中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 507-515.DOI: 10.16819/j.1001-7216.2024.231002
何勇1,#, 刘耀威1,#, 熊翔1, 祝丹晨1, 王爱群1, 马拉娜1, 王廷宝1, 张健2, 李建雄3, 田志宏1,*()
收稿日期:
2023-10-09
修回日期:
2024-08-10
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email: zhtian@yangtzeu.edu.cn
作者简介:
#共同第一作者
基金资助:
HE Yong1,#, LIU Yaowei1,#, XIONG Xiang1, ZHU Danchen1, WANG Aiqun1, MA Lana1, WANG Tingbao1, ZHANG Jian2, LI Jianxiong3, TIAN Zhihong1,*()
Received:
2023-10-09
Revised:
2024-08-10
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: zhtian@yangtzeu.edu.cn
About author:
#These authors contributed equally to this work
摘要:
【目的】研究水稻OFP家族转录因子OsOFP30对粒型的影响,创制新的粒型突变材料,为水稻粒型改良提供参考。【方法】以粳稻品种中花11为受体材料,利用CRISPR/Cas9技术对OsOFP30基因进行定向编辑;通过T0、T1和T2代连续筛选,获得3类无外源片段插入的纯合突变体(长片段删除突变OsOFP30−89、单碱基插入突变OsOFP30+1G和OsOFP30+1A);分析粒型变异,进行生物信息学和测序分析,初步确定粒型变异原因。【结果】与野生型相比,3类突变体的粒宽和千粒重都显著降低,OsOFP30−89和OsOFP30+1G仅粒长和粒厚显著降低,穗型指标与野生型无明显差异,OsOFP30+1A的粒长和粒厚与野生型无明显差异,仅一次枝梗数显著低于野生型;生物信息学分析表明,这3类突变体均由移码突变导致的翻译提前终止所产生,OsOFP30−89突变蛋白长度为252个氨基酸,OsOFP30+1G和OsOFP30+1A突变蛋白长度均为282个氨基酸,两者仅第323位的核酸序列存在G和A的单碱基差异,导致突变蛋白第108位产生丝氨酸和天冬酰胺的差别。【结论】初步判断OsOFP30基因可调控水稻粒型变异。本研究创制了新的粒型突变材料,可为水稻粒型改良育种提供参考。
何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515.
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong. Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System[J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515.
引物名称 Primer name | 引物序列(5’→3’) Sequence(5’→3’) | 用途 Purpose | |
---|---|---|---|
gRT-OFP30 | CAGATTCTCCACGACGACGGGTTTTAGAGCTAGAAAT | 靶点扩增Target amplification | |
OsU6aT-OFP30 | CCGTCGTCGTGGAGAATCTGCGGCAGCCAAGCCAGCA | ||
U-F | CTCCGTTTTACCTGTGGAATCG | 1st PCR通用引物General primers for the first round PCR | |
gR-R | CGGAGGAAAATTCCATCCAC | ||
Pps-GGL | TTCAGAggtctcTctcg$\boxed{\hbox{ACTAGT}}$ATGGAATCGGCAGCAAAGG | 2nd PCR通用引物General primers for the second round PCR | |
Pgs-GGR | AGCGTGggtctcGaccg$\boxed{\hbox{ACGCGT}}$ATCCATCCACTCCAAGCTC | ||
CrisprCX-F | CGGTGTCATCTATGTTACTA | 菌检及测序 | |
CrisprCX-R | GCAATAACTTCGTATAGGCT | Detection of positive clones and sequencing | |
Hgy-F | GGACTTCGGGGCAGTCCT | 潮霉素抗性基因检测Detection of hygromycin resistance gene | |
Hgy-R | CGATGTAGGAGGGCGTGG | ||
XOFP30F | TTCCGCGGGTTCTACTAC | 靶点所在区域基因序列扩增Amplification of the gene sequence in the region where the target site is located | |
XOFP30R | TCTTTCTCCTCCTCCGCTGG | ||
XOFP30L | GGGAGGTTGAGGAAGGGT | 阳性植株测序Sequencing of positive plants | |
OsOFP30-8gOFF-1F | CGTCGCAGCCACCTTACAAT | 潜在高概率脱靶位点检测Detection of potential high-probability off-target sites | |
OsOFP30-8gOFF-1R | GCATTGTCGTCGTTGGGTGA | ||
OsOFP30-8gOFF-1Seq | GCCGCCAACACCAACCAA | ||
OsOFP30-8gOFF-2F | CATTGCCGGGCTGAACTCTT | ||
OsOFP30-8gOFF-2R | TGGAGCTTGACGATGTTGCG | ||
OsOFP30-8gOFF-2Seq | ACGGCCACTCCGGTAAGA | ||
OsOFP30-10gOFF-F | TTCGCGACACAGCTCAAGTC | ||
OsOFP30-10gOFF-R | TGCGACCTCCCCTTCTTCTT | ||
OsOFP30-10gOFF-Seq | AAGTGCCGAACGAGCCGT |
表1 本研究用到的引物列表
Table 1. List of primers used in this study
引物名称 Primer name | 引物序列(5’→3’) Sequence(5’→3’) | 用途 Purpose | |
---|---|---|---|
gRT-OFP30 | CAGATTCTCCACGACGACGGGTTTTAGAGCTAGAAAT | 靶点扩增Target amplification | |
OsU6aT-OFP30 | CCGTCGTCGTGGAGAATCTGCGGCAGCCAAGCCAGCA | ||
U-F | CTCCGTTTTACCTGTGGAATCG | 1st PCR通用引物General primers for the first round PCR | |
gR-R | CGGAGGAAAATTCCATCCAC | ||
Pps-GGL | TTCAGAggtctcTctcg$\boxed{\hbox{ACTAGT}}$ATGGAATCGGCAGCAAAGG | 2nd PCR通用引物General primers for the second round PCR | |
Pgs-GGR | AGCGTGggtctcGaccg$\boxed{\hbox{ACGCGT}}$ATCCATCCACTCCAAGCTC | ||
CrisprCX-F | CGGTGTCATCTATGTTACTA | 菌检及测序 | |
CrisprCX-R | GCAATAACTTCGTATAGGCT | Detection of positive clones and sequencing | |
Hgy-F | GGACTTCGGGGCAGTCCT | 潮霉素抗性基因检测Detection of hygromycin resistance gene | |
Hgy-R | CGATGTAGGAGGGCGTGG | ||
XOFP30F | TTCCGCGGGTTCTACTAC | 靶点所在区域基因序列扩增Amplification of the gene sequence in the region where the target site is located | |
XOFP30R | TCTTTCTCCTCCTCCGCTGG | ||
XOFP30L | GGGAGGTTGAGGAAGGGT | 阳性植株测序Sequencing of positive plants | |
OsOFP30-8gOFF-1F | CGTCGCAGCCACCTTACAAT | 潜在高概率脱靶位点检测Detection of potential high-probability off-target sites | |
OsOFP30-8gOFF-1R | GCATTGTCGTCGTTGGGTGA | ||
OsOFP30-8gOFF-1Seq | GCCGCCAACACCAACCAA | ||
OsOFP30-8gOFF-2F | CATTGCCGGGCTGAACTCTT | ||
OsOFP30-8gOFF-2R | TGGAGCTTGACGATGTTGCG | ||
OsOFP30-8gOFF-2Seq | ACGGCCACTCCGGTAAGA | ||
OsOFP30-10gOFF-F | TTCGCGACACAGCTCAAGTC | ||
OsOFP30-10gOFF-R | TGCGACCTCCCCTTCTTCTT | ||
OsOFP30-10gOFF-Seq | AAGTGCCGAACGAGCCGT |
编号Number | 脱靶位点的位置 Position of off-target site | 脱靶位点的核苷酸序列 Sequences of off-target site | 错配碱基数 Number of mismatch | 脱靶概率 Off-score |
---|---|---|---|---|
1 | Chr08: −27321337 | gAGcTcCTCCgCGACGACGG CGG | 4 | 0.190 |
2 | Chr08: −11564691 | CtGcTgCTCCACGACGACGG CGG | 3 | 0.147 |
3 | Chr10: +17270887 | CgccTTCTCtACGACGACGG CGG | 4 | 0.102 |
表2 潜在脱靶位点信息
Table 2. Information of potential off-target sites
编号Number | 脱靶位点的位置 Position of off-target site | 脱靶位点的核苷酸序列 Sequences of off-target site | 错配碱基数 Number of mismatch | 脱靶概率 Off-score |
---|---|---|---|---|
1 | Chr08: −27321337 | gAGcTcCTCCgCGACGACGG CGG | 4 | 0.190 |
2 | Chr08: −11564691 | CtGcTgCTCCACGACGACGG CGG | 3 | 0.147 |
3 | Chr10: +17270887 | CgccTTCTCtACGACGACGG CGG | 4 | 0.102 |
图1 OsOFP30 sgRNA靶点、重叠PCR结果及阳性克隆筛选 A: OsOFP30靶点; B: 重叠PCR (M: DL2000 DNA标记; CK: 空白对照; 1st: 重叠PCR第一轮PCR产物; 2nd:重叠PCR第二轮PCR产物);C: PCR筛选阳性克隆(M: DL2000 DNA标记; CK: 空白对照; 1~11: 待检测菌株克隆)。
Fig. 1. Schematic diagram of OsOFP30 target site, the result of overlapping PCR and screening for positive clones A, Schematic diagram of OsOFP30 target site; B, Result of overlapping PCR(M, DL2000 DNA Marker; CK, Blank control; 1st, Overlapping PCR products of the first round; 2nd, Overlapping PCR products of the second round); C, PCR screening for positive clones by PCR(M, DL2000 DNA Marker; CK, Blank control; 1-11, Clones of strain to be tested).
图2 OsOFP30阳性植株筛选与无外源片段插入纯合突变体类型分析 A: T0部分转基因阳性植株HPT抗性基因PCR检测(M: DL2000 DNA标记); B: T0部分转基因阳性植株Cas9蛋白编码基因PCR检测(M: Trans2K® Plus II DNA Marker; C: 无外源片段插入纯合突变体类型; D: 无外源片段插入纯合突变体编码蛋白结构示意。CK: 空白对照; ―: 阴性对照; +: 阳性对照; 1-14: 检测样品; OsOFP30代表野生型; OsOFP30右上角数字或字母代表不同的突变体类型; 黑色框代表保守结构域; 示意图上方数字代表从该基因ATG编码蛋白开始的顺序。
Fig. 2. Screening of OsOFP30 positive plants and analysis of homozygous mutants without foreign fragment insertion A, PCR detection of HPT resistance gene in some positive transgenic plants of T0 generation (M, DL2000 DNA Marker); B, PCR detection of Cas9 protein-coding gene in some positive transgenic plants of T0 generation (M, Trans2K® Plus II DNA Marker); C, The homozygous mutant type without foreign fragment insertion; D, The structure of the protein encoded by the homozygous mutant without foreign fragment insertion. CK, Blank control; -, Negative control; +, Positive control; 1-14, Test sample. OsOFP30 represents wild-type, the number or letter in the upper right corner of OsOFP30 represents different mutant types, the black box represents the structural domain, and the number at the top of the schematic diagram represents the sequence starting from the ATG encoded protein of the gene.
图3 OsOFP30突变体穗型和粒型观察 A: 穗长(bar=10 cm); B: 穗型(bar=10 cm); C: 穗长; D: 一次枝梗数; E: 单穗重; F:粒长(bar=1 cm); G:粒宽(bar=1 cm); H: 粒长; I: 粒宽; J: 粒厚; K: 千粒重。图中OsOFP30代表野生型,OsOFP30右上角带数字或字母代表不同的突变体类型。**和*分别代表突变体与野生型间的差异达0.01和0.05显著水平。
Fig. 3. Panicle phenotypes and grain shape of OsOFP30 mutant A, Panicle length (bar=10 cm); B, Panicle phenotypes; C, Panicle length (bar=10 cm); D, Number of primary branches; E, Grain weight per panicle; F, Grain length (bar=1 cm); G, Grain width (bar=1 cm); H, Grain length; I, Grain width; J, Grain thickness; K, 1000-grain weight. OsOFP30 represents the wild type, and the number or letter at the upper right corner of OsOFP30 represents different mutant types. ** and * represent that the difference between the mutant and the wild type reaches the significant levels of 0.01 and 0.05, respectively.
[1] | Zheng Y, Mwamburi M F, Liu H Q, Wang F. Loss of function of OsARG resulted in pepper-shaped husk in indica rice[J]. Life, 2021, 11(6): 523. |
[2] | Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9(1): 1240. |
[3] | Zheng J, Zhang Y D, Wang C L. Molecular functions of genes related to grain shape in rice[J]. Breeding Science, 2015, 65(2): 120-126. |
[4] | Zuo Z W, Zhang Z H, Huang D R, Fan Y Y, Yu S B, Zhuang J Y, Zhu Y J. Control of thousand-grain weight by OsMADS56 in rice[J]. International Journal of Molecular Sciences, 2022, 23(1): 125. |
[5] | Li N, Xu R, Duan P G, Li Y H. Control of grain size in rice[J]. Plant Reproduction, 2018, 31(3): 237-251. |
[6] | Zhou S R, Yin L L, Xue H W. Functional genomics based understanding of rice endosperm development[J]. Current Opinion in Plant Biology, 2013, 16(2): 236-246. |
[7] | Zuo J R, Li J Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size[J]. Annual Review of Genetics, 2014, 48: 99-118. |
[8] | Liu J P, van Eck J, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 13302-13306. |
[9] | Huang J P, Li H L, Chang Y. Genome-wide analysis of ovate family proteins in Arabidopsis[J]. Journal of Northeast Agricultural University, 2012, 19(3): 49-59. |
[10] | Yu H, Jiang W Z, Liu Q, Zhang H, Piao M X, Chen Z D, Bian M D. Expression pattern and subcellular localization of the ovate protein family in rice[J]. PloS ONE, 2015, 10(3): e0118966. |
[11] | 张彦琴, 常建忠, 董春林, 杨丽莉, 张正, 杨睿, 梁改梅, 丁保朋. 玉米OFP基因家族全基因组鉴定及表达分析[J]. 分子植物育种, 2020, 18(20): 6595-6604. |
Zhang Y Q, Chang J Z, Dong C L, Yang L L, Zhang Z, Yang R, Liang G M, Ding B P. Genome-wide identification and expression analysis of OFP gene family in Zea mays[J]. Molecular Plant Breeding, 2020, 18(20): 6595-6604. (in Chinese with English abstract) | |
[12] | Wang L, Zhang S L, Zhang X M, Hu X Y, Guo C L, Wang X P, Song J Y. Evolutionary and expression analysis of Vitis vinifera OFP gene family[J]. Plant Systematics and Evolution, 2018, 304(8): 995-1008. |
[13] | Wang R H, Han T L, Sun J F, Xu L G, Fan J J, Cao H, Liu C X. Genome-wide identification and characterization of the OFP gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. Peer Journal, 2021, 9: e10934. |
[14] | Han L J, Song X F, Wang Z Y, Liu X F, Yan L Y, Han D G, Zhou Z Y, Zhang X L. Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)[J]. Journal of Integrative Agriculture, 2022, 21(5): 1321-1331. |
[15] | Luo Y, Yang S M, Luo X R, Li J, Li T Y, Tang X Q, Liu F, Zou X X, Qin C. Genome-wide analysis of OFP gene family in pepper (Capsicum annuum L.)[J]. Frontiers in Genetics, 2022, 13: 941954. |
[16] | 窦玲玲, 田再垄, 李婷婷, 马雄风, 肖光辉. 陆地棉OFP基因家族的全基因组鉴定及表达分析[J]. 中国科学: 生命科学, 2022, 52(4): 510-522. |
Dou L L, Tian Z L, Li T T, Ma X F, Xiao G H. Genome-wide identification and expression analysis of OFP gene family in upland cotton[J]. Science in China: Life Sciences, 2022, 52(4): 510-522. (in Chinese with English abstract) | |
[17] | 冯鹏, 周港华, 王鹤萌, 赵宗宝, 唐尧, 常缨. 植物卵形家族蛋白综述[J]. 北方园艺, 2018(3): 173-179. |
Feng P, Zhou G H, Wang H M, Zhao Z B, Tang Y, Chang Y. Review of plant OVATE family protein[J]. Northern Horticulture, 2018(3): 173-179. (in Chinese with English abstract) | |
[18] | Wang S C, Chang Y, Ellis B. Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators[J]. Frontiers in Plant Science, 2016, 7: 417. |
[19] | Xiao Y H, Liu D P, Zhang G X, Tong H N, Chu C C. Brassinosteroids pegulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice[J]. Frontiers in Plant Science, 2017, 8: 1698. |
[20] | Schmitz A J, Begcy K, Sarath G, Walia H. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development[J]. Plant Science, 2015, 241: 177-188. |
[21] | Xiao Y, Zhang G, Liu D, Niu M, Tong H, Chu C. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice[J]. Plant Journal, 2020, 102(6): 1187-1201. |
[22] | Ma Y M, Yang C, He Y, Tian Z H, Li J X. Rice OVATE family protein 6 regulates plant development and confers resistance to drought and cold stresses[J]. Journal of Experimental Botany, 2017, 68(17): 4885-4898. |
[23] | Yang C, Shen W J, He Y, Tian Z H, Li J X. OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice[J]. PloS Genetics, 2016, 12(6): e1006118. |
[24] | Yang C, Ma Y M, He Y, Tian Z H, Li J X. OsOFP19 modulates plant architecture by integrating the cell division pattern and brassinosteroid signaling[J]. Plant Journal, 2018, 93(3): 489-501. |
[25] | Chen H Y, Yu H, Jiang W Z, Li H Y, Wu T, Chu J F, Xin P Y, Li Z, Wang R, Zhou T, Huang K, Lu L, Bian M D, Du X L. Overexpression of ovate family protein 22 confers multiple morphological changes and represses gibberellin and brassinosteroid signaling in transgenic rice[J]. Plant Science, 2021, 304: 110734. |
[26] | 程碧云, 何勇, 祝丹晨, 王爱群, 马拉娜, 王志成, 李建雄, 田志宏. 水稻OFP基因家族的鉴定与生物信息学分析[J/OL]. 分子植物育种. https://link.cnki.net/urlid/46.1068.S.20231102.1000.008. |
Cheng B Y, He Y, Zhu D C, Wang A Q, Ma L N, Wang Z C, Li J X, Tian Z H. Identification and bioinformatics analysis of OFP gene family in rice[J/OL]. Molecular Plant Breeding, https://link.cnki.net/urlid/46.1068.S.20231102.1000.008. (in Chinese with English abstract) | |
[27] | Liu H, Ding Y D, Zhou Y Q, Jin W Q, Xie K B, Chen L L. CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants[J]. Molecular Plant, 2017, 10(3): 530-532. |
[28] | Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G, Liu Y G. CRISPR-GE: A convenient software toolkit for CRISPR- based genome editing[J]. Molecular Plant, 2017, 10(9): 1246-1249. |
[29] | Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1274-1284. |
[30] | Ma X L, Liu Y G. CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants[J]. Current Protocols in Molecular Biology, 2016, 115(1): 31.36.31-31.36.21. |
[31] | 陈秋红, 陈太钰, 林拥军, 陈浩. 根癌农杆菌介导的粳稻遗传转化[J]. Bio-101, 2018: e1010174. |
Chen Q H, Chen T Y, Lin Y J, Chen H. Agrobacterium - mediated genetic transformation of japonica rice[J]. Bio-101, 2018: e1010174. (in Chinese) | |
[32] | 刘巧泉, 陈秀花, 王兴稳, 彭凌涛, 顾铭洪. 一种快速检测转基因水稻中潮霉素抗性的简易方法[J]. 农业生物技术学报, 2001, 9(3): 264. |
Liu Q Q, Chen X H, Wang X W, Peng L T, Gu M H. A rapid simple method of assaying hygromycin resistance in transgenic rice plants[J]. Journal of Agricultural Biotechnology, 2001, 9(3): 264. (in Chinese) | |
[33] | 王彩霞, 吴殿星, 沈圣泉, 舒庆尧. 转基因及常规水稻幼苗对潮霉素敏感性的研究[J]. 核农学报, 2005, 19(3): 168-171. |
Wang C X, Wu D X, Shen S Q, Shu Q Y. In situ susceptibility of transgenic and conventional rice seeding to hygromycin B[J]. Acta Agriculturae Nucleatae Sinica, 2005, 19(3): 168-171. (in Chinese with English abstract) | |
[34] | 张洪, 马骏, 胡国成, 斯华敏, 付亚萍, 戴良英, 孙宗修. 用叶片检测转基因水稻对潮霉素反应的可靠性研究[J]. 浙江农业学报, 2005, 17(6): 341-345. |
Zhang H, Ma J, Hu G C, Si H M, Fu Y P, Dai L Y, Sun Z X. Reliability study on the response of HPT gene in transgenic rice to hygromycin by leaf assay[J]. Acta Agriculturae Zhejianensis, 2005, 17(6): 341-345. (in Chinese with English abstract) | |
[35] | 殷奎德, 张兴梅, 郑桂萍, 戴凌燕, 宁德利. 一种快速检测转基因水稻潮霉素抗性标记的方法[J]. 黑龙江八一农垦大学学报, 2010, 22(1): 45-48. |
Yin K D, Zhang X M, Zheng G P, Dai L Y, Ning D L. Feasibility study on assaying hygromycin resistance in transgenic rice plants by leaf[J]. Journal of Heilongjiang Bayi Agricultural University, 2010, 22(1): 45-48. (in Chinese with English abstract) | |
[36] | Liu W Z, Xie X R, Ma X L, Li J, Chen J H, Liu Y G. Dsdecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J]. Molecular Plant, 2015, 8(9): 1431-1433. |
[37] | Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584. |
[38] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1666-1680. |
[39] | Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5): 754-756. |
[40] | Akabane T, Suzuki N, Tsuchiya W, Yoshizawa T, Matsumura H, Hirotsu N, Katoh E. Expression, purification and crystallization of TGW6, which limits grain weight in rice[J]. Protein Expression and Purification, 2021, 188: 105975. |
[41] | Yu J P, Xiong H Y, Zhu X Y, Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M a R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology, 2017, 15(1): 28. |
[42] | Yu J P, Miao J L, Zhang Z Y, Xiong H Y, Zhu X Y, Sun X M, Pan Y H, Liang Y T, Zhang Q, Rehman M A R, Li J J, Zhang H L, Li Z C. Alternative splicing of OsLG3b controls grain length and yield in japonica rice[J]. Plant Biotechnology Journal, 2018, 16(9): 1667-1678. |
[43] | Wu W U, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Wing R A, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants, 2017, 3(6): 17064. |
[44] | Omboki R B, Zheng Y, Chen Z W, Guan H Z, Tang W Q, Huang L K, Xie X F, Wu W R. Pooled mapping of quantitative trait loci conferring male sterility- conditioned glume split in rice (Oryza sativa)[J]. Plant Breeding, 2018, 137(6): 848-856. |
[45] | Gao Q, Zhang N, Wang W Q, Shen S Y, Bai C, Song X J. The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice[J]. The Plant Cell, 2021, 33(10): 3331-3347. |
[46] | Kang Y J, Shim K C, Lee H S, Jeon Y A, Kim S H, Kang J W, Yun Y T, Park I K, Ahn S N. Fine mapping and candidate gene analysis of the quantitative trait locus gw8.1 associated with grain length in rice[J]. Genes & Genomics, 2018, 40(4): 389-397. |
[47] | Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 2021, 14(8): 1266-1280. |
[48] | Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. New Phytologist, 2020, 227(2): 629-640. |
[49] | Misra G, Badoni S, Anacleto R, Graner A, Alexandrov N, Sreenivasulu N. Whole genome sequencing-based association study to unravel genetic architecture of cooked grain width and length traits in rice[J]. Scientific Reports, 2017, 7(1): 12478. |
[50] | Dong N Q, Sun Y, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, 11(1): 2629. |
[51] | Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2015, 2(1): 15195. |
[52] | Wang A H, Hou Q Q, Si L Z, Huang X H, Luo J H, Lu D F, Zhu J J, Shangguan Y Y, Miao J S, Xie Y F, Wang Y C, Zhao Q, Feng Q, Zhou C C, Li Y, Fan D L, Lu Y Q, Tian Q L, Wang Z X, Han B. The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology, 2019, 180(4): 2077-2090. |
[53] | Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4): 447-456. |
[54] | Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[55] | Chen H J, Wan Y, Teng K C, Liu B H, Zhao N, Xu K Z, Li J X. The role of OsOFP8 gene in regulating rice leaf angle[J]. Journal of Plant Biochemistry and Biotechnology, 2022, 32(2): 304-318. |
[56] | 焦悦, 付伟, 翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018(1): 9-15. |
Jiao Y, Fu W, Zhai Y. Application of RNAi in crop breeding and its safety assessment[J]. Crops, 2018(1): 9-15. (in Chinese with English abstract) | |
[57] | 夏蔚, 刘娜, 谢彦博, 闫伟, 董立明, 邢珍娟, 李葱葱, 龙丽坤, 李飞武. RNAi技术在农作物育种中的应用及其环境安全性评价研究进展[J]. 东北农业科学, 2019, 44(6): 33-37. |
Xia W, Liu N, Xie Y B, Yan W, Dong L M, Xing Z J, Li C C, Long L K, Li F W. The application of RNAi technology in crop breeding and its environmental safety assessment[J]. Journal of Northeast Agricultural Sciences, 2019, 44(6): 33-37. (in Chinese with English abstract) | |
[58] | 伍国强, 刘海龙, 刘左军. RNAi技术及其在植物中的应用[J]. 分子植物育种, 2018, 16(19): 6299-6307. |
Wu G Q, Liu H L, Liu Z J. RNAi technology and its application in plants[J]. Molecular Plant Breeding, 2018, 16(19): 6299-6307. (in Chinese with English abstract) | |
[59] | 殷文晶, 陈振概, 黄佳慧, 叶涵斐, 芦涛, 路梅, 饶玉春. 基于CRISPR-Cas9基因编辑技术在作物中的应用[J]. 生物工程学报, 2023, 39(2): 399-424. |
Yin W J, Chen Z G, Huang J H, Ye H F, Lu T, Lu M, Rao Y C. Application of CRISPR-Cas9 gene editing technology in crop breeding[J]. Chinese Journal of Biotechnology, 2023, 39(2): 399-424. (in Chinese with English abstract) | |
[60] | 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7): 1219-1229. |
Jing R C, Lu H. The development of CRISPR/Cas9 system and its application in crop genome editing[J]. Scientia Agricultura Sinica, 2016, 49(7): 1219-1229. (in Chinese with English abstract) | |
[61] | Wang W S, Wang W P, Pan Y L, Tan C, Li H J, Chen Y, Liu X D, Wei J, Xu N, Han Y, Gu H, Ye R J, Ding Q. A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield[J]. Crop Journal, 2022, 10(4): 1207-1212. |
[62] | Li Z H, Wang S L, Zhu Y J, Fan Y Y, Huang D R, Zhu A K, Zhuang J Y, Liang Y, Zhang Z H. Control of grain shape and size in rice by two functional alleles of OsPUB3 in varied genetic background[J]. Plants, 2022, 11(19): 2530. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[4] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[5] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[6] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[7] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[8] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[9] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[10] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[11] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[12] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[13] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[14] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[15] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||