中国水稻科学 ›› 2024, Vol. 38 ›› Issue (6): 617-626.DOI: 10.16819/j.1001-7216.2024.230402
收稿日期:
2023-12-19
修回日期:
2024-01-04
出版日期:
2024-11-10
发布日期:
2024-11-15
通讯作者:
张祖建
基金资助:
YE Miao, MAO Yuxin, ZHANG Dehai, KANG Yuying, YUAN Rong, ZHANG Zujian*()
Received:
2023-12-19
Revised:
2024-01-04
Online:
2024-11-10
Published:
2024-11-15
Contact:
ZHANG Zujian
摘要:
提高水稻的光合效率被认为是进一步提高水稻产量的有效途径之一。然而,关于高光效水稻品种的生理生态特征还不清楚,无论是在单叶水平还是群体冠层水平上。本文综述了叶片Rubisco酶含量和活性、叶片含氮量、叶片形态解剖结构包括气孔性状、叶脉性状和叶肉解剖结构以及结构性物质与功能性物质之间的平衡对单叶光合作用的影响,冠层结构和冠层光氮匹配对群体冠层光合作用的影响及其受氮素调控的状况,总结了高光效水稻品种的叶片和冠层生理生态特征及其氮素调控效应。高光效水稻品种叶片Rubisco酶含量和氮含量高,气孔密度和孔径大,细胞间隙比例大,叶绿体覆盖率大,叶肉细胞和叶绿体面向细胞间隙的比表面积大,细胞壁薄,叶脉密度大,叶脉维管直径大,根系表面积大,根直径大,叶片挺、叶色深,冠层下部叶片多,冠层光氮匹配程度高等;增施氮肥可以增加叶片Rubisco酶含量和活性,提高叶肉层厚度,增加叶绿体覆盖率、叶肉细胞和叶绿体面向细胞间隙的比表面积,降低细胞壁厚度,提高叶绿素含量,减少细胞壁含量等,从而增强叶片光合作用,但是,过量施氮会降低氮肥利用效率,造成氨挥发、水体富营养化、N2O排放增加等一系列环境问题。
叶苗, 毛雨欣, 张德海, 康钰莹, 袁榕, 张祖建. 高光效水稻品种的叶片和冠层生理生态特征及其氮素调控机制研究进展[J]. 中国水稻科学, 2024, 38(6): 617-626.
YE Miao, MAO Yuxin, ZHANG Dehai, KANG Yuying, YUAN Rong, ZHANG Zujian. Advances in Leaf and Canopy Eco-physiological Characteristics of High Photosynthetic Efficiency Rice Varieties and Their Regulation Mechanisms by Nitrogen[J]. Chinese Journal OF Rice Science, 2024, 38(6): 617-626.
图1 CO2从空气中传输到叶绿体内的路径 A:水稻叶片光学显微镜图片;B:水稻叶片透射电镜图片。Ca:空气中的CO2浓度;Ci:细胞间隙中的CO2浓度;Cc:叶绿体内的CO2浓度;gs:气孔导度;gm:叶肉导度。
Fig. 1. The pathway of CO2 diffusing from atmosphere to chloroplasts A, Light microscope picture of rice leaf; B, Transmission electron microscope picture of rice leaf. Ca, Atmospheric CO2 concentration; Ci, Intercellular CO2 concentration; Cc, Chloroplastic CO2 concentration; gs, Stomatal conductance; gm, Mesophyll conductance.
[1] | Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology, 2010, 61: 235-261. |
[2] | Long S P, Marshall-Colon A, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential[J]. Cell, 2015, 161: 56-66. |
[3] | 袁隆平. 选育超高产杂交水稻的进一步设想[J]. 杂交水稻, 2012, 27(1): 1-2. |
Yuan L P. Conceiving of breeding further super-high- yield hybrid rice[J]. Hybrid Rice, 2012, 27(1): 1-2. (in Chinese with English abstract) | |
[4] | 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征[J]. 作物学报, 2014, 40(12): 2149-2159. |
Wang X Y, Wei H H, Hang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t/ha-1)[J]. Acta Agronomica Sinica, 2014, 40(12): 2149-2159. (in Chinese with English abstract) | |
[5] | 袁锐, 周群, 王志琴, 张耗, 顾骏飞, 刘立军, 张伟杨, 杨建昌. 籼粳杂交稻甬优2640氮素吸收利用特点[J]. 中国水稻科学, 2022, 36(1): 77-86. |
Yuan R, Zhou Q, Wang Z Q, Zhang H, Gu J F, Liu L J, Zhang W Y, Yang J C. Characteristics of nitrogen absorption and utilization of an indica-japonica hybrid rice, Yongyou 2640[J]. Chinese Journal of Rice Science, 2022, 36(1): 77-86. (in Chinese with English abstract) | |
[6] | 张新月. 水稻高效生产品种的群体生长特征及其氮肥利用效率[D]. 扬州: 扬州大学, 2019. |
Zhang X Y. Population growth characteristics and nitrogen fertilizer utilization efficiency of high-efficiency rice varieties[D] Yangzhou: Yangzhou University, 2019. (in Chinese with English abstract) | |
[7] | 刘飞, 张新月, 赵步洪, 蒋天昊, 陆丹丹, 陈前, 杨标, 张祖建. 高效丰产水稻品种的群体生产特性研究[J]. 扬州大学学报: 农业与生命科学版, 2021, 42(3): 74-81. |
Liu F, Zhang X Y, Zhao B H, Jiang T H, Lu D D, Chen Q, Yang B, Zhang Z J. Mass production characteristics of high-efficiency and high-yield rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2021, 42(3): 74-81. (in Chinese with English abstract) | |
[8] | Long S P, Zhu X G, Naidu S L, Ort D R. Can improvement in photosynthesis increase crop yield?[J] Plant, Cell and Environment, 2006, 29: 315-330. |
[9] | Yoshida S. Fundamentals of rice crop science[M]. Manila, Philippines: The International Rice Research Institute, 1981. |
[10] | Bailey-Serres J, Parker J E, Ainsworth E A. Genetic strategies for improving crop yields[J]. Nature, 2019, 575: 109-118. |
[11] | Taylaran RD, Adachi S, Ookawa T, Usuda H, Hirasawa T. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan[J]. Journal of Experimental Botany, 2011, 62: 4067-4077. |
[12] | Makino A. Rubisco and nitrogen relationships in rice: Leaf photosynthesis and plant growth[J]. Journal of Soil Science and Plant Nutrition, 2003, 49: 319-327. |
[13] | Carriquí M, Cabrera H M, Conesa M À. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study[J]. Plant, Cell and Environment, 2015, 38: 448-460. |
[14] | Makino A, Sakashita H, Hidema J, Mae T, Ojima K, Osmond B. Distinctive responses of ribulose-1,5- bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance[J]. Plant Physiology, 1992, 100: 1737-1743. |
[15] | Makino A, Nakano H, Mae T. Responses of ribulose-1,5- bisphosphate carboxylase, cytochrome J and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis[J]. Plant Physiology, 1994, 105: 173-179. |
[16] | Makino A. Biochemistry of C3-photosynthesis in high CO2[J]. Journal of Plant Research, 1994, 107: 79-84. |
[17] | Sage R F, Santrucek J, Grise D J. Temperature effects on the photosynthetic response of C3 plants to long-term CO2 enrichment[J]. Vegetatio, 1995, 121: 67-77. |
[18] | Medlyn B E. The optimal allocation of nitrogen within the C3 photosynthetic system at elevated CO2[J]. Australian Journal of Plant Physiology, 1996, 23: 593-603. |
[19] | Lauerer M, Saftic D, Quick W P, Labate C, Fichtner K, Schulze E D, Rodermel S, Bogorad L, Stitt M. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcS: VI. Effect on photosynthesis in plants grown at different irradiance[J]. Planta, 1993, 190: 332-345. |
[20] | Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Physiology, 1983, 72: 297-302. |
[21] | Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T, Hirasawa T. The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis[J]. Journal of Experimental Botany, 2013, 64: 1061-1072. |
[22] | Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Makino A. Increased Rubisco content in transgenic rice transformed with the ‘sense’ rbcS gene[J]. Plant, Cell and Physiology, 2007, 48: 626-637. |
[23] | Jordan D B, Ogren W L. The CO2/O2 specificity of ribulose 1, 5-bisphosphate carboxylase/oxygenase[J]. Planta, 1984, 161: 308-313. |
[24] | Brooks A, Farquhar G D. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light[J]. Planta, 1985, 165: 397-406. |
[25] | Lin MT, Occhialini A, Andralojc P J, Parry M A J, Hanson M R. A faster Rubisco with potential to increase photosynthesis in crops[J]. Nature, 2014, 513: 547-550. |
[26] | Makino A, Mae T, Ohira K. Variations in the contents and kinetic properties of ribulose-l, 5-bisphosphate carboxylases among rice species[J]. Plant, Cell and Physiology, 1987, 28: 799-804. |
[27] | Polesskaya O G, Kashirina E I, Andreeva S E. Morphophysiological indices of the source leaf in wheat plants acclimated to conditions of nitrogen nutrition[J]. Russian Journal of Plant Physiology, 2001, 48: 716-722. |
[28] | Li Y, Ren B, Ding L, Peng S, Guo S, Ive D S. Does chloroplast size influence photosynthetic nitrogen use efficiency?[J] PloS ONE, 2013, 8: e62036. |
[29] | Xiong D, Liu X, Liu L, Douthe C, Li Y. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplies in rice[J]. Plant, Cell and Environment, 2015, 38: 2541-2550. |
[30] | Yoshida S, Coronel V. Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant[J]. Soil Science and Plant Nutrition, 1976, 22: 207-211. |
[31] | Peng S, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field grown rice in the tropics[J]. Crop Science, 1995, 35: 1627-1630. |
[32] | Yuan S, Peng S. Input-output energy analysis of rice production in different crop management practices in central China[J]. Energy, 2017, 141: 1124-1132. |
[33] | Field C H, Mooney H A. Photosynthesis--nitrogen relationship in wild plants. In: On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983, Cambridge[Cambridgeshire]: Cambridge University Press, 1986. |
[34] | Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78: 9-19. |
[35] | 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(4): 1095-1103. |
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(4): 1095-1103. (in Chinese with English abstract) | |
[36] | 曾建敏, 彭少兵, 崔克辉, 黄见良. 热带水稻光合特性及氮素光合效率的差异研究[J]. 作物学报, 2006, 32(12): 1817-1822. |
Zeng J M, Peng S B; Cui K H, Huang J L. Genetic variation in photosynthetic characteristics and photosynthetic nitrogen use efficiency in tropical rice[J]. Acta Agronomica Sinica, 2006, 32(12): 1817-1822. (in Chinese with English abstract) | |
[37] | Yamori W, Nagai T, Makino A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species[J]. Plant, Cell and Environment, 2011, 34: 764-777. |
[38] | Flexas J, Barbour M M, Brendel O, Cabrera H M, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio J P, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina J J, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren C R. Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis[J]. Plant Science, 2012, 193: 70-84. |
[39] | Terashima I, Hanba Y T, Tholen D, Niinemets Ü. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiology, 2011, 155: 108-116. |
[40] | Giuliani R, Koteyeva N, Voznesenskaya E, Scafaro A A B, Evans K A, Smith J A C, von Caemmerer S, Tozzi G A C, Ball M A C, Gilliham M J P S, Murchie L A J. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza)[J]. Plant Physiology, 2013, 162: 1632-1651. |
[41] | Liu X, Li Y. Varietal difference in the correlation between leaf nitrogen content and photosynthesis in rice plants is related to specific leaf weight[J]. Journal of Integrative Agriculture, 2016, 15: 2002-2011. |
[42] | Ocheltree T W, Nippert J B, Prasad P V V. Changes in stomatal conductance along grass blades reflect changes in leaf structure[J]. Plant, Cell and Environment, 2012, 35: 1040-1049. |
[43] | Ouyang W, Struik P C, Yin X, Xin X Y, Yang J C. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought[J]. Journal of Experimental Botany, 2017, 68: 5191-5205. |
[44] | Wu L, Boer H J, Zhang Z, Chen X, Shi Y, Peng S, Wang F. The coordinated increase in stomatal density and vein dimensions during genetic improvement in rice[J]. Agronomy Journal, 2020, 112: 2791-2804. |
[45] | Li S, Hamani A K M, Zhang Y, Liang Y P, Gao Y, Duan A W. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought[J]. BMC Plant Biology, 2021, 21: 1-14. |
[46] | Xiong D, Nadal M. Linking water relations and hydraulics with photosynthesis[J]. The Plant Journal, 2020, 101: 800-815. |
[47] | Sack L, Holbrook N M. Leaf hydraulics[J]. Annual Review of Plant Biology, 2006, 57: 361-381. |
[48] | Else M A, Coupland D, Dutton L, Jackson M B, Crisp C M, Saker L R. Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap[J]. Physiologia Plantarum, 2001, 111: 46-54. |
[49] | Brodribb T J, Feild T S, Jordan G J. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiology, 2007, 144: 1890-1898. |
[50] | Xiong D, Yu T, Zhang T, Li Y, Peng S, Huang J. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza[J]. Journal of Experimental Botany, 2015, 66: 741-748. |
[51] | Xiong D, Flexas J, Yu T, Peng S. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza[J]. New Phytologist, 2017, 213: 572-583. |
[52] | Steudle E, Peterson C A. How does water get through roots?[J] Journal of Experimental Botany, 1998, 49: 775-788. |
[53] | Grondin A, Rodrigues O, Verdoucq L. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation[J]. The Plant Cell, 2015, 27: 1945-1954. |
[54] | Ye M, Wu M, Zhang H, Merlot S, Leonhardt N, Maurel C. High leaf vein density promotes leaf gas exchange by enhancing leaf hydraulic conductance in Oryza sativa L. plants[J]. Frontiers in Plant Science, 2021, 12: 693815. |
[55] | Yang X, Li Y, Ren B, Ding L, Gao C, Shen Q, Guo S. Drought-induced root aerenchyma formation restrains water uptake in nitrate-supplied rice seedlings[J]. Plant Cell and Physiology, 2012, 53: 495-504. |
[56] | Miyamoto N, Steudle E, Hirasawa T, Lafitte R. Hydraulic conductivity of rice roots[J]. Journal of Experimental Botany, 2001, 52: 1835-1846. |
[57] | Brodribb T J, Feild T S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecology Letters, 2010, 13: 175-183. |
[58] | Nardini A, Õunapuu-Pikas E, Savi T. When smaller is better: leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes[J]. Functional Plant Biology, 2014, 41: 972-982. |
[59] | Evans J R, Kaldenhoff R, Genty B, Terashima I. Resistances along the CO2 diffusion pathway inside leaves[J]. Journal of Experimental Botany, 2009, 60: 2235-2248. |
[60] | Peguero-Pina JJ, Flexas J, Galmes J, Niinemets U, Sancho-Knapik D, Barredo G, Villarroya D, Gil-Pelegrin E. Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species[J]. Plant Cell and Physiology, 2012, 35: 2121-2129. |
[61] | Tosens T, Niinemets Ü, Westoby M, Wright I J. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: News of a long and winding path[J]. Journal of Experimental Botany, 2012, 63: 5105-5119. |
[62] | Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Niinemets Ü. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: Quantitative limitations and scaling up by models[J]. Journal of Experimental Botany, 2013, 64: 2269-2281. |
[63] | Scafaro A P, von Caemmerer S, Evans J R, Atwell B J. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness[J]. Plant Cell and Physiology, 2011, 34: 1999-2008. |
[64] | Muir C D, Hangarter R P, Moyle L C, Davis P A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae)[J]. Plant, Cell and Environment, 2014, 37: 1415-1426. |
[65] | Fukuzawa H, Suzuki E, Komukai Y, Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 4437-4441. |
[66] | Badger M. The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms[J]. Photosynthesis Research, 2003, 77: 83-94. |
[67] | Hassiotou F, Renton M, Ludwig M, Evans J R, Veneklaas E J. Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters?[J] Journal of Experimental Botany, 2010, 61: 3015-3028. |
[68] | Nakhoul N L, Davis B A, Romero M F, Boron W F. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes[J]. American Journal of Physiology-Cell Physiology, 1998, 274: C543-C548. |
[69] | Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions[J]. Nature, 2003, 425: 734-737. |
[70] | Huang X, Wang Z Q, Huang J L, Peng S B, Xiong D L. Mesophyll conductance variability of rice aquaporin knockout lines at different growth stages and growing environments[J]. Plant Journal, 2021, 107: 1503-1512. |
[71] | Evans J R, Caemmerer S V, Setchell B A, Hudson G S. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco[J]. Functional Plant Biology, 1994, 21: 475-495. |
[72] | Ye M, Zhang Z, Huang G, Xiong Z, Peng S, Li Y. High leaf mass per area Oryza genotypes invest more leaf mass to cell wall and show a low mesophyll conductance[J]. AoB Plants, 2020, 12: plaa028. |
[73] | Flexas J, Clemente-Moreno M J, Bota J. Cell wall thickness and composition are involved in photosynthetic limitation[J]. Journal of Experimental Botany, 2021, 72: 3971-3986. |
[74] | Roig-Oliver A, Fullana-Pericas A, Bota J, Flexas J. Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in hordeum vulgare and triticum aestivum subjected to water deficit stress[J]. Plant Science, 2012, 311: 111015. |
[75] | Onoda Y, Wright I J, Evans J R, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. Physiological and structural tradeoffs underlying the leaf economics spectrum[J]. New Phytologist, 2017, 214: 1447-1463. |
[76] | Xie W, Ke Y, Cao J, Wang S, Yuan M. Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls, confers bacterial blight resistance[J]. Plant Physiology, 2021, 187: 1746-1761. |
[77] | Evans J R. Improving photosynthesis[J]. Plant Physiology, 2013, 162: 1780-1793. |
[78] | Yin X, Struik P C. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology[J]. Journal of Experimental Botany, 2015, 66: 6535-6549. |
[79] | Song Q, Zhang G, Zhu X G. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2: A theoretical study using a mechanistic model of canopy photosynthesis[J]. Functional Plant Biology, 2013, 40: 108-124. |
[80] | 郎有忠, 张祖建, 顾兴友, 杨建昌, 朱庆森. 水稻卷叶性状生理生态效应的研究:Ⅰ.叶片姿态、群体构成及光分布特征[J]. 作物学报, 2004, 30(8): 806-810. |
Lang Y Z, Zhang Z J, Gu X Y, Yang J C, Zhu Q S. Physiological and ecological effects of crimpy leaf character in rice: Ⅰ. Leaf orientation, canopy structure and light distribution[J]. Acta Agronomy Sinica, 2004, 30(8): 806-810. (in Chinese with English abstract) | |
[81] | 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究[J]. 作物学报, 2006, 32(7): 949-955. |
Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars[J]. Acta Agronomy Sinica, 2006, 32(7): 949-955. (in Chinese with English abstract) | |
[82] | Donald C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17: 385-403. |
[83] | Peng S, Khush G S, Cassman K G. Evaluation of a new plant ideotype for increased yield potential//Cassman K G. Breaking the Yield Barrier:Proceedings of a Workshop on Rice Yield Potential in Favourable Environments. Los Banos, Philippines: International Rice Research Institute, 1994: 5-20. |
[84] | Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008, 108: 32-38. |
[85] | 黄耀祥. 半矮秆、早长根深、超高产、特优质中国超级稻生态育种工程[J]. 广东农业科学, 2001(3): 2-6. |
Huang Y X. Ecological breeding project for Chinese super rice with semi dwarf, early growth, deep roots, super high yield, and extra high quality[J]. Guangdong Agricultural Sciences, 2001(3): 2-6. (in Chinese) | |
[86] | Yuan L. Development of super hybrid rice for food security in China[J]. Engineering, 2015(1): 13-14. |
[87] | Jiang P, Xie X, Huang M, Zhou X, Zhang R, Chen J, Wu D, Xia B, Xiong H, Xu F. Potential yield increase of hybrid rice at five locations in southern China[J]. Rice, 2016, 9: 1-14. |
[88] | 杨守仁, 张龙步, 王进民. 水稻理想株形育种的理论和方法初论[J]. 中国农业科学, 1984, 17(3): 6-13. |
Yang S R, Zhang L B, Wang J M. The theory and method of ideal plant morphology in rice breeding[J]. Scientia Agricultura Sinica, 1984, 17(3): 6-13. (in Chinese with English abstract) | |
[89] | 袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997, 12(6): 4-9. |
Yuan L P. Hybrid rice breeding for super high yield[J]. Hybrid Rice, 1997, 12(6): 4-9. (in Chinese) | |
[90] | Saitoh K, Shimoda H, Ishihara K. Characteristics of dry matter production in high yielding rice cultivars: II. Comparisons among two early and three medium cultivars[J]. Japanese Journal of Crop Science, 1990, 59(2): 303-311. (in Japanese with English abstract) |
[91] | Gallagher J N, Biscoe P V. Radiation absorption, growth and yield of cereals[J]. Journal of Agricultural Science, 1978, 91: 47-60. |
[92] | Hirose T, Werger M J A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy[J]. Oecologia, 1978, 72: 520-526. |
[93] | Bertheloot J, Martre P, Andrieu B. Dynamics of light and nitrogen distribution during grain filling within wheat canopy[J]. Plant Physiology, 2008, 148: 1707-1720. |
[94] | Anten N P R, Schieving F, Werger M J A. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species[J]. Oecologia, 1995, 101: 504-513. |
[95] | Yin X, van Laar H H. Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by- Environment Interactions[M]. Wageningen, The Netherlands: Wagningen Academic Publishers, 2005. |
[96] | Yin X, Lantinga E A, Schapendonk A H C M, Zhong X H. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution[J]. Annual Botany, 2003, 91: 893-903. |
[97] | Buckley T N, Cescatti A, Farquhar G D. What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism?[J] Plant, Cell and Environment, 2013, 36: 1547-1563. |
[98] | Sadras V O, Lawson C, Montoro A. Photosynthetic traits in Australian wheat varieties released between 1958 and 2007[J]. Field Crops Research, 2012, 134: 19-29. |
[99] | Gu J, Chen Y, Zhang H, Li Z K, Zhou Q, Chao Yu C, Kong X S, Liu L J, Wang Z Q, Yang J C. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice[J]. Field Crops Research, 2017, 206: 74-85. |
[100] | Huang L, Yang D, Li X, Peng S, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice[J]. Field Crops Research, 2019, 233: 49-58. |
[101] | Huang L, Sun F, Yuan S, Peng S, Wang F. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions[J]. Field Crops Research, 2018, 216: 150-157. |
[102] | Domínguez M T, Aponte C, Pérez-Ramos I M, García L V, Villar R, Marañón T. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities[J]. Plant Soil, 2012, 357: 407-424. |
[103] | 熊栋梁. 水稻叶片结构对水力导度与光合作用的影响及其机理[D]. 武汉: 华中农业大学, 2016. |
Xiong D L. The influence and mechanism of rice leaf structure on hydraulic conductivity and photosynthesis[D] Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract) | |
[104] | Mu X, Chen Q, Chen F, Yuan L, Mi G. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage[J]. Frontiers in Plant Science, 2016, 7: 699. |
[105] | Ye M, Zhang Z, Huang G, Zhang Z. Nitrogen fertilization weakly influences the anatomy and chemical composition of rice leaves[J]. Agriculture, 2022, 12: 215. |
[106] | Li J W, Yang J P, Fei P P, Song J L, Li D S, Ge C S, Chen W Y. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field[J]. Field Crops Research, 2009, 114: 426-432. |
[107] | 刘涛, 鲁剑巍, 任涛, 李小坤, 丛日环. 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系. 植物营养与肥料学报, 2016, 22(2): 518-524. |
Liu T, Lu J W, Ren T, Li X K, Cong R H. Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 518-524. (in Chinese with English abstract) |
[1] | 冯向前, 王爱冬, 洪卫源, 李子秋, 覃金华, 詹丽钏, 陈里鹏, 张运波, 王丹英, 陈松. 基于低空无人机遥感的水稻产量估测方法研究进展[J]. 中国水稻科学, 2024, 38(6): 604-616. |
[2] | 汪晴, 王艳茹, 张秀丽, 吕启明. 水稻孤雌生殖诱导基因BBM1序列变异分析[J]. 中国水稻科学, 2024, 38(6): 627-637. |
[3] | 钟智慧, 秦璐, 黎志力, 杨珍, 贺晓鹏, 蔡怡聪. 水稻IDD基因家族的全基因组鉴定及综合分析[J]. 中国水稻科学, 2024, 38(6): 638-652. |
[4] | 杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正. 利用QTL-Seq结合分子标记定位粳稻垩白粒率控制位点qChalk8[J]. 中国水稻科学, 2024, 38(6): 665-671. |
[5] | 刘俊峰, 牟静怡, 赵红艳, 郭诗梦, 李漪濛, 梁超, 周婵婵, 王术, 黄元财. 施氮方式与行距配置对不同穗型粳稻品种产量和氮素利用率的影响[J]. 中国水稻科学, 2024, 38(6): 672-684. |
[6] | 毋翔, 张义凯, 张鹏, 马昕伶, 陈玉林, 陈惠哲, 张玉屏, 向镜, 王亚梁, 王志刚, 李良涛. 2,4-表油菜素内酯对生物炭基质育秧水稻秧苗根系生长及生理特性的影响[J]. 中国水稻科学, 2024, 38(6): 685-694. |
[7] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[8] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[9] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[10] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[11] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[12] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[13] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[14] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[15] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||