Chinese Journal OF Rice Science ›› 2018, Vol. 1 ›› Issue (1): 155-168.DOI: 10.16819/j.1001-7216.2018.7060
• Research Papers • Previous Articles Next Articles
Kuanyu ZHU1, Mingfei ZHAN1, CHENJing1, Zhiqin WANG1, Jianchang YANG1, Buhong ZHAO2,*()
Received:
2017-05-24
Online:
2018-01-10
Published:
2018-03-01
Contact:
Buhong ZHAO
朱宽宇1, 展明飞1, 陈静1, 王志琴1, 杨建昌1, 赵步洪2,*()
通讯作者:
赵步洪
基金资助:
CLC Number:
Kuanyu ZHU, Mingfei ZHAN, CHENJing, Zhiqin WANG, Jianchang YANG, Buhong ZHAO. Effects of Irrigation Regimes DuringGrain Filling Under Different Nitrogen Rates on Inferior SpikeletsGrain-Filling and Grain Yield of Rice[J]. Chinese Journal OF Rice Science, 2018, 1(1): 155-168.
朱宽宇, 展明飞, 陈静, 王志琴, 杨建昌, 赵步洪. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响[J]. 中国水稻科学, 2018, 1(1): 155-168.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.7060
变异来源 Sourceofvariance | 自由度df | 产量 Yield | 平均灌浆速率 Mean of grain filling rate | 最终粒重 Final weight | NSC转运率 NSC remobiliza -tion rate | 根系氧化力 Root oxidation | 光合速率 Photosynthe -tic rate | 蒸腾速率 Transpiration rate | 根系IAA含量 IAA content of Root | 根系Z+ZR含量 Z+ZR content of Root | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
年度Year(Y) | 1 | 7.95ns | 8.58ns | 2.45ns | 3.32ns | 4.67ns | 4.77ns | 19.81ns | 16.35ns | 12.89ns | ||
品种Cultivar(C) | 1 | 63.65** | 141.36** | 71.91** | 20.99** | 25.68** | 46.93** | 98.32** | 33.66** | 34.78** | ||
灌溉Irrigation(I) | 2 | 18.98** | 148.92** | 89.15** | 28.22** | 86.82** | 48.90** | 484.03** | 14.15** | 16.52** | ||
氮肥Nitrogen(N) | 2 | 15.09** | 24.66* | 54.88** | 11.62** | 53.53* | 54.91* | 5.66* | 40.68** | 42.26** | ||
Y×C | 1 | 138.98ns | 148.92ns | 89.15ns | 202.22ns | 486.82ns | 486.90ns | 484.03ns | 12.15ns | 616.52ns | ||
Y×I | 2 | 8.99ns | 6.08ns | 11.43ns | 102.62ns | 68.52ns | 57.14ns | 2.87ns | 59.37ns | 51.42ns | ||
Y×N | 2 | 30.90ns | 11.82ns | 96.13ns | 22.54ns | 78.65ns | 33.64ns | 49.25ns | 25.45ns | 22.06ns | ||
C×I | 2 | 99.57** | 0.35ns | 0.02ns | 0.95ns | 1.23ns | 1.22ns | 1.22ns | 64.53** | 64.56** | ||
C×N | 2 | 152.52** | 0.21ns | 3.32* | 17.55** | 140.56* | 140.58* | 139.75** | 27.71** | 27.74** | ||
I×N | 4 | 97.29** | 18.00** | 66.65** | 1.29ns | 0.51ns | 0.50ns | 0.50ns | 4.21** | 4.25** | ||
Y×C×I | 2 | 2.68ns | 0.09ns | 0.93ns | 0.82ns | 0.05ns | 0.72ns | 0.01ns | 0.23ns | 0.21ns | ||
Y×C×N | 2 | 3.62ns | 0.08ns | 0.97ns | 6.75ns | 5.23ns | 0.43ns | 0.83ns | 0.10ns | 0.09ns | ||
C×I×N | 4 | 11.38** | 0.18ns | 2.05ns | 5.54* | 10.15** | 10.16** | 10.10** | 0.02ns | 0.02ns | ||
Y×I×N | 4 | 2.11ns | 0.03ns | 0.90ns | 5.32ns | 44.24ns | 0.81ns | 0.11ns | 0.02ns | 0.01ns | ||
Y×C×I×N | 4 | 3.92ns | 0.04ns | 0.92ns | 112.52ns | 68.93ns | 42.34ns | 60.52ns | 33.21ns | 8.97ns |
Table 1 Analysis-of-variance (F-values) for grain yield, grain filling characteristics and physiologicaltraits of riceamong years, cultivars and treatments.
变异来源 Sourceofvariance | 自由度df | 产量 Yield | 平均灌浆速率 Mean of grain filling rate | 最终粒重 Final weight | NSC转运率 NSC remobiliza -tion rate | 根系氧化力 Root oxidation | 光合速率 Photosynthe -tic rate | 蒸腾速率 Transpiration rate | 根系IAA含量 IAA content of Root | 根系Z+ZR含量 Z+ZR content of Root | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
年度Year(Y) | 1 | 7.95ns | 8.58ns | 2.45ns | 3.32ns | 4.67ns | 4.77ns | 19.81ns | 16.35ns | 12.89ns | ||
品种Cultivar(C) | 1 | 63.65** | 141.36** | 71.91** | 20.99** | 25.68** | 46.93** | 98.32** | 33.66** | 34.78** | ||
灌溉Irrigation(I) | 2 | 18.98** | 148.92** | 89.15** | 28.22** | 86.82** | 48.90** | 484.03** | 14.15** | 16.52** | ||
氮肥Nitrogen(N) | 2 | 15.09** | 24.66* | 54.88** | 11.62** | 53.53* | 54.91* | 5.66* | 40.68** | 42.26** | ||
Y×C | 1 | 138.98ns | 148.92ns | 89.15ns | 202.22ns | 486.82ns | 486.90ns | 484.03ns | 12.15ns | 616.52ns | ||
Y×I | 2 | 8.99ns | 6.08ns | 11.43ns | 102.62ns | 68.52ns | 57.14ns | 2.87ns | 59.37ns | 51.42ns | ||
Y×N | 2 | 30.90ns | 11.82ns | 96.13ns | 22.54ns | 78.65ns | 33.64ns | 49.25ns | 25.45ns | 22.06ns | ||
C×I | 2 | 99.57** | 0.35ns | 0.02ns | 0.95ns | 1.23ns | 1.22ns | 1.22ns | 64.53** | 64.56** | ||
C×N | 2 | 152.52** | 0.21ns | 3.32* | 17.55** | 140.56* | 140.58* | 139.75** | 27.71** | 27.74** | ||
I×N | 4 | 97.29** | 18.00** | 66.65** | 1.29ns | 0.51ns | 0.50ns | 0.50ns | 4.21** | 4.25** | ||
Y×C×I | 2 | 2.68ns | 0.09ns | 0.93ns | 0.82ns | 0.05ns | 0.72ns | 0.01ns | 0.23ns | 0.21ns | ||
Y×C×N | 2 | 3.62ns | 0.08ns | 0.97ns | 6.75ns | 5.23ns | 0.43ns | 0.83ns | 0.10ns | 0.09ns | ||
C×I×N | 4 | 11.38** | 0.18ns | 2.05ns | 5.54* | 10.15** | 10.16** | 10.10** | 0.02ns | 0.02ns | ||
Y×I×N | 4 | 2.11ns | 0.03ns | 0.90ns | 5.32ns | 44.24ns | 0.81ns | 0.11ns | 0.02ns | 0.01ns | ||
Y×C×I×N | 4 | 3.92ns | 0.04ns | 0.92ns | 112.52ns | 68.93ns | 42.34ns | 60.52ns | 33.21ns | 8.97ns |
品种 Cultivar | 处理 Treatment | 每盆穗数 No.of panicle per pot | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g | 产量 Grain yield /g·pot-1 |
---|---|---|---|---|---|---|
甬优2640 Yongyou 2640 | CI+0N | 11.2c | 229.5c | 90.5c | 24.5b | 57.0g |
CI+MN | 18.7b | 276.3b | 89.5d | 24.6b | 114.3b | |
CI+HN | 21.2a | 289.4a | 75.9f | 23.6c | 110.2c | |
WMD+0N | 11.2c | 230.1c | 93.8a | 25.5a | 61.7f | |
WMD+MN | 18.6b | 276.8b | 93.2b | 25.6a | 122.7a | |
WMD+HN | 21.2a | 289.2a | 80.1e | 25.4a | 124.8a | |
WSD+0N | 11.4c | 231.9c | 74.7h | 22.9e | 44.7h | |
WSD+MN | 18.5b | 274.9b | 75.3g | 23.4d | 91.4e | |
WSD+HN | 21.1a | 288.5a | 75.5g | 23.0d | 105.7d | |
淮稻5号 Huaidao 5 | CI+0N | 13.8c | 141.5c | 91.9b | 27.1b | 48.6g |
CI+MN | 23.0b | 171.6b | 91.7b | 27.2b | 97.0b | |
CI+HN | 24.2a | 177.9a | 80.7d | 26.4c | 91.7c | |
WMD+0N | 13.9c | 141.9c | 92.9a | 27.7a | 50.7f | |
WMD+MN | 22.8b | 171.3b | 92.5a | 27.5a | 99.9a | |
WMD+HN | 24.2a | 177.0a | 85.4c | 27.6a | 100.9a | |
WSD+0N | 13.7c | 141.6c | 80.1e | 25.1e | 39.0h | |
WSD+MN | 22.6b | 169.8b | 81.9d | 25.8d | 81.1e | |
WSD+HN | 24.0a | 175.6a | 82.2d | 25.9d | 89.7d |
Table 2 Effects of irrigation regimes during grain filling under different nitrogen rates on the yield components of rice.
品种 Cultivar | 处理 Treatment | 每盆穗数 No.of panicle per pot | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g | 产量 Grain yield /g·pot-1 |
---|---|---|---|---|---|---|
甬优2640 Yongyou 2640 | CI+0N | 11.2c | 229.5c | 90.5c | 24.5b | 57.0g |
CI+MN | 18.7b | 276.3b | 89.5d | 24.6b | 114.3b | |
CI+HN | 21.2a | 289.4a | 75.9f | 23.6c | 110.2c | |
WMD+0N | 11.2c | 230.1c | 93.8a | 25.5a | 61.7f | |
WMD+MN | 18.6b | 276.8b | 93.2b | 25.6a | 122.7a | |
WMD+HN | 21.2a | 289.2a | 80.1e | 25.4a | 124.8a | |
WSD+0N | 11.4c | 231.9c | 74.7h | 22.9e | 44.7h | |
WSD+MN | 18.5b | 274.9b | 75.3g | 23.4d | 91.4e | |
WSD+HN | 21.1a | 288.5a | 75.5g | 23.0d | 105.7d | |
淮稻5号 Huaidao 5 | CI+0N | 13.8c | 141.5c | 91.9b | 27.1b | 48.6g |
CI+MN | 23.0b | 171.6b | 91.7b | 27.2b | 97.0b | |
CI+HN | 24.2a | 177.9a | 80.7d | 26.4c | 91.7c | |
WMD+0N | 13.9c | 141.9c | 92.9a | 27.7a | 50.7f | |
WMD+MN | 22.8b | 171.3b | 92.5a | 27.5a | 99.9a | |
WMD+HN | 24.2a | 177.0a | 85.4c | 27.6a | 100.9a | |
WSD+0N | 13.7c | 141.6c | 80.1e | 25.1e | 39.0h | |
WSD+MN | 22.6b | 169.8b | 81.9d | 25.8d | 81.1e | |
WSD+HN | 24.0a | 175.6a | 82.2d | 25.9d | 89.7d |
Fig.1. Effects of irrigation regimes during grain filling under different nitrogen rates on the nitrogen use efficiency and harvest index of rice. CI,Conventional irrigation; WMD,Alternate wetting and moderate soil drying; WSD,Alternate wetting and severe soil drying.MN,Medium nitrogen level; HN,High nitrogrn level.
Fig.2. Effects of irrigation regimes during grain filling under different nitrogen rates on grain weight of rice. CI+0N, Conventional irrigation+0 nitrogen fertilizer;CI+MN,Conventional irrigation+mediumnitrogen level;CI+HN,Conventional irrigation+high nitrogen level;WMD+0N,Alternate wetting and moderate soil drying+0 nitrogen fertilizer;WMD+MN,Alternate wetting and moderate soil drying+medium nitrogen level;WMD+HN,Alternate wetting and moderate soil drying+medium nitrogen level;WSD+0N,Alternate wetting and severe soil drying+0 nitrogen fertilizer;WSD+MN,Alternate wetting and severe soil drying+medium nitrogen level;WSD+HN,Alternate wetting and severe soil drying+high nitrogen level. S, Superior spikelets; I, Inferior spikelets.
品种 Variety | 处理 Treament | 最大灌浆速率 Gmax/(mg·grain-1d-1) | 达最大灌浆速率时间 Tmax/d | 平均灌浆速率 Gmean/(mg·grain-1d-1) | 活跃灌浆期 Active filling period/d | 最终粒重A /(mg·grain-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | S | I | S | I | S | I | S | I | ||||||
甬优2640 | CI+0N | 2.08a | 1.16ab | 14.37a | 33.42f | 1.49a | 0.54b | 18.43a | 30.13d | 27.46a | 16.27c | ||||
Yongyou 2640 | CI+MN | 2.10a | 1.13ab | 14.42a | 35.88e | 1.48a | 0.53b | 18.52a | 31.26c | 27.41a | 16.56c | ||||
CI+HN | 2.04a | 1.02ab | 14.83b | 41.86b | 1.46a | 0.46c | 18.55a | 33.63a | 27.08a | 15.46d | |||||
WMD+0N | 2.08a | 1.23a | 14.38a | 31.32g | 1.50a | 0.61a | 18.30a | 28.28e | 27.45a | 17.25b | |||||
WMD+MN | 2.10a | 1.18ab | 14.40a | 32.12g | 1.51a | 0.62a | 18.33a | 30.12d | 27.68a | 18.67a | |||||
WMD+HN | 2.08a | 1.15ab | 14.50a | 38.37d | 1.47a | 0.59a | 18.46a | 32.58b | 27.14a | 18.63a | |||||
WSD+0N | 2.05a | 0.88c | 14.95b | 37.51d | 1.47a | 0.33e | 18.35b | 22.65g | 26.97a | 7.47f | |||||
WSD+MN | 2.11a | 1.02b | 14.45a | 40.32c | 1.48a | 0.40d | 18.39a | 27.95f | 27.22a | 11.18e | |||||
WSD+HN | 2.09a | 1.04b | 14.52a | 44.68a | 1.46a | 0.41cd | 18.42a | 28.12f | 26.89a | 11.52e | |||||
淮稻5号 | CI+0N | 2.26a | 1.32ab | 15.35a | 26.56h | 1.68a | 0.80b | 17.54a | 24.26c | 29.47a | 19.40b | ||||
Huaidao 5 | CI+MN | 2.23a | 1.27ab | 15.38a | 28.48e | 1.70a | 0.76b | 17.56a | 25.71b | 29.85a | 19.53b | ||||
CI+HN | 2.20b | 1.2ab | 15.37a | 30.15b | 1.69a | 0.70c | 17.65a | 26.33a | 29.83a | 18.43c | |||||
WMD+0N | 2.28a | 1.43a | 15.38a | 26.09i | 1.70a | 0.89a | 17.52a | 23.16d | 29.78a | 21.32a | |||||
WMD+MN | 2.25a | 1.37ab | 15.40a | 27.31g | 1.69a | 0.91a | 17.58a | 24.21c | 29.71a | 22.03a | |||||
WMD+HN | 2.23a | 1.24ab | 15.42a | 29.12d | 1.67a | 0.87a | 17.68a | 25.32b | 29.53a | 22.02a | |||||
WSD+0N | 2.22a | 0.95c | 15.33a | 27.68f | 1.71a | 0.54e | 17.42a | 19.86f | 29.79a | 10.72e | |||||
WSD+MN | 2.24a | 1.13b | 15.41a | 29.66c | 1.70a | 0.63d | 17.54a | 22.56e | 29.82a | 14.21d | |||||
WSD+HN | 2.19a | 1.15b | 15.42a | 31.85a | 1.69a | 0.61d | 17.52a | 23.18d | 29.61a | 14.14d |
Table 3 Effects of irrigation regimes during grain filling under different nitrogen rates on the grain filling characters of rice.
品种 Variety | 处理 Treament | 最大灌浆速率 Gmax/(mg·grain-1d-1) | 达最大灌浆速率时间 Tmax/d | 平均灌浆速率 Gmean/(mg·grain-1d-1) | 活跃灌浆期 Active filling period/d | 最终粒重A /(mg·grain-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | S | I | S | I | S | I | S | I | ||||||
甬优2640 | CI+0N | 2.08a | 1.16ab | 14.37a | 33.42f | 1.49a | 0.54b | 18.43a | 30.13d | 27.46a | 16.27c | ||||
Yongyou 2640 | CI+MN | 2.10a | 1.13ab | 14.42a | 35.88e | 1.48a | 0.53b | 18.52a | 31.26c | 27.41a | 16.56c | ||||
CI+HN | 2.04a | 1.02ab | 14.83b | 41.86b | 1.46a | 0.46c | 18.55a | 33.63a | 27.08a | 15.46d | |||||
WMD+0N | 2.08a | 1.23a | 14.38a | 31.32g | 1.50a | 0.61a | 18.30a | 28.28e | 27.45a | 17.25b | |||||
WMD+MN | 2.10a | 1.18ab | 14.40a | 32.12g | 1.51a | 0.62a | 18.33a | 30.12d | 27.68a | 18.67a | |||||
WMD+HN | 2.08a | 1.15ab | 14.50a | 38.37d | 1.47a | 0.59a | 18.46a | 32.58b | 27.14a | 18.63a | |||||
WSD+0N | 2.05a | 0.88c | 14.95b | 37.51d | 1.47a | 0.33e | 18.35b | 22.65g | 26.97a | 7.47f | |||||
WSD+MN | 2.11a | 1.02b | 14.45a | 40.32c | 1.48a | 0.40d | 18.39a | 27.95f | 27.22a | 11.18e | |||||
WSD+HN | 2.09a | 1.04b | 14.52a | 44.68a | 1.46a | 0.41cd | 18.42a | 28.12f | 26.89a | 11.52e | |||||
淮稻5号 | CI+0N | 2.26a | 1.32ab | 15.35a | 26.56h | 1.68a | 0.80b | 17.54a | 24.26c | 29.47a | 19.40b | ||||
Huaidao 5 | CI+MN | 2.23a | 1.27ab | 15.38a | 28.48e | 1.70a | 0.76b | 17.56a | 25.71b | 29.85a | 19.53b | ||||
CI+HN | 2.20b | 1.2ab | 15.37a | 30.15b | 1.69a | 0.70c | 17.65a | 26.33a | 29.83a | 18.43c | |||||
WMD+0N | 2.28a | 1.43a | 15.38a | 26.09i | 1.70a | 0.89a | 17.52a | 23.16d | 29.78a | 21.32a | |||||
WMD+MN | 2.25a | 1.37ab | 15.40a | 27.31g | 1.69a | 0.91a | 17.58a | 24.21c | 29.71a | 22.03a | |||||
WMD+HN | 2.23a | 1.24ab | 15.42a | 29.12d | 1.67a | 0.87a | 17.68a | 25.32b | 29.53a | 22.02a | |||||
WSD+0N | 2.22a | 0.95c | 15.33a | 27.68f | 1.71a | 0.54e | 17.42a | 19.86f | 29.79a | 10.72e | |||||
WSD+MN | 2.24a | 1.13b | 15.41a | 29.66c | 1.70a | 0.63d | 17.54a | 22.56e | 29.82a | 14.21d | |||||
WSD+HN | 2.19a | 1.15b | 15.42a | 31.85a | 1.69a | 0.61d | 17.52a | 23.18d | 29.61a | 14.14d |
Fig.3. Effects of irrigation regimes during grain filling under different nitrogen rates on the root oxidation activity of rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severedrying; 0N,Zero nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
Fig.4. Effects of irrigation regimes during grain filling under different nitrogen rates on the root hormone of rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severe drying; 0N, 0 nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
Fig.5. Effects of irrigation regimes during grain filling under different nitrogen rates on leaf photosynthesis(A-F) and transpiration(G-L) of rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severe drying; 0N, 0 nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
Fig.6. Effects of irrigation regimes during grain filling under different nitrogen rates on non-structural carbohydrate(NSC) content(A-F), remobilization(C, G), accumulation(D, H) of stem in rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severe drying; 0N, 0 nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
产量构成及生理指标 Yield components and physiological traits | 直接作用 Direct contribution | 间接作用 Indirect contribution | |||||||
---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | ||
x1 | 0.079 | 0.645 | -0.083 | -0.002 | -0.045 | -0.005 | -0.027 | -0.049 | |
x2 | 0.647 | 0.078 | -0.081 | -0.001 | -0.036 | -0.003 | -0.019 | -0.045 | |
x3 | 0.214 | -0.031 | -0.243 | 0.029 | -0.040 | 0.030 | 0.017 | 0.084 | |
x4 | -0.036 | -0.004 | -0.031 | 0.174 | -0.002 | -0.002 | -0.013 | 0.021 | |
x5 | 0.543 | -0.007 | -0.043 | -0.072 | -0.001 | 0.026 | 0.156 | -0.018 | |
x6 | 0.038 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.225 | 0.032 | |
x7 | 0.225 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.226 | 0.032 | |
x8 | 0.172 | -0.022 | -0.171 | 0.106 | 0.005 | -0.288 | 0.007 | 0.042 |
Table 4 Contributions of yield components and physiological traits to grain yield.
产量构成及生理指标 Yield components and physiological traits | 直接作用 Direct contribution | 间接作用 Indirect contribution | |||||||
---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | ||
x1 | 0.079 | 0.645 | -0.083 | -0.002 | -0.045 | -0.005 | -0.027 | -0.049 | |
x2 | 0.647 | 0.078 | -0.081 | -0.001 | -0.036 | -0.003 | -0.019 | -0.045 | |
x3 | 0.214 | -0.031 | -0.243 | 0.029 | -0.040 | 0.030 | 0.017 | 0.084 | |
x4 | -0.036 | -0.004 | -0.031 | 0.174 | -0.002 | -0.002 | -0.013 | 0.021 | |
x5 | 0.543 | -0.007 | -0.043 | -0.072 | -0.001 | 0.026 | 0.156 | -0.018 | |
x6 | 0.038 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.225 | 0.032 | |
x7 | 0.225 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.226 | 0.032 | |
x8 | 0.172 | -0.022 | -0.171 | 0.106 | 0.005 | -0.288 | 0.007 | 0.042 |
Fig.7. Correlations between grain filling rate, final weight of inferior spikelets and seed setting rate, 1000-grain weight. ** Significant at 0.01 level.
[1] | Kato T, Takeda K.Associations among characters related to yield sink capacity in space-planted rice.Crop Sci, 1996, 36: 1135-1139. |
[2] | Kato T, Shinmura D, Taniguchi A.Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types.Plant Prod Sci, 2007, 10: 442-450. |
[3] | Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S.Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential.Crop Sci, 1999, 39: 1552-1559. |
[4] | Cheng S, Zhuang J, Fan Y, Du J, Cao L.Progress in research and development on hybrid rice: A super-domesticate in China.Ann Bot-London, 2007, 100: 959-966. |
[5] | Peng S, Khush G S, Virk P, Tang Q, Zou Y.Progress in ideotype breeding to increase rice yield potential.Field Crop Res, 2008, 108: 32-38. |
[6] | Mohapatra P K, Patel R, Sahu S K.Time of flowering affects grain quality and spikelet partitioning within the rice panicle.Aust J Plant Physiol, 1993, 20: 231-242. |
[7] | Yang J C, Zhang J H.Grain-filling problem in ‘super’ rice.J Exp Bot, 2010, 61(1):1. |
[8] | Wang Z, Zhang W, Beebout S S, Zhang H, Liu L, Yang J, Zhang J.Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates.Field Crop Res, 2016, 193:54-69. |
[9] | 张自常, 李鸿伟, 曹转勤, 王志琴, 杨建昌. 施氮量和灌溉方式的交互作用对水稻产量和品质的影响.作物学报,2013,39(1): 84-92. |
Zhang Z C, Li H W, Cao Z Q, Wang Z Q, Yang J C.Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice.ActaAgron Sin, 2013, 39(1):84-92.(in Chinese with English abstract) | |
[10] | Cabangon R J, Tuong T P, Castillo E G.Effect of irrigation method and N-fertilizer management on rice yield,water productivity and nutrient-use efficiencies in typical lowland rice conditions in China.Paddy&Water Environ, 2004, 2:195-206. |
[11] | 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12 产量 13.5 t·hm-2以上超高产群体的生育特征. 作物学报, 2014, 40(12):2149-2159. |
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B,Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H.Population characteristics for super-high yielding hybrid rice Yongyou 12(>13.5 t ha-1).ActaAgron Sin, 2014, 40(12): 2149-2159.(in Chinese with English abstract) | |
[12] | 姜元华, 张洪程, 赵可, 许俊伟, 韦还和, 龙厚元, 王文婷, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 长江下游地区不同类型水稻品种产量及其构成因素特征的研究. 中国水稻科学,2014, 28(6): 621-631. |
Jiang Y H, Zhang H C, Zhao K, Xu J W, Wei H H, Long H Y,Wang W T, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W.Difference in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River.Chin J Rice Sci, 2014, 28(6): 621-631.(in Chinese with English abstract) | |
[13] | Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J.Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.J ExpBot, 2013, 64(8):2523. |
[14] | 张伟杨, 徐云姬, 钱希旸, 李银银, 王志琴, 杨建昌. 小麦籽粒游离多胺对土壤干旱的响应及其与籽粒灌浆的关系. 作物学报, 2016, 42(6):860-872. |
Zhang W Y, Xu Y J, Qian X Y, Li Y Y, Wang Z Q, Yanng J C.Free Polyamines in Grains in Response to Soil Drought and Their Relationship with Grain Filling of Wheat.ActaAgron Sin, 2016, 42(6):860-872.(in Chinese with English abstract) | |
[15] | Yang J C, Zhang J H, Huang Z, Wang Z Q, Zhu Q S, Liu L J.Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice.AnnBot-London,2002,90: 369-377. |
[16] | Kato T.Change of sucrose synthase activity in developing endosperm of rice cultivars.Crop Sci, 1995, 35: 827-831. |
[17] | Yoshida S, Forno D, Cock J, Gomez K.Determination of sugar and starch in plant tissue//Yoshida S. Laboratory Manual for Physiological Studies of Rice. Philippines: The International Rice Research Institute, 1976: 46-49. |
[18] | 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 土壤水分胁迫对水稻产量和品质的影响. 作物学报, 2006, 32(1): 131-137. |
Wang C Y, Wang B L, Zhang W X, Zhao L, Zhao X S, Gao L W.Effects of Water Stress of Soil on Rice Yield and Quality.ActaAgron Sin, 2006, 32(1): 131-137.(in Chinese with English abstract) | |
[19] | Tuong T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia.Plant Prod Sci, 2005, 8: 231-241. |
[20] | Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H.Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential.J Integr Plant Biol, 2007, 49: 1445-1454. |
[21] | 蔡一霞,王维,朱智伟,张祖建,郎有忠,朱庆森. 结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响.应用生态学报, 2006, 17(7):1201-1206. |
Cai Y X, Wang W, Zhu Z W, Zhang Z J, Lang Y Z, Zhu Q S.Effects of water stress during grain-filling period on rice grain yield and its quality under different nitrogen levels.Chin J ApplEcol, 2006, 17(7):1201-1206.(in Chinese with English abstract) | |
[22] | 魏海燕, 张洪程, 戴其根, 霍中洋, 许柯, 杭杰, 马群, 张胜飞, 张庆, 刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性. 作物学报,2007(11): 1802-1809. |
Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Hang J, Ma Q, Zhang S F, Zhang Q, Liu Y Y.Characteristics of Matter Production and Accumulation in Rice Genotypes with Different N Use Efficiency.ActaAgron Sin, 2007(11): 1802-1809.(in Chinese with English abstract) | |
[23] | Jiao Z H, Hou A, Shi Y, Huang G H, Wang Y H, Chen X .Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community.CommunSci Plant, 2006, 37(13-14): 1889-1903. |
[24] | XueY, DuanH, LiuL, WangZ, YangJ, ZhangJ. An improved crop management increases grain yield and nitrogen and water use efficiency in rice.Crop Sci, 2013, 53: 271-284. |
[25] | 薛亚光,陈婷婷,杨成,王志琴,刘立军,杨建昌. 中粳稻不同栽培模式对产量及其生理特性的影响.作物学报, 2010, 36(3): 466-476. |
Xue Y G, Chen T T, Yang C, Wang Z Q, Liu L J, Yang J C.Effects of Different Cultivation Patterns on the Yield and Physiological Characteristics in Mid-Season Japonica Rice.ActaAgron Sin, 2010, 36(3): 466-476.(in Chinese with English abstract) | |
[26] | 王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响.中国农业科学, 2004, 37(4):497-501. |
Wang S H, Cao W X, Ding Y F, Tian Y C, Jiang D.Interactions of Water Management and Nitrogen Fertilizer on Nitrogen Absorption and Utilization in Rice.SciAgric Sin, 2004, 37(4):497-501.(in Chinese with English abstract) | |
[27] | 陈新红, 刘凯, 王志琴, 杨建昌. 水稻水氮互作效应与产量模型研究.西北农林科技大学学报: 自然科学版, 2006, 34(9): 141-148. |
Chen X H, Liu K, Wang Z Q, Yang J C.Studies on interactions between soil moisture and nitrogen and yield models in rice. J Northwest A&F Univ, 2006, 34(9): 141-148.(in Chinese with English abstract) | |
[28] | 陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干-湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学,2015, 48(7):1288-1299. |
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C.Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains.SciAgric Sin, 2015, 48(7): 1288-1299.(in Chinese with English abstract) | |
[29] | 徐云姬, 张伟杨, 钱希旸, 李银银, 张耗, 杨建昌.施氮量对小麦籽粒灌浆的影响及其生理机制. 麦类作物学报, 2015, 35(8): 1119-1126. |
Xu Y G, Zhang W Y, Qian X Y, Li Y Y, Zhang H, Yang J C.Effect of nitrogen on grain filling of wheat and its physiological mechanism.J Trit Crops, 2015, 35(8): 1119-1126.(in Chinese with English abstract) | |
[30] | Kato T, Sakurai N, Kuraishi S.The changes of endogenous abscisic acid in developing,grains of two rice cultivars with different grain size.Jpn J Crop Sci,1993, 62:456-461. |
[31] | 刘立军, 吴长付, 张耗, 杨建昌, 赵步洪. 实地氮肥管理对稻米品质的影响. 中国水稻科学, 2007, 21(6):625-630. |
Liu L J, Wu C F, Zhang H, Yang J C, Zhao B H.Effect of site-specific nitrogen management on rice quality. Chin J Rice Sci, 2007, 21(6): 625-630.(in Chinese with English abstract) | |
[32] | Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P.Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene.J Exp Bot, 2006, 57: 149-160. |
[33] | Yang J, Zhang J, Liu K, Wang Z, Liu L.Abscisic acid and ethyleneinteract in wheat grains in response to soil drying duringgrain filling. New Phytol, 2006, 271: 293-303. |
[34] | Javid M G, Sorooshzadeh A, Sanavy. Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress.Plant Growth Regul, 2011, 65(2): 305-313. |
[35] | Saini H S, Westgate M E.Reproductive development in grain crops during drought.AdvAgron, 2000, 68: 59-96. |
[36] | Inthapan P, Fukai S.Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland: 2. Comparison with maize and grain sorghum under wet and dry conditions.Austr J ExpAgric, 1988, 28:243-248. |
[37] | Tao H, Brueck H, Ditten K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crop Res, 2006, 95(1): 1-12. |
[38] | 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳交超级稻甬优538的穗部特征及籽粒灌浆特性. 作物学报, 2015, 41(12):1858-1869. |
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W.Panicle Traits and Grain-filling Characteristics of Japonica/Indica Hybrid Super Rice Yongyou 538.ActaAgron Sin, 2015, 41(12):1858-1869.(in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||