Khan I A, Raja S, Rasool F, Sial M A, Zhao Y. Recent insights into signaling responses to cope drought stress in rice[J]. Rice Science, 2022, 29: 105-117. |
[66] | Xu Y J, Jian C Q, Li K, Tian Y F, Zhu K Y, Zhang W Y, Wang W L, Wang Z Q, Yang J C. The role of polyamines in regulating amino acid biosynthesis in rice grains[J]. Food and Exergy Security, 2021, 10: e306. |
[67] | Yamamoto A, Sawada H, Shim I S, Usui K, Fujihara S. Effect of salt stress on physiological response and leaf polyamine content in NERICA rice seedlings[J]. Plant Soil and Environment, 2011, 57: 571-576. |
[68] | Islam M A, Pang J H, Meng F W, Li Y W, Xu N, Yang C, Liu J. Putrescine, spermidine, and spermine play distinct roles in rice salt tolerance[J]. Journal of Integrative Agriculture, 2020, 19: 643-655. |
[69] | Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L Involvement of polyamines in the drought resistance of rice[J]. Journal of Experimental Botany, 2007, 58: 1545-1555. |
[70] | Chen Y, Wang M, Ouwerkerk P B F. Molecular and environmental factors determining grain quality in rice[J]. Food and Energy Security, 2012, 1: 111-132. |
[71] | 吕艳超. 施氮量对盐胁迫下寒地粳稻生长发育籽粒淀粉积累及产质量的影响[D]. 哈尔滨: 东北农业大学, 2016. |
Lv Y C. Effects of nitrogen application on growth, starch accumulation, rice yield and quality of cold-region japonica rice[D]. Harbin:Northeast Agricultural University, 2016. | |
[72] | Guo C M, Luo C K, Guo L J, Li M, Guo X L, Zhang Y X, Wang L J, Chen L. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice[J]. Journal of Integrative Plant Biology, 2016, 58: 492-502. |
[73] | Han B, Cui D, Ma X D, Cao G L, Zhang H, Koh H J, Han L Z. Evidence for evolution and selection of drought-resistant genes based on high-throughput resequencing in weedy rice[J]. Journal of Experimental Botany, 2022, 73: 1949-1962. |
[74] | Dong J F, Li X Z, Ma Y M, Yang J Y, Chen J S, Yang W, Zhou L, Wang J, Yang T F, Zhang S H, Zhao J L, Liu Q, Zhou L Y, Zhu X Y, Liu B. Overexpression of OsGF14C enhances salinity tolerance but reduces blast resistance in rice[J]. Frontiers in Plant Science, 2023, 14: 1098855. |
[75] | Nutan K K, Singla-Pareek S L, Pareek A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice[J]. Journal of Experimental Botany, 2020, 71: 684-698. |
[76] | 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052. |
Li X X, Wang R, Zhang L X, Song Y M, Tian X N, Ge R C. Cloning and functional identification of gene OsATS in rice[J]. Acta Agronomica Sinica, 2021, 47(10): 2045-2052. (in Chinese with English abstract) | |
[77] | Song J W, Yang H, Qiao C B, Zhu C Y, Bai T L, Du H D, Ma S G, Wang N, Luo C K, Zhang Y X, Ma T L, Li P F, Tian L. Natural variations of chlorophyll fluorescence and ion transporter genes influenced the differential response of japonica rice germplasm with different salt tolerances[J]. Frontiers in Plant Science, 2023, 14: 1095929. |
[78] | Selvaraj M G, Ishizaki T, Valencia M, Ogawa S, Dedicova B, Ogata T, Yoshiwara K, Maruyama K, Kusano M, Saito K, Takahashi F, Shinozaki K, Nakashima K, Ishitani M. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field[J]. Plant Biotechnology Journal, 2017, 15: 1465-1477. |
[79] | Yu T Y, Cen Q W, Kang L H, Mou W S, Zhang X Q, Fang Y X, Zhang X, Tian Q X, Xue D W. Identification and expression pattern analysis of the OsSnRK2 gene family in rice[J]. Frontiers in Plant Science, 2022, 13: 1088281. |
[80] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF 转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
Chen Y, Sun M Z, Jia B W, Leng Y, Sun X L. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response[J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. (in Chinese with English abstract) | |
[81] | Tang Y H, Bao X X, Zhi Y L, Wu Q, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, Liu W H, Wang Q W, Jia C K, Li Z K, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice[J]. Frontiers in Plant Science, 2019, 10: 168. |
[82] | Jaganathan D, Rajakani R, Doddamani D, Saravanan D, Pulipati S, Sundar G V H, Sellamuthu G, Jayabalan S, Kumari K, Parthasarathy P, Punitha S, Ramalingam S, Shivaprasad P V, Venkataraman G. A conserved SNP variation in the pre-miR396c flanking region in Oryza sativa indica landraces correlates with mature miRNA abundance[J]. Scientific Reports, 2023, 13: 2195. |
[83] | 孟淑君, 张学海, 王琪月, 张稳, 黄力, 丁冬, 汤继华. 水稻根系盐胁迫响应miRNA和tRF的鉴定[J]. 中国农业科学, 2020, 53(4): 669-682. |
Meng S J, Zhang X H, Wang Q Y, Zhang W, Huang L, Ding D, Tang J H. Identification of miRNAs and tRFs in response to salt stress in rice roots[J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682. (in Chinese with English abstract) | |
[84] | Juneja S, Saini R, Mukit A, Kumar S. Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea[J]. Plant Physiology and Biochemistry, 2023, 203: 108007. |
[85] | 夏秀忠, 张宗琼, 杨行海, 莊洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
Xia X Z, Zhang Z Q, Yang X H, Zhuang J, Zeng Y, Deng G F, Song G X, Huang Y X, Nong B X, Li D T. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China[J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015. (in Chinese with English abstract) | |
[86] | Xia H, Luo Z, Xiong J, Ma X S, Lou Q J, Wei H B, Qiu J, Yang H, Liu G L, Fan L J, Chen L, Luo L J. Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity[J]. Molecular Plant, 2019, 12: 170-184. |
[87] | 孙现军, 姜奇彦, 胡正, 张惠媛, 徐长兵, 邸一桓, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663. |
Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole growth period[J]. Acta Agronomica Sinica, 2019, 45(11): 1656-1663. (in Chinese with English abstract) | |
[88] | 罗利军. 节水抗旱稻的培育与应用[J]. 生命科学, 2018, 30(10): 1108-1112. |
Luo L J. Development of water-saving and drought-resistance rice (WDR)[J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1108-1112. (in Chinese with English abstract) | |
[89] | 段俊枝, 杨翠萍, 王楠, 齐学礼, 冯丽丽, 燕照玲, 齐红志, 陈海燕, 张会芳, 卓文飞, 李莹. 利用基因工程技术提高非生物胁迫下水稻产量的研究进展[J]. 中国稻米, 2023, 29(3): 15-23. |
Duan J Z, Yang C P, Wang N, Qi X L, Feng L L, Yan Z L, Qi H Z, Chen H Y, Zhang H F, Zhuo W F, Li Y. Progress on improving rice yield under abiotic stress by genetic engineering[J]. China Rice, 2023, 29(3): 15-23. (in Chinese with English abstract) | |
[90] | Redillas M C F R, Park S H, Lee J W, Kim Y S, Jeong J S, Jung H, Bang S W, Hahn T R, Kim J K. Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress[J]. Plant Biotechnology Reports, 2012, 6: 89-96. |
[91] | Liu J, Meng Q L, Xiang H T, Shi F M, Ma L G, Li Y C, Yu L B, Liu C L, Liu Y, Su B H. Transcription factor OsDOF1 enhances cold-stress tolerance potentially through interactions with OsICE1 and its target genes in rice (Oryza sativa L.)[J]. Crop Science, 2023, 63: 2963-2975. |
[92] | Wang F B, Niu H F, Xin D Q, Long X, Wang G P, Liu Z M, Li G, Zhang F, Qi M Y, Ye Y X, Wang Z X, Pei B L, Hu L B, Yuan C Y, Chen X H. OsIAA18, an Aux/IAA transcription factor gene, is involved in salt and drought tolerance in rice[J]. Frontiers in Plant Science, 2021, 12: 738660. |
[93] | Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice[J]. Physiologia Plantarum, 2021, 171(4): 620-637. |
[94] | Banayo N P M, Rahon R E, Cruz P S, Kato Y. Fertilizer responsiveness of high-yielding drought-tolerant rice in rainfed lowlands[J]. Plant Production Science, 2021, 24: 279-286. |
[95] | Wangsawang T, Chuamnakthong S, Kohnishi E, Sripichitt P, Sreewongchai T, Ueda A. A salinity-tolerant japonica cultivar has Na+ exclusion mechanism at leaf sheaths through the function of a Na+ transporter OsHKT1;4 under salinity stress[J]. Journal of Agronomy and Crop Science, 2018, 204: 274-284. |
[96] | Meng T Y, Zhang X B, Ge J L, Chen X, Yang Y L, Zhu G L, Chen Y L, Zhou G S, Wei H H, Dai Q G. Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields[J]. Field Crops Research, 2021, 271: 108255. |
[97] | Luyen P, Kamoshita A. On-farm agronomic manipulations to improve rice (Oryza sativa L.) production in the saline coastal zone of the red river delta in Vietnam[J]. Plant Production Science, 2023, 26: 209-224. |
[98] | 张义凯, 向镜, 朱练峰, 周红, 张茂林, 毕崇明. 盐碱地耕作及洗盐对水稻根系生长和形态特性的影响[J]. 中国稻米, 2017, 23(3): 67-70. |
Zhang Y K, Xiang J, Zhu L F, Zhou H, Zhang M L, Bi C M. Effects of tillage and salt washing on root growth and morphological characteristics of rice in saline-alkali soil[J]. China Rice, 2017, 23(3): 67-70. (in Chinese with English abstract) | |
[99] | Wei H H, Geng X Y, Zhu W, Zhang X, Zhang X B, Chen Y L, Huo Z Y, Xu K, Zhou G S, Meng T Y, Dai Q G. Individual and combined influences of salinity and drought stress on the agro-physiological traits and grain yield of rice[J]. Field Crops Research, 2023, 304: 109172. |
[100] | Pirmoradian N, Davatgar N. Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop[J]. Agricultural Water Management, 2019, 213: 97-106. |
[101] | Bi J G, Hou D P, Zhang X X, Tan J S, Bi Q Y, Zhang K K, Liu Y, Wang F M, Zhang A N, Chen L, Liu G L, Liu Z C, Yu X Q, Luo L J. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving condition[J]. Journal of Cleaner Production, 2021, 315: 127992. |
[102] | 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349. |
Wei H M, Tao W K, Zhou Y, Yan F Y, Li W W, Ding Y F, Liu Z H, Li G H. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance. Acta Agronomica Sinica, 2023, 49(5): 1339-1349. (in Chinese with English abstract) | |
[103] | Islam S M M, Gaihre Y K, Islam M N, Jahan A, Sarkar Md A R, Singh U, Islam A, Al M A, Akter M, Islam Md R. Effects of integrated nutrient management and urea deep placement on rice yield, nitrogen use efficiency, farm profits and greenhouse gas emissions in saline soils of Bangladesh[J]. Science of The Total Environment, 2023, 909: 168660. |
[104] | Djaman K, Mel V, Boye A, Diop L, Manneh B, El-Namaky R, Koudahe K, Futakuchi K. Rice genotype and fertilizer management for improving rice productivity under saline soil conditions[J]. Paddy and Water Management, 2020, 18: 43-57. |
[105] | Khan M I R, Kumari S, Nazir F, Khanna R R, Gupta R, Chhillar H. Defensive role of plant hormones in advancing abiotic stress-resistant rice plants[J]. Rice Science, 2023, 30: 15-35. |
[106] | Jiang C J, Liang Z W, Xie X Z. Priming for saline-alkaline tolerance in rice: current knowledge and future challenges[J]. Rice Science, 2023, 30: 417-425. |
[107] | 刘淑丽, 张瑞, Shahid H, 王洋, 陈英龙, 韦还和, 侯红燕, 戴其根. 外源物质对水稻盐胁迫缓解效应研究进展[J]. 中国水稻科学, 2023, 37(1): 1-15. |
Liu S L, Zhang R, Shahid H, Wang Y, Chen Y L, Wei H H, Hou H Y, Dai Q G. Research progress in alleviating effects of exogenous substances on salt stress in rice[J]. Chinese Journal of Rice Science, 2023, 37(1): 1-15. (in Chinese with English abstract) | |
[108] | Yang R, Howe J A, Golden B R. Calcium silicate slag reduces drought stress in rice (Oryza sativa L.)[J]. Journal of Agronomy and Crop Science, 2019, 205: 353-361. |
[109] | Thorne S J, Stirnberg P M, Hartley S E, Maathuis F J M. The ability of silicon fertilisation to alleviate salinity stress in rice is critically dependent on cultivar[J]. Rice, 2022, 15: 8. |
[110] | Ijaz U, Ahmed T, Rizwan M, Norman M, Shah A A, Azeem F, Alharby H F, Bamagoos A A, Alharbi B M, Ali S. Rice straw based silicon nanoparticles improve morphological and nutrient profile of rice plants under salinity stress by triggering physiological and genetic repair mechanisms[J]. Plant Physiology and Biochemistry, 2023, 201: 107788. |
[111] | 夏杨, 李传明, 刘琴, 韩光杰, 徐彬, 黄立鑫, 祁建杭, 陆玉荣, 徐健. 印度梨形孢对盐胁迫下水稻幼苗生长及抗氧化系统的影响[J]. 中国水稻科学, 2023, 37(5): 543-552. |
Xia Y, Li C M, Liu Q, Han G J, Xu B, Huang L X, Qi J H, Lu Y R, Xu J. Effects of piriformospora indica on the growth and antioxidant system of rice seedlings under salt stress[J]. Chinese Journal of Rice Science, 2023, 37(5): 543-552. (in Chinese with English abstract) | |
[112] | 张思华, 弥春霞, 虞轶俊, 刘国群, 朱春权, 田文昊, 朱练峰, 曹小闯, 张均华, 孔亚丽. 丛枝菌根真菌缓解水稻盐碱胁迫的生理特性研究[J]. 中国稻米, 2023, 29(3): 56-61. |
Zhang S H, Mi C X, Yu Y J, Liu G Q, Zhu C Q, Tian W H, Zhu L F, Cao X C, Zhang J H, Kong Y L. Physiological characteristics of arbuscular mycorrhizal fungi in alleviating saline alkali stress in rice[J]. China Rice, 2023, 29(3): 56-61. (in Chinese with English abstract) | |
[113] | Sodhi G K, Saxena S. Plant growth promotion and abiotic stress mitigation in rice using endophytic fungi: Advances made in the last decade[J]. Environmental and Experimental Botany, 2023, 209: 105312. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点 [J]. 中国水稻科学, 2024, 38(5): 544-554. |
[7] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[8] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[9] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[10] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[11] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[12] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[13] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[14] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[15] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||