中国水稻科学 ›› 2024, Vol. 38 ›› Issue (6): 665-671.DOI: 10.16819/j.1001-7216.2024.231207
杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正*()
收稿日期:
2023-12-13
修回日期:
2024-03-18
出版日期:
2024-11-10
发布日期:
2024-11-15
通讯作者:
孙红正
基金资助:
DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng*()
Received:
2023-12-13
Revised:
2024-03-18
Online:
2024-11-10
Published:
2024-11-15
Contact:
SUN Hongzheng
摘要:
【目的】垩白是影响稻米外观品质的重要性状。本研究旨在利用QTL-Seq和分子标记作图定位粳稻垩白粒率调控相关的QTL。【方法】利用高垩白粒率粳稻材料拉木加和低垩白粒率粳稻品种水晶3号构建F2分离群体,将两份独立的F2群体分别种植于河南原阳和海南三亚,两个群体单株垩白粒率考种后分别选取极端个体混池进行QTL-Seq分析,然后使用分子标记作图对稳定的QTL进行验证。【结果】两个F2群体的QTL-Seq分析发现8号染色体存在一个较为稳定的QTL位点qChalk8。进一步通过分子标记作图将该QTL定位于17.6-18.5 Mb,该QTL位点的LOD值为7.08,表型贡献率为15.9%。【结论】利用QTL-Seq和分子标记作图定位了粳稻垩白粒率相关QTL-qChalk8,为粳稻垩白调控基因进一步的精细定位和基因克隆奠定了基础。
杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正. 利用QTL-Seq结合分子标记定位粳稻垩白粒率控制位点qChalk8[J]. 中国水稻科学, 2024, 38(6): 665-671.
DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng. Mapping of qChalk8 Controlling Chalky Rice Rate in japonica Rice by Combining QTL-Seq with Molecular Markers[J]. Chinese Journal OF Rice Science, 2024, 38(6): 665-671.
引物名称Primer | 位置 Location | 正向序列 Forward sequence | 反向序列 Reverse sequence |
---|---|---|---|
8_0.8Mb | Chr8_837961 | CCGGCATTTTGACAGGAAGTG | ACCTCTCTCTCTTTCTCTCTCCC |
8_3.5Mb | Chr8_3532447 | TCCAGATTCGTGATATTAGGATGAGT | GGAGGATCAGAGAGACCATGC |
8_4.5Mb | Chr8_4537532 | TCGTCGGGATTATTCCGAGC | ACACCGCCACCAATCAAAGA |
8_7.7Mb | Chr8_7747072 | CGGTCCATTGCACACCCTTA | ACATAACACATGCACCATGGA |
8_9.4Mb | Chr8_9385739 | TTGATGGGAGTGCCTGAAGA | TCACTGGTTACTATTGGTCACGT |
8_15.8Mb | Chr8_15858062 | GTAAGAAGCCAGAGCCGGAG | CTAAGAGAAGAGCGGGGTGC |
8_16.5Mb | Chr8_16560856 | ACAACCAACCCGGCTTGTTA | ACCATCCATTTGGCCTTGTT |
8_16.9Mb | Chr8_16906251 | CGACGAGGGGTCTTACCAAG | CTTCTCCCGATCCGCTCAAC |
8_17.6Mb | Chr8_17683064 | ACTTGCAACAACGATTGACCT | AAGCCACCAACCTTATTGCA |
8_18.5Mb | Chr8_18507050 | TGCTTTTCGCTTGGGCTAGA | GTTCCACTCTGCTACGGCTT |
8_19.6Mb | Chr8_19583199 | TAAACCCTTCAGTCCACGGC | ATGAGCTGGGGTATCGACCT |
8_21.8Mb | Chr8_21807790 | TCGCTCGCTTCCTGAAGTTT | GAAAAGCTCTGGCCAAACCG |
表1 本研究中分子标记定位作图所用多态性引物及序列
Table 1. Primers used in molecular marker mapping in this study
引物名称Primer | 位置 Location | 正向序列 Forward sequence | 反向序列 Reverse sequence |
---|---|---|---|
8_0.8Mb | Chr8_837961 | CCGGCATTTTGACAGGAAGTG | ACCTCTCTCTCTTTCTCTCTCCC |
8_3.5Mb | Chr8_3532447 | TCCAGATTCGTGATATTAGGATGAGT | GGAGGATCAGAGAGACCATGC |
8_4.5Mb | Chr8_4537532 | TCGTCGGGATTATTCCGAGC | ACACCGCCACCAATCAAAGA |
8_7.7Mb | Chr8_7747072 | CGGTCCATTGCACACCCTTA | ACATAACACATGCACCATGGA |
8_9.4Mb | Chr8_9385739 | TTGATGGGAGTGCCTGAAGA | TCACTGGTTACTATTGGTCACGT |
8_15.8Mb | Chr8_15858062 | GTAAGAAGCCAGAGCCGGAG | CTAAGAGAAGAGCGGGGTGC |
8_16.5Mb | Chr8_16560856 | ACAACCAACCCGGCTTGTTA | ACCATCCATTTGGCCTTGTT |
8_16.9Mb | Chr8_16906251 | CGACGAGGGGTCTTACCAAG | CTTCTCCCGATCCGCTCAAC |
8_17.6Mb | Chr8_17683064 | ACTTGCAACAACGATTGACCT | AAGCCACCAACCTTATTGCA |
8_18.5Mb | Chr8_18507050 | TGCTTTTCGCTTGGGCTAGA | GTTCCACTCTGCTACGGCTT |
8_19.6Mb | Chr8_19583199 | TAAACCCTTCAGTCCACGGC | ATGAGCTGGGGTATCGACCT |
8_21.8Mb | Chr8_21807790 | TCGCTCGCTTCCTGAAGTTT | GAAAAGCTCTGGCCAAACCG |
性状 Trait | 水晶3号 Shuijing 3 | 拉木加 Lamujia |
---|---|---|
垩白粒率 Chalky rice rate (%) | 8.1±0.5 | 91.9±0.3 |
粒长Grain length (mm) | 4.8±0.0 | 4.9±0.0 |
粒宽 Grain width (mm) | 2.7±0.0 | 2.8±0.0 |
长宽比 Length-width ratio | 1.8±0.0 | 1.7±0.0 |
表2 亲本水晶3号和拉木加垩白和籽粒粒型性状测定
Table 2. Measurement of chalkiness rate and grain shape traits of Shuijing 3 and Lamujia
性状 Trait | 水晶3号 Shuijing 3 | 拉木加 Lamujia |
---|---|---|
垩白粒率 Chalky rice rate (%) | 8.1±0.5 | 91.9±0.3 |
粒长Grain length (mm) | 4.8±0.0 | 4.9±0.0 |
粒宽 Grain width (mm) | 2.7±0.0 | 2.8±0.0 |
长宽比 Length-width ratio | 1.8±0.0 | 1.7±0.0 |
图1 水晶3号和拉木加及其正反交F1在不同生态条件下的垩白粒率 A: 水晶3号和拉木加在海南三亚和河南原阳的垩白粒率表型;B: 正反交F1在海南三亚和河南原阳的垩白粒率。SLF1为水晶3号×拉木加正交F1,LSF1为拉木加×水晶3号反交F1。
Fig. 1. Chalky rice rates of Shuijing 3, Lamujia and their reciprocal cross F1 in two environments A, Chalky rice rate of Shuijing 3 and Lamujia in Sanya, Hainan Province and Yuanyang, Henan Province; B, Chalky rice rate of reciprocal cross F1 in Sanya and Yuanyang. SLF1 is Shuijing 3×Lamujia F1 and LSF1 is Lamujia×Shuijing 3 F1.
图2 海南和河南两地F2群体的垩白粒率频次分布 A:海南三亚F2群体;B:河南原阳F2群体。虚线分别表示高垩白混池和低垩白混池。
Fig. 2. Histogram of chalky rice rate distribution of Hainan and Henan F2 populations A, F2 population of Sanya, Hainan; B, F2 population of Yuanyang, Henan. The dashed line rectangles indicate high chalkiness and low chalkiness bulks.
图3 海南与河南F2群体垩白极端个体混池QTL-Seq测序ΔSNP指数分析 A: 海南F2群体垩白极端个体混池的ΔSNP指数,红线和蓝线分别代表95%、99%置信区间; B: 河南群体垩白极端表型个体混池的ΔSNP指数; C: 海南群体高垩白混池(蓝点)和低垩白混池(绿点)变异位点的SNP指数; D: 河南群体高垩白混池(蓝点)和低垩白混池(绿点)变异位点的SNP指数。
Fig. 3. ΔSNP-index analysis of extreme individuals bulks of Hainan and Henan F2 populations A, ΔSNP-index of extreme individuals bulks of Hainan F2 population, the red line indicates 95% confidence interval and the blue line indicates 99% confidence interval; B, ΔSNP-index of extreme individuals bulks of Henan F2 population; C, SNP-index of high chalkiness bulk (blue dots) and low chalkiness bulk (green) in Hainan population; D, SNP-index of high chalkiness bulk (blue dots) and low chalkiness bulk (green) in Henan population.
[1] | Gann P J I, Dharwadker D, Cherati S R, Vinzant K, Khodakovskaya M, Srivastava V. Targeted mutagenesis of the vacuolar H+ translocating pyrophosphatase gene reduces grain chalkiness in rice[J]. Plant Journal, 2023, 115(5): 1261-1276. |
[2] | Misra G, Badoni S, Parween S, Singh R K, Leung H, Ladejobi O, Mott R, Sreenivasulu N. Genome-wide association coupled gene to gene interaction studies unveil novel epistatic targets among major effect loci impacting rice grain chalkiness[J]. Plant Biotechnology Journal, 2021, 19(5): 910-925. |
[3] | 邱颖欣, 董皓, 李懿星, 王天抗, 宋书锋, 李莉. 水稻垩白性状相关基因研究进展[J]. 杂交水稻, 2023, 38(4): 12-20. |
Qiu Y X, Dong H, Li Y X, Wang T K, Song S F, Li L. Research progress on genes related to chalkiness in rice[J]. Hybrid Rice, 2023, 38(4): 12-20. (in Chinese with English abstract) | |
[4] | 柏晶晶, 胡文彬, 汪丽, 周政, 王立峰, 赵正洪, 何予卿. 水稻垩白主效QTL的定位与分析[J]. 湖南农业科学, 2021(12): 5-8. |
Bai J J, Hu W B, Wang L, Zhou Z, Wang L F, Zhao Z H, He Y Q. Major QTLs mapping and analysis for rice chalkiness[J]. Hunan Agricultural Sciences, 2021(12): 5-8. (in Chinese with English abstract) | |
[5] | 施利利, 张欣, 丁得亮, 王松文, 崔晶. 垩白米含量与稻米品质的关系研究[J]. 食品科技, 2016, 41(9): 177-180. |
Shi L L, Zhang X, Ding D L, Wang S W, Cui J. Study on the relationship between chalky rice content and rice quality[J]. Food Science and Technology, 41(9): 177-180. (in Chinese with English abstract) | |
[6] | Sreenivasulu N, Butardo V, Misra G, Cuevas R, Anacleto R, Kavi K P. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress[J]. Journal of Experimental Botany, 2015, 66(7): 1737-1748. |
[7] | 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应[J]. 农业环境科学学报, 2020, 39(4): 822-833. |
Wang Y X, Yang L X. Response of rice quality to major climate change factors[J]. Journal of Agro-Environment Science, 2020, 39(4): 822-833. (in Chinese with English abstract) | |
[8] | 景立权, 户少武, 穆海蓉, 王云霞, 杨连新. 大气环境变化导致水稻品质总体变劣[J]. 中国农业科学, 2018, 51(13): 2462-2475. |
Jing L Q, Hu S W, Mu H R, Wang Y X, Yang L X. Change of atmospheric environment leads to deterioration of rice quality[J]. Scientia Agricultura Sinica, 2018, 51(13): 2462-2475. (in Chinese with English abstract) | |
[9] | 张桂莲, 廖斌, 唐文帮, 陈立云, 肖应辉. 稻米垩白性状对高温耐性的QTL分析[J]. 中国水稻科学, 2017, 31(3): 257-264. |
Zhang G L, Liao B, Tang W B, Chen L Y, Xiao Y H. Identifying QTLs for thermo-tolerance of grain chalkiness trait[J]. Chinese Journal of Rice Science, 2017, 31(3): 257-264. (in Chinese with English abstract) | |
[10] | Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[11] | Yun P, Zhu Y, Wu B, Gao G, Sun P, Zhang Q, He Y. Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice[J]. Molecular Breeding, 2016, 36(12): 162. |
[12] | Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P, Yao J, Zhou Z, Chen J, Liu R, Cheng S, Zhang H, Zheng Y, Lou G, Chen P, Wan S, Zhou M, Li Y, Gao G, Zhang Q, Li X, Lian X, He Y. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality[J]. Plant Cell, 2022, 34(5): 1912-1932. |
[13] | Gao Y, Liu C, Li Y, Zhang A, Dong G, Xie L, Zhang B, Ruan B, Hong K, Xue D, Zeng D, Guo L, Qian Q, Gao Z. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9[J]. Rice, 2016, 9(1): 41. |
[14] | Nguyen K, Grondin A, Courtois B, Gantet P. Next-generation sequencing accelerates crop gene discovery[J]. Trends in Plant Science, 2019, 24(3): 263-274. |
[15] | Zegeye W, Zhang Y, Cao L, Cheng S. Whole genome resequencing from bulked populations as a rapid QTL and gene identification method in rice[J]. International Journal of Molecular Sciences, 2018, 19(12): 4000. |
[16] | Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760. |
[17] | McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M. The genome analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303. |
[18] | Mansfeld B, Grumet R. QTLseqr: An R package for bulk segregant analysis with next-generation sequencing[J]. Plant Genome, 2018, 11(2): 180006. |
[19] | Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Research, 2010, 38(16): e164. |
[20] | Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, Rozen S. Primer3: New capabilities and interfaces[J]. Nucleic Acids Research, 2012, 40(15): e115. |
[21] | Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal, 2015, 3(3): 269-283. |
[22] | Jiang L, Zhong H, Jiang X, Zhang J, Huang R, Liao F, Deng Y, Liu Q, Huang Y, Wang H, Tao Y, Zheng J. Identification and pleiotropic effect analysis of GSE5 on rice chalkiness and grain shape[J]. Frontiers in Plant Science, 2021, 12: 814928. |
[23] | 严旭, 左艳春, 王红林, 李杨, 李影正, 寇晶, 周晓康, 唐祈林, 杜周和. 禾本科三倍体:形成、鉴定与利用[J]. 植物学报, 2021, 56(3): 372-387. |
Yan X, Zuo Y C, Wang H L, Li Y, Li Y Z, Kou J, Zhou X K, Tang Q L, Du Z H. Triploid in Poaceae: Formation, detection, and utilization[J]. Chinese Bulletin of Botany, 2021, 56(3): 372-387. | |
[24] | Yang W, Xiong L, Liang J, Hao Q, Luan X, Tan Q, Lin S, Zhu H, Liu G, Liu Z, Bu S, Wang S, Zhang G. Substitution mapping of two closely linked QTLs on chromosome 8 controlling grain chalkiness in rice[J]. Rice, 2021, 14(1): 85. |
[25] | Qiu X, Chen K, Lü W, Ou X, Zhu Y, Xing D, Yang L, Fan F, Yang J, Xu J, Zheng T, Li Z. Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2017, 130(5): 951-967. |
[26] | Zhao X, Daygon V, McNally K, Hamilton R, Xie F, Reinke R, Fitzgerald M. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical and Applied Genetics, 2016, 129(1): 141-153. |
[27] | Li J, Yang H, Xu G, Deng K, Yu J, Xiang S, Zhou K, Zhang Q, Li R, Li M, Ling Y, Yang Z, He G, Zhao F. QTL analysis of Z414, a chromosome segment substitution line with short, wide grains, and substitution mapping of qGL11 in rice[J]. Rice, 2022, 15(1): 25. |
[1] | 冯向前, 王爱冬, 洪卫源, 李子秋, 覃金华, 詹丽钏, 陈里鹏, 张运波, 王丹英, 陈松. 基于低空无人机遥感的水稻产量估测方法研究进展[J]. 中国水稻科学, 2024, 38(6): 604-616. |
[2] | 叶苗, 毛雨欣, 张德海, 康钰莹, 袁榕, 张祖建. 高光效水稻品种的叶片和冠层生理生态特征及其氮素调控机制研究进展[J]. 中国水稻科学, 2024, 38(6): 617-626. |
[3] | 汪晴, 王艳茹, 张秀丽, 吕启明. 水稻孤雌生殖诱导基因BBM1序列变异分析[J]. 中国水稻科学, 2024, 38(6): 627-637. |
[4] | 钟智慧, 秦璐, 黎志力, 杨珍, 贺晓鹏, 蔡怡聪. 水稻IDD基因家族的全基因组鉴定及综合分析[J]. 中国水稻科学, 2024, 38(6): 638-652. |
[5] | 毋翔, 张义凯, 张鹏, 马昕伶, 陈玉林, 陈惠哲, 张玉屏, 向镜, 王亚梁, 王志刚, 李良涛. 2,4-表油菜素内酯对生物炭基质育秧水稻秧苗根系生长及生理特性的影响[J]. 中国水稻科学, 2024, 38(6): 685-694. |
[6] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[7] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[8] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[9] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[10] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[11] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[12] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[13] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[14] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[15] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||