中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 516-524.DOI: 10.16819/j.1001-7216.2024.231010
吕阳1,3, 刘聪聪3, 杨龙波3, 曹兴岚3, 王月影2, 童毅2, Mohamed Hazman4,5, 钱前1,2,3, 商连光3,*(), 郭龙彪2,6,*()
收稿日期:
2023-10-26
修回日期:
2023-12-08
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email: shanglianguang@caas.cn; guolongbiao@caas.cn
基金资助:
LÜ Yang1,3, LIU Congcong3, YANG Longbo3, CAO Xinglan3, WANG Yueying2, TONG Yi2, Mohamed Hazman4,5, QIAN Qian1,2,3, SHANG Lianguang3,*(), GUO Longbiao2,6,*()
Received:
2023-10-26
Revised:
2023-12-08
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: shanglianguang@caas.cn; guolongbiao@caas.cn
摘要:
【目的】挖掘水稻氮高效的种质和基因资源,揭示其分子机制和遗传效应,是当前水稻氮素利用效率(NUE)研究的重要内容和目标。【方法】为了鉴定与水稻NUE相关的变异位点和候选基因,我们收集了190份亚洲稻为关联群体,通过质量过滤和群体频率过滤筛选出3,934,195个高质量的单核苷酸多态性(SNPs)位点,在大田条件下设置低氮(N1,90 kg/hm2)和常规氮(N2,180 kg/hm2)水平,成熟期调查水稻剑叶叶宽在低氮和常规氮处理下的表型数据,结合FarmCPU和MLM模型进行全基因组关联分析(GWAS)。【结果】通过植株在不同氮水平下的叶宽表型数据,计算该群体在低氮和常规氮水平下的剑叶宽表型比值Q(N1/N2),Q值呈现正态分布的特征。对Q值进行全基因组关联分析,在12条染色体上共鉴定了100个显著位点,确定了39个候选QTLs,包括已克隆NUE相关基因OsNR1.2和OsNAC42。进一步鉴定了候选基因OsNR1.2和OsNAC42的优异单倍型和潜在的优势单倍型组合,为水稻NUE的改良提供了有价值的资源和信息。【结论】利用GWAS和单倍型分析,揭示了水稻剑叶叶宽在不同氮处理下的遗传基础,鉴定了与NUE相关的候选QTLs和基因,包括OsNR1.2和OsNAC42。通过组合单倍型分析,鉴定了两个基因的优势单倍型组合,为水稻NUE的改良提供了有价值的资源和信息。
吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524.
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao. Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis[J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524.
染色体 Chromosome | SNP覆盖距离 Coverage distance of SNP (bp) | SNP覆盖率 Coverage rate of SNP (%) | SNP数 SNP numbers |
---|---|---|---|
1 | 43,268,496 | 99.99 | 434,147 |
2 | 35,935,088 | 99.99 | 365,162 |
3 | 36,404,657 | 99.97 | 346,548 |
4 | 35,500,209 | 99.99 | 329,291 |
5 | 29,953,155 | 99.98 | 274,538 |
6 | 31,245,818 | 99.99 | 334,152 |
7 | 29,680,533 | 99.94 | 326,003 |
8 | 28,440,061 | 99.99 | 312,782 |
9 | 22,902,397 | 99.52 | 249,843 |
10 | 23,201,787 | 99.98 | 286,539 |
11 | 29,016,815 | 99.99 | 370,492 |
12 | 27,529,160 | 99.99 | 304,698 |
合计All | 373,078,176 | 99.94 | 3,934,195 |
表1 关联分析的SNPs分布
Table 1. Distribution of SNPs for association analysis
染色体 Chromosome | SNP覆盖距离 Coverage distance of SNP (bp) | SNP覆盖率 Coverage rate of SNP (%) | SNP数 SNP numbers |
---|---|---|---|
1 | 43,268,496 | 99.99 | 434,147 |
2 | 35,935,088 | 99.99 | 365,162 |
3 | 36,404,657 | 99.97 | 346,548 |
4 | 35,500,209 | 99.99 | 329,291 |
5 | 29,953,155 | 99.98 | 274,538 |
6 | 31,245,818 | 99.99 | 334,152 |
7 | 29,680,533 | 99.94 | 326,003 |
8 | 28,440,061 | 99.99 | 312,782 |
9 | 22,902,397 | 99.52 | 249,843 |
10 | 23,201,787 | 99.98 | 286,539 |
11 | 29,016,815 | 99.99 | 370,492 |
12 | 27,529,160 | 99.99 | 304,698 |
合计All | 373,078,176 | 99.94 | 3,934,195 |
图1 190份亚洲栽培稻材料的群体结构分析 A: 主成分分析(PCA);B: 系统发育树;C: 群体结构分布。
Fig. 1. Population structures analysis of 190 Asian cultivated rice accessions A, Principal component analysis; B, Phylogenetic trees; C, Population structure distribution.
图3 基于190份亚洲栽培稻材料叶宽表型比值Q的全基因组关联分析GWAS A和C分别为使用FarmCPU模型进行GWAS的曼哈顿图和QQ图;B和D分别为使用MLM模型进行GWAS的曼哈顿图和QQ图;曼哈顿图的图例为SNP密度。
Fig. 3. Genome-wide association analysis of leaf width phenotypic ratio Q for 190 Asian rice accessions A and C are Manhattan plot and QQ plot of GWAS using FarmCPU model respectively; B and D are Manhattan plot and QQ plot of GWAS using MLM model respectively; The legend of Manhattan plot is SNP density.
序号 Num. | QTLs | 染色体 Chr. | 物理区间 Position(bp) | 模型 Model |
---|---|---|---|---|
1 | qN1.1 | 1 | 16,711,341−17,842,922 | FarmCPU |
2 | qN1.3 | 1 | 29,450,332−29,850,332 | FarmCPU |
3 | qN2.1 | 2 | 5,202,109−5,634,866 | FarmCPU |
4 | qN2.2 | 2 | 15,469,192−16,276,088 | FarmCPU |
5 | qN2.3 | 2 | 21,668,095−22,329,457 | FarmCPU |
6 | qN2.4 | 2 | 23,110,299−23,510,309 | FarmCPU |
7 | qN3.1 | 3 | 19,114,795−19,514,795 | FarmCPU |
8 | qN4.1 | 4 | 12,844,649−13,244,649 | FarmCPU, MLM |
9 | qN4.2 | 4 | 17,659,810−18,662,950 | FarmCPU |
10 | qN4.3 | 4 | 23,336,187−23,790,593 | FarmCPU |
11 | qN4.4 | 4 | 24,729,681−25,129,681 | FarmCPU |
12 | qN4.5 | 4 | 26,074,465−26,474,465 | FarmCPU |
13 | qN4.6 | 4 | 30,147,389−30,547,389 | FarmCPU |
14 | qN5.1 | 5 | 2,757,529−3,157,612 | FarmCPU, MLM |
15 | qN5.2 | 5 | 16,539,268−16,939,268 | FarmCPU |
16 | qN6.1 | 6 | 1,047,084−1,447,087 | FarmCPU |
17 | qN6.2 | 6 | 7,235,155−7,635,155 | FarmCPU |
18 | qN6.3 | 6 | 10,994,434−12,207,057 | FarmCPU |
19 | qN6.4 | 6 | 14,631,833−15,031,833 | FarmCPU |
20 | qN6.5 | 6 | 22,830,458−23,230,458 | FarmCPU |
21 | qN7.1 | 7 | 10,738,028−11,138,028 | FarmCPU |
22 | qN7.2 | 7 | 21,982,893−22,382,893 | FarmCPU |
23 | qN7.3 | 7 | 24,335,116−24,735,851 | FarmCPU, MLM |
24 | qN7.4 | 7 | 26,393,603−27,493,824 | FarmCPU, MLM |
25 | qN8.1 | 8 | 832,784−1,288,754 | FarmCPU |
26 | qN8.2 | 8 | 5,296,217−5,696,240 | FarmCPU |
27 | qN8.3 | 8 | 11,161,050−11,771,793 | FarmCPU, MLM |
28 | qN8.4 | 8 | 12,948,612−13,348,782 | FarmCPU |
29 | qN8.5 | 8 | 18,290,616−18,717,167 | FarmCPU |
30 | qN8.6 | 8 | 22,921,397−23,321,397 | FarmCPU |
31 | qN9.1 | 9 | 18,943,064−19,344,087 | FarmCPU, MLM |
32 | qN10.1 | 10 | 502,390−902,390 | FarmCPU, MLM |
33 | qN10.2 | 10 | 6,859,536−7,259,536 | FarmCPU |
34 | qN10.3 | 10 | 21,015,655−21,415,655 | FarmCPU |
35 | qN11.1 | 11 | 5,033,674−5,433,674 | FarmCPU |
36 | qN11.2 | 11 | 18,939,513−19,339,513 | FarmCPU |
37 | qN11.3 | 11 | 26,603,335−27,005,127 | FarmCPU |
38 | qN12.1 | 12 | 14,101,046−14,501,052 | FarmCPU |
39 | qN12.2 | 12 | 16,046,475−16,446,475 | FarmCPU |
表2 GWAS分析的候选QTL
Table 2. Candidate QTLs from GWAS analysis
序号 Num. | QTLs | 染色体 Chr. | 物理区间 Position(bp) | 模型 Model |
---|---|---|---|---|
1 | qN1.1 | 1 | 16,711,341−17,842,922 | FarmCPU |
2 | qN1.3 | 1 | 29,450,332−29,850,332 | FarmCPU |
3 | qN2.1 | 2 | 5,202,109−5,634,866 | FarmCPU |
4 | qN2.2 | 2 | 15,469,192−16,276,088 | FarmCPU |
5 | qN2.3 | 2 | 21,668,095−22,329,457 | FarmCPU |
6 | qN2.4 | 2 | 23,110,299−23,510,309 | FarmCPU |
7 | qN3.1 | 3 | 19,114,795−19,514,795 | FarmCPU |
8 | qN4.1 | 4 | 12,844,649−13,244,649 | FarmCPU, MLM |
9 | qN4.2 | 4 | 17,659,810−18,662,950 | FarmCPU |
10 | qN4.3 | 4 | 23,336,187−23,790,593 | FarmCPU |
11 | qN4.4 | 4 | 24,729,681−25,129,681 | FarmCPU |
12 | qN4.5 | 4 | 26,074,465−26,474,465 | FarmCPU |
13 | qN4.6 | 4 | 30,147,389−30,547,389 | FarmCPU |
14 | qN5.1 | 5 | 2,757,529−3,157,612 | FarmCPU, MLM |
15 | qN5.2 | 5 | 16,539,268−16,939,268 | FarmCPU |
16 | qN6.1 | 6 | 1,047,084−1,447,087 | FarmCPU |
17 | qN6.2 | 6 | 7,235,155−7,635,155 | FarmCPU |
18 | qN6.3 | 6 | 10,994,434−12,207,057 | FarmCPU |
19 | qN6.4 | 6 | 14,631,833−15,031,833 | FarmCPU |
20 | qN6.5 | 6 | 22,830,458−23,230,458 | FarmCPU |
21 | qN7.1 | 7 | 10,738,028−11,138,028 | FarmCPU |
22 | qN7.2 | 7 | 21,982,893−22,382,893 | FarmCPU |
23 | qN7.3 | 7 | 24,335,116−24,735,851 | FarmCPU, MLM |
24 | qN7.4 | 7 | 26,393,603−27,493,824 | FarmCPU, MLM |
25 | qN8.1 | 8 | 832,784−1,288,754 | FarmCPU |
26 | qN8.2 | 8 | 5,296,217−5,696,240 | FarmCPU |
27 | qN8.3 | 8 | 11,161,050−11,771,793 | FarmCPU, MLM |
28 | qN8.4 | 8 | 12,948,612−13,348,782 | FarmCPU |
29 | qN8.5 | 8 | 18,290,616−18,717,167 | FarmCPU |
30 | qN8.6 | 8 | 22,921,397−23,321,397 | FarmCPU |
31 | qN9.1 | 9 | 18,943,064−19,344,087 | FarmCPU, MLM |
32 | qN10.1 | 10 | 502,390−902,390 | FarmCPU, MLM |
33 | qN10.2 | 10 | 6,859,536−7,259,536 | FarmCPU |
34 | qN10.3 | 10 | 21,015,655−21,415,655 | FarmCPU |
35 | qN11.1 | 11 | 5,033,674−5,433,674 | FarmCPU |
36 | qN11.2 | 11 | 18,939,513−19,339,513 | FarmCPU |
37 | qN11.3 | 11 | 26,603,335−27,005,127 | FarmCPU |
38 | qN12.1 | 12 | 14,101,046−14,501,052 | FarmCPU |
39 | qN12.2 | 12 | 16,046,475−16,446,475 | FarmCPU |
图4 候选基因OsNR1.2和OsNAC42的单倍型分析及单倍型组合分析 A和C图为OsNR1.2的单倍型分析结果;B和D为OsNAC42的单倍型分析结果;E为OsNR1.2和OsNAC42的单倍型组合分析结果;C、D、E中柱上标不同字母表示不同组别之间在P<0.05水平上差异显著。
Fig. 4. Haplotype analysis and haplotype combination analysis of candidate genes OsNR1.2 and OsNAC42 A and C are the haplotype analysis results of OsNR1.2; B and D are the haplotype analysis results of OsNAC42; E is the haplotype combination analysis result of OsNR1.2 and OsNAC42; Different letters in graphs C, D, and E indicate significant differences among groups at P<0.05.
[1] | Shang L G, Li X X, He H Y, Yuan Q L, Song Y N, Wei Z R, Lin H, Hu M, Zhao F L, Zhang C, Li Y H, Gao H S, Wang T Y, Liu X P, Zhang H, Zhang Y, Cao S M, Yu X M, Zhang B T, Zhang Y, Tan Y Q, Qin M, Ai C, Yang Y X, Zhang B, Hu Z Q, Wang H R, Lü Y, Wang Y X, Ma J, Wang Q, Lu H W, Wu Z, Liu S L, Sun Z Y, Zhang H L, Guo L B, Li Z C, Zhou Y F, Li J Y, Zhu Z F, Xiong G S, Ruan J, Qian Q. A super Pan-genomic landscape of rice[J]. Cell Research, 2022, 32(10): 878-896. |
[2] | Tao Y F, Zhao X R, Mace E, Henry R, Jordan D. Exploring and exploiting pan-genomics for crop improvement[J]. Molecular Plant, 2019, 12(2): 156-169. |
[3] | Zhang M M, Wang Y, Chen X, Xu F Y, Ding M, Ye W X, Kawai Y, Toda Y, Hayashi Y, Suzuki T, Zeng H Q, Xiao L, Xiao X, Xu J, Guo S W, Yan F, Shen Q R, Xu G H, Kinoshita T, Zhu Y Y. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis[J]. Nature Communications, 2021, 12(1): 735. |
[4] | Du Q G, Yang J, Syed Muhammad Sadiq S, Yang R X, Yu J J, Li W X. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes[J]. Journal of Integrative Agriculture, 2021, 20(8): 2043-2055. |
[5] | Fan X R, Naz M, Fan X R, Xuan W, Miller A J, Xu G H. Plant nitrate transporters: From gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475. |
[6] | Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, Jiang X Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 167-176. |
[7] | Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2014, 46(6): 652-656. |
[8] | Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice[J]. Nature Communications 2018, 9: 851. |
[9] | Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834. |
[10] | Wang Q, Nian J Q, Xie X Z, Yu H, Zhang J, Bai J T, Dong G J, Hu J, Bai B, Chen L C, Xie Q J, Feng J, Yang X L, Peng J L, Chen F, Qian Q, Li J Y, Zuo J R. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications, 2018, 9: 735. |
[11] | Wang Q, Su Q M, Nian J Q, Zhang J, Guo M, Dong G J, Hu J, Wang R S, Wei C S, Li G W, Wang W, Guo H S, Lin S Y, Qian W F, Xie X Z, Qian Q, Chen F, Zuo J R. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant, 2021, 14(6): 1012-1023. |
[12] | Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications, 2019, 10: 5207. |
[13] | Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J] Trends in Plant Science, 2004, 9(12): 597-605. |
[14] | Lü Y, Ma J, Wang Y Y, Wang Q, Lu X L, Hu H T, Qian Q, Guo L B, Shang L G. Loci and natural alleles for low-nitrogen-induced growth response revealed by the genome-wide association study analysis in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2021, 12: 770736. |
[15] | Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. |
[16] | Shang L G, He W C, Wang T Y, Yang Y X, Xu Q, Zhao X J, Yang L B, Zhang H, Li X X, Lü Y, Chen W, Cao S, Wang X M, Zhang B, Liu X P, Yu X M, He H Y, Wei H, Leng Y, Shi C L, Guo M L, Zhang Z P, Zhang B T, Yuan Q L, Qian H G, Cao X L, Cui Y, Zhang Q Q, Dai X F, Liu C C, Guo L B, Zhou Y F, Zheng X M, Ruan J, Cheng Z K, Pan W H, Qian Q. A complete assembly of the rice Nipponbare reference genome[J]. Molecular Plant, 2023, 16(8): 1232-1236. |
[17] | Lv Y, Ma J, Wei H, Xiao F, Wang Y Y, Jahan N, Hazman M, Qian Q, Shang L G, Guo L B. Combining GWAS, genome-wide domestication and a transcriptomic analysis reveals the loci and natural alleles of salt tolerance in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2022, 13: 912637. |
[18] | Gao H S, Zhang C, He H Y, Liu T J, Zhang B, Lin H, Li X X, Wei Z R, Yuan Q L, Wang Q, Yu C Y, Shang L G. Loci and alleles for submergence responses revealed by GWAS and transcriptional analysis in rice[J]. Molecular Breeding, 2020, 40(8): 75. |
[19] | Liu N, Xue Y D, Guo Z Y, Li W H, Tang J H. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels[J]. Frontiers in Plant Science, 2016, 27(7): 1046. |
[20] | Yu J, Zhao W G, Tong W, He Q, Yoon M Y, Li F P, Choi B, Heo E B, Kim K W, Park Y J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage[J]. International Journal of Molecular Sciences, 2018, 19(10): 3145 |
[21] | Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain[J]. Fly, 2012, 6(2): 80-92. |
[22] | Chang C C, Chow C C, Tellier L, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: Rising to the challenge of larger and richer datasets[J]. Gigascience, 2015, 4: 7. |
[23] | Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664. |
[24] | Nguyen L T, Schmidt H A, von Haeseler A, Minh B Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274. |
[25] | Yin L L, Zhang H H, Tang Z S, Xu J Y, Yin D, Zhang Z W, Yuan X H, Zhu M J, Zhao S H, Li X Y, Liu X L. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study[J]. Genomics Proteomics & Bioinformatics, 2021, 19(4): 619-628. |
[26] | Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 348-U110. |
[27] | Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models[J]. Biometrical Journal, 2008, 50(3): 346-363. |
[28] | Han M L, Lü Q Y, Zhang J, Wang T, Zhang C X, Tan R J, Wang Y L, Zhong L Y, Gao Y Q, Chao Z F, Li Q Q, Chen G Y, Shi Z, Lin H X, Chao D Y. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of Nitrate Reductase 1.2 in rice[J]. Molecular Plant, 2022, 15(1): 167-178. |
[29] | Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42- activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nature Communications, 2019, 10: 5279. |
[30] | Yu J, Zao W G, He Q, Kim T S, Park Y J. Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage[J]. Molecular Genetics and Genomics, 2017, 292(6): 1391-1403. |
[31] | Huang X H, Wei X H, Sang T, Zhao Q A, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q A, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42(11): 961-U76. |
[32] | Huang X H, Yang S H, Gong J Y, Zhao Q, Feng Q, Zhan Q L, Zhao Y, Li W J, Cheng B Y, Xia J H, Chen N, Huang T, Zhang L, Fan D L, Chen J Y, Zhou C C, Lu Y Q, Weng Q J, Han B. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622): 629. |
[33] | Liu H J, Yan J B. Crop genome-wide association study: A harvest of biological relevance[J]. Plant Journal, 2019, 97(1): 8-18. |
[34] | Yang Y X, Zhang C, Zhu D, He H Y, Wei Z R, Yuan Q L, Li X X, Gao X, Zhang B, Gao H S, Wang B, Cao S M, Wang T Y, Li Y H, Yu X M, Guo L B, Hu G J, Qian Q, Shang L G. Identifying candidate genes and patterns of heat-stress response in rice using a genome-wide association study and transcriptome analyses[J]. Crop Journal, 2022, 10(6): 1633-1643. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[5] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[6] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[7] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[8] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[9] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[10] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[11] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[12] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[13] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[14] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[15] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||