Chinese Journal OF Rice Science ›› 2018, Vol. 1 ›› Issue (1): 146-154.DOI: 10.16819/j.1001-7216.2018.7068
• Research Papers • Previous Articles Next Articles
Genyou ZHOU1, Caijiao ZHAI1, Xianliang DENG2, Jiao ZHANG1, Zhenliang ZHANG1, Qigeng DAI2,*(), Shiyou CUI1,*(
)
Received:
2017-06-09
Online:
2018-01-10
Published:
2018-03-10
Contact:
Qigeng DAI, Shiyou CUI
周根友1, 翟彩娇1, 邓先亮2, 张蛟1, 张振良1, 戴其根2,*(), 崔士友1,*(
)
通讯作者:
戴其根,崔士友
基金资助:
CLC Number:
Genyou ZHOU, Caijiao ZHAI, Xianliang DENG, Jiao ZHANG, Zhenliang ZHANG, Qigeng DAI, Shiyou CUI. Performance of Yield, Photosynthesis and Grain Quality of japonicaRice Cultivars UnderSalinity Stress in Micro-plots[J]. Chinese Journal OF Rice Science, 2018, 1(1): 146-154.
周根友, 翟彩娇, 邓先亮, 张蛟, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学, 2018, 1(1): 146-154.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.7068
盐逆境 Salt stress | 品种 Variety | 产量 Grain yield/(kg·m-2) | 单位面积穗数 Effective panicle number perm2 | 每穗粒数 Grain number per panicle | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|
S0 | V1 | 1.316±0.153 a | 275.1±26.7 b | 165.4±8.6 a | 28.9±0.6 a |
V2 | 1.127±0.135 a | 343.3±15.1 a | 128.4±10.6 b | 25.1±0.2 b | |
V3 | 1.188±0.314 a | 340.3±12.0 a | 126.2±12.8 b | 24.8±0.3 b | |
V4 | 0.931±0.083 b | 332.7±10.3 a | 108.1±7.2 b | 25.8±0.1 b | |
平均 Average | 1.140 | 322.8 | 132.0 | 26.2 | |
S1 | V1 | 0.523±0.126 a | 281.2±12.9 c | 76.0±9.1 a | 25.1±1.5 a |
V2 | 0.481±0.099 a | 327.7±14.0 a | 62.6±11.0 a | 22.7±2.4 b | |
V3 | 0.401±0.068 a | 319.7±4.6 ab | 61.8±9.4 a | 20.3±0.2 c | |
V4 | 0.443±0.037 a | 305.7±7.6 b | 68.6±5.4 a | 21.2±0.8 bc | |
平均 Average | 0.462 | 308.6 | 67.2 | 22.3 | |
变异来源 Source of variation | |||||
F值 | S | 103.90** | 7.39 | 293.06** | 62.90** |
F value | V | 5.01** | 31.35** | 23.08** | 33.69** |
S×V | 2.87 | 2.40 | 11.61** | 2.64 |
Table 1 Effects of salt stress on yield and its components of four japonica varieties.
盐逆境 Salt stress | 品种 Variety | 产量 Grain yield/(kg·m-2) | 单位面积穗数 Effective panicle number perm2 | 每穗粒数 Grain number per panicle | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|
S0 | V1 | 1.316±0.153 a | 275.1±26.7 b | 165.4±8.6 a | 28.9±0.6 a |
V2 | 1.127±0.135 a | 343.3±15.1 a | 128.4±10.6 b | 25.1±0.2 b | |
V3 | 1.188±0.314 a | 340.3±12.0 a | 126.2±12.8 b | 24.8±0.3 b | |
V4 | 0.931±0.083 b | 332.7±10.3 a | 108.1±7.2 b | 25.8±0.1 b | |
平均 Average | 1.140 | 322.8 | 132.0 | 26.2 | |
S1 | V1 | 0.523±0.126 a | 281.2±12.9 c | 76.0±9.1 a | 25.1±1.5 a |
V2 | 0.481±0.099 a | 327.7±14.0 a | 62.6±11.0 a | 22.7±2.4 b | |
V3 | 0.401±0.068 a | 319.7±4.6 ab | 61.8±9.4 a | 20.3±0.2 c | |
V4 | 0.443±0.037 a | 305.7±7.6 b | 68.6±5.4 a | 21.2±0.8 bc | |
平均 Average | 0.462 | 308.6 | 67.2 | 22.3 | |
变异来源 Source of variation | |||||
F值 | S | 103.90** | 7.39 | 293.06** | 62.90** |
F value | V | 5.01** | 31.35** | 23.08** | 33.69** |
S×V | 2.87 | 2.40 | 11.61** | 2.64 |
盐逆境 Salt stress | 品种 Variety | 光合速率 Photosynthetic rate /(μmol·m-2s-1) | 气孔导度 Stomatal conductance /(mol·m-2·s-1) | 胞间CO2浓度 CO2 concentration /(μmol·mol-1) | 蒸腾速率 Evaporation rate /(mmol·m-2s-1) |
---|---|---|---|---|---|
S0 | V1 | 28.3±0.8 a | 11.5±9.2 a | 361.0±20.4 a | 1.2±1.0 a |
V2 | 29.5±2.5 a | 19.7±8.7 a | 345.3±91.6 a | 1.9±0.8 a | |
V3 | 27.2±2.0 a | 23.3±20.4 a | 364.0±27.3 a | 2.4±2.1 a | |
V4 | 29.7±5.2 a | 27.2±21.4 a | 355.7±40.2 a | 2.8±2.1 a | |
平均 Average | 28.7 | 20.4 | 356.5 | 2.1 | |
S1 | V1 | 18.6±4.1 a | 25.5±11.6 a | 272.5±21.0 a | 2.9±1.3 a |
V2 | 19.3±5.3 a | 40.1±33.1 a | 271.8±35.4 a | 4.5±3.4 a | |
V3 | 20.6±3.3 a | 44.7±28.1 a | 222.6±29.8 a | 4.7±2.9 a | |
V4 | 16.6±4.6 a | 29.1±214.0 a | 270.4±27.0 a | 3.0±1.3 a | |
平均 Average | 18.8 | 34.8 | 259.3 | 3.8 | |
变异来源 Source of variation | |||||
F值 | S | 168.78** | 2.92 | 46.10** | 3.99 |
F value | V | 0.14 | 0.87 | 0.52 | 0.81 |
S×V | 0.78 | 0.40 | 1.12 | 0.57 |
Table 2 Influence of salt stress on photosynthetic characteristics of the four japonica varieties.
盐逆境 Salt stress | 品种 Variety | 光合速率 Photosynthetic rate /(μmol·m-2s-1) | 气孔导度 Stomatal conductance /(mol·m-2·s-1) | 胞间CO2浓度 CO2 concentration /(μmol·mol-1) | 蒸腾速率 Evaporation rate /(mmol·m-2s-1) |
---|---|---|---|---|---|
S0 | V1 | 28.3±0.8 a | 11.5±9.2 a | 361.0±20.4 a | 1.2±1.0 a |
V2 | 29.5±2.5 a | 19.7±8.7 a | 345.3±91.6 a | 1.9±0.8 a | |
V3 | 27.2±2.0 a | 23.3±20.4 a | 364.0±27.3 a | 2.4±2.1 a | |
V4 | 29.7±5.2 a | 27.2±21.4 a | 355.7±40.2 a | 2.8±2.1 a | |
平均 Average | 28.7 | 20.4 | 356.5 | 2.1 | |
S1 | V1 | 18.6±4.1 a | 25.5±11.6 a | 272.5±21.0 a | 2.9±1.3 a |
V2 | 19.3±5.3 a | 40.1±33.1 a | 271.8±35.4 a | 4.5±3.4 a | |
V3 | 20.6±3.3 a | 44.7±28.1 a | 222.6±29.8 a | 4.7±2.9 a | |
V4 | 16.6±4.6 a | 29.1±214.0 a | 270.4±27.0 a | 3.0±1.3 a | |
平均 Average | 18.8 | 34.8 | 259.3 | 3.8 | |
变异来源 Source of variation | |||||
F值 | S | 168.78** | 2.92 | 46.10** | 3.99 |
F value | V | 0.14 | 0.87 | 0.52 | 0.81 |
S×V | 0.78 | 0.40 | 1.12 | 0.57 |
盐逆境 Salt stress | 品种 Variety | 糙米率 Brown rice /% | 精米率 Total milled rice /% | 整精米率 Head rice /% | 长宽比 Ratio of length to width | 垩白米率 Chalky grain rate/% | 垩白度 Chalkiness degree/% | 蛋白质含量 Protein content /% | 直链淀粉含量 Amylose content /% |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 84.35±0.38 b | 72.24±0.68 c | 62.55±5.26 a | 1.74±0.03 a | 30.10±1.89 c | 9.53±0.66 b | 8.64±0.37 b | 14.25±0.70 a |
V2 | 84.26±0.17 b | 75.40±0.38 b | 67.71±6.18 a | 1.71±0.01 a | 19.76±1.75 d | 5.40±0.14 c | 10.04±0.08 a | 14.99±0.60 a | |
V3 | 85.76±0.42 a | 77.24±0.66 a | 67.73±1.64 a | 1.62±0.03 b | 100.00±0.00 a | 60.31±0.97 a | 8.56±0.09 b | 1.90±0.96 c | |
V4 | 84.64±0.19 ab | 75.41±0.43 b | 62.06±5.66 a | 1.49±0.02 c | 48.35±3.55 b | 12.69±1.17 b | 9.75±0.09 a | 8.94±0.39 b | |
平均 Average | 84.75 | 75.07 | 54.38 | 16.40 | 49.55 | 21.95 | 9.24 | 10.02 | |
S1 | V1 | 83.64±0.75 a | 73.55±1.09 b | 42.09±2.36 b | 1.72±0.06 a | 17.81±2.78 c | 5.56±1.28 c | 10.05±0.54 c | 11.62±1.24 a |
V2 | 83.95±0.92 a | 75.51±1.14 a | 63.28±3.05 a | 1.65±0.04 b | 17.41±3.41 c | 3.70±0.58 c | 11.20±0.22 b | 12.85±0.26 a | |
V3 | 83.27±0.76 a | 74.37±0.83 ab | 56.88±5.90 a | 1.61±0.03 b | 100.00±0.00 a | 69.74±0.72 a | 12.45±0.66 a | 2.31±0.78 c | |
V4 | 83.91±0.25 a | 74.51±0.75 ab | 55.27±3.64 a | 1.51±0.04 c | 72.59±7.54 b | 17.33±6.26 b | 10.97±0.22 b | 7.85±0.70 b | |
平均 Average | 83.69 | 74.49 | 54.38 | 16.20 | 51.95 | 24.08 | 11.17 | 8.66 | |
变异来源 Source of variation | |||||||||
F值 | S | 58.86** | 12.91* | 95.11** | 1.70 | 2.33 | 4.20 | 199.06** | 42.94** |
F value | V | 1.16 | 17.86** | 11.87** | 59.53** | 1227.52** | 1310.12** | 26.96** | 357.43** |
S×V | 5.31** | 8.23** | 4.64* | 2.04 | 51.78** | 15.24** | 33.99** | 5.55** |
Table 3 Effects of salt stress on the main grain quality of the four japonica rice varieties.
盐逆境 Salt stress | 品种 Variety | 糙米率 Brown rice /% | 精米率 Total milled rice /% | 整精米率 Head rice /% | 长宽比 Ratio of length to width | 垩白米率 Chalky grain rate/% | 垩白度 Chalkiness degree/% | 蛋白质含量 Protein content /% | 直链淀粉含量 Amylose content /% |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 84.35±0.38 b | 72.24±0.68 c | 62.55±5.26 a | 1.74±0.03 a | 30.10±1.89 c | 9.53±0.66 b | 8.64±0.37 b | 14.25±0.70 a |
V2 | 84.26±0.17 b | 75.40±0.38 b | 67.71±6.18 a | 1.71±0.01 a | 19.76±1.75 d | 5.40±0.14 c | 10.04±0.08 a | 14.99±0.60 a | |
V3 | 85.76±0.42 a | 77.24±0.66 a | 67.73±1.64 a | 1.62±0.03 b | 100.00±0.00 a | 60.31±0.97 a | 8.56±0.09 b | 1.90±0.96 c | |
V4 | 84.64±0.19 ab | 75.41±0.43 b | 62.06±5.66 a | 1.49±0.02 c | 48.35±3.55 b | 12.69±1.17 b | 9.75±0.09 a | 8.94±0.39 b | |
平均 Average | 84.75 | 75.07 | 54.38 | 16.40 | 49.55 | 21.95 | 9.24 | 10.02 | |
S1 | V1 | 83.64±0.75 a | 73.55±1.09 b | 42.09±2.36 b | 1.72±0.06 a | 17.81±2.78 c | 5.56±1.28 c | 10.05±0.54 c | 11.62±1.24 a |
V2 | 83.95±0.92 a | 75.51±1.14 a | 63.28±3.05 a | 1.65±0.04 b | 17.41±3.41 c | 3.70±0.58 c | 11.20±0.22 b | 12.85±0.26 a | |
V3 | 83.27±0.76 a | 74.37±0.83 ab | 56.88±5.90 a | 1.61±0.03 b | 100.00±0.00 a | 69.74±0.72 a | 12.45±0.66 a | 2.31±0.78 c | |
V4 | 83.91±0.25 a | 74.51±0.75 ab | 55.27±3.64 a | 1.51±0.04 c | 72.59±7.54 b | 17.33±6.26 b | 10.97±0.22 b | 7.85±0.70 b | |
平均 Average | 83.69 | 74.49 | 54.38 | 16.20 | 51.95 | 24.08 | 11.17 | 8.66 | |
变异来源 Source of variation | |||||||||
F值 | S | 58.86** | 12.91* | 95.11** | 1.70 | 2.33 | 4.20 | 199.06** | 42.94** |
F value | V | 1.16 | 17.86** | 11.87** | 59.53** | 1227.52** | 1310.12** | 26.96** | 357.43** |
S×V | 5.31** | 8.23** | 4.64* | 2.04 | 51.78** | 15.24** | 33.99** | 5.55** |
盐逆境 Salt stress | 品种 Variety | 峰值黏度 Peak viscosity /(mPa·s) | 热浆黏度 Trough viscosity /(mPa·s) | 最终黏度 Final viscosity /(mPa·s) | 崩解值 Breakdown /(mPa·s) | 消减值 Setback /(mPa·s) | 回复值 Consistence /(mPa·s) | 起始糊化温度 Pasting temperature /oC | |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 3583.1±262.0 a | 1575.4±126.9 b | 2745.7±153.5 b | 2007.7±143.0 a | –837.4±126.5 bc | 1170.4±28.9 b | 78.4±0.0 a | |
V2 | 3126.5±120.2 b | 1849.0±98.9 a | 3129.4±105.6 a | 1277.5±62.0 b | 2.9±46.6 a | 1280.4±17.1 a | 73.1±0.7 a | ||
V3 | 1473.3±362.5 d | 383.9±135.7 d | 506.1±218.5 d | 1089.4±344.1 b | –969.6±320.8 c | 122.2±91.0 d | 69.1±0.6 a | ||
V4 | 2603.6±117.6 c | 1352.5±54.7 c | 1979.4±72.9 c | 1251.1±89.5 b | –624.3±89.1 b | 626.9±28.2 c | 71.5±0.4 a | ||
平均 Average | 2696.6 | 1290.2 | 2090.1 | 1406.4 | –608.1 | 800.0 | 73.0 | ||
S1 | V1 | 3563.5±295.9 a | 1818.5±136.6 b | 2008.3±124.9 b | 1745.0±171.5 a | –555.2±184.3 b | 1189.7±13.6 b | 79.8±0.4 a | |
V2 | 3153.0±30.5 b | 2045.7±84.6 a | 3297.0±73.1 a | 1107.3±59.8 b | 144.0±47.9 a | 1251.3±12.0 a | 86.0±0.3 a | ||
V3 | 1306.0±42.9 d | 499.7±49.6 d | 672.0±51.4 d | 806.2±18.5 c | –634.0±18.9 b | 172.2±3.8 d | 70.1±0.4 b | ||
V4 | 2689.7±6.2 c | 1415.5±37.7 c | 2121.7±30.8 c | 1254.2±42.2 b | –547.7±48.2 b | 706.2±9.9 c | 72.8±0.5 b | ||
平均 Average | 2678.1 | 1444.8 | 2024.7 | 1228.2 | –398.2 | 829.8 | 77.2 | ||
变异来源 Source of variation | |||||||||
F值 | S | 0.03 | 7.51 | 7.95 | 7.00 | 12.56* | 8.89 | 345.31** | |
F value | V | 241.52** | 427.54** | 940.67** | 59.42** | 61.07** | 1627.48** | 1099.22** | |
S×V | 0.79 | 1.60 | 0.49 | 1.62 | 1.43 | 3.25* | 379.68** |
Table 4 Influences of salt stress on RVA profile characteristics of four japonica rice genotypes.
盐逆境 Salt stress | 品种 Variety | 峰值黏度 Peak viscosity /(mPa·s) | 热浆黏度 Trough viscosity /(mPa·s) | 最终黏度 Final viscosity /(mPa·s) | 崩解值 Breakdown /(mPa·s) | 消减值 Setback /(mPa·s) | 回复值 Consistence /(mPa·s) | 起始糊化温度 Pasting temperature /oC | |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 3583.1±262.0 a | 1575.4±126.9 b | 2745.7±153.5 b | 2007.7±143.0 a | –837.4±126.5 bc | 1170.4±28.9 b | 78.4±0.0 a | |
V2 | 3126.5±120.2 b | 1849.0±98.9 a | 3129.4±105.6 a | 1277.5±62.0 b | 2.9±46.6 a | 1280.4±17.1 a | 73.1±0.7 a | ||
V3 | 1473.3±362.5 d | 383.9±135.7 d | 506.1±218.5 d | 1089.4±344.1 b | –969.6±320.8 c | 122.2±91.0 d | 69.1±0.6 a | ||
V4 | 2603.6±117.6 c | 1352.5±54.7 c | 1979.4±72.9 c | 1251.1±89.5 b | –624.3±89.1 b | 626.9±28.2 c | 71.5±0.4 a | ||
平均 Average | 2696.6 | 1290.2 | 2090.1 | 1406.4 | –608.1 | 800.0 | 73.0 | ||
S1 | V1 | 3563.5±295.9 a | 1818.5±136.6 b | 2008.3±124.9 b | 1745.0±171.5 a | –555.2±184.3 b | 1189.7±13.6 b | 79.8±0.4 a | |
V2 | 3153.0±30.5 b | 2045.7±84.6 a | 3297.0±73.1 a | 1107.3±59.8 b | 144.0±47.9 a | 1251.3±12.0 a | 86.0±0.3 a | ||
V3 | 1306.0±42.9 d | 499.7±49.6 d | 672.0±51.4 d | 806.2±18.5 c | –634.0±18.9 b | 172.2±3.8 d | 70.1±0.4 b | ||
V4 | 2689.7±6.2 c | 1415.5±37.7 c | 2121.7±30.8 c | 1254.2±42.2 b | –547.7±48.2 b | 706.2±9.9 c | 72.8±0.5 b | ||
平均 Average | 2678.1 | 1444.8 | 2024.7 | 1228.2 | –398.2 | 829.8 | 77.2 | ||
变异来源 Source of variation | |||||||||
F值 | S | 0.03 | 7.51 | 7.95 | 7.00 | 12.56* | 8.89 | 345.31** | |
F value | V | 241.52** | 427.54** | 940.67** | 59.42** | 61.07** | 1627.48** | 1099.22** | |
S×V | 0.79 | 1.60 | 0.49 | 1.62 | 1.43 | 3.25* | 379.68** |
淀粉RVA谱特征 RVA profile characteristics | 非盐逆境 Normal condition | 盐逆境 Salt stress | |||
---|---|---|---|---|---|
直链淀粉含量 Amylose content | 蛋白质含量 Protein content | 直链淀粉含量 Amylose content | 蛋白质含量 Protein content | ||
峰值黏度 Peak viscosity | 0.917** | 0.264 | 0.929** | –0.866** | |
热浆黏度 Trough viscosity | 0.954** | 0.615* | 0.972** | –0.724** | |
最终黏度 Final viscosity | 0.980** | 0.535* | 0.982** | –0.733** | |
崩解值 Breakdown | 0.540* | –0.330 | 0.640* | –0.897** | |
消减值Setback | 0.611* | 0.809** | 0.623* | –0.022 | |
回复值 Consistence | 0.984** | 0.423 | 0.982** | –0.728** | |
起始糊化温度 Pasting temperature | -0.172 | –0.468 | 0.903** | –0.464 |
Table 5 Relationships of amylose content and protein content with RVA profile characteristics under salt stress and normal conditions.
淀粉RVA谱特征 RVA profile characteristics | 非盐逆境 Normal condition | 盐逆境 Salt stress | |||
---|---|---|---|---|---|
直链淀粉含量 Amylose content | 蛋白质含量 Protein content | 直链淀粉含量 Amylose content | 蛋白质含量 Protein content | ||
峰值黏度 Peak viscosity | 0.917** | 0.264 | 0.929** | –0.866** | |
热浆黏度 Trough viscosity | 0.954** | 0.615* | 0.972** | –0.724** | |
最终黏度 Final viscosity | 0.980** | 0.535* | 0.982** | –0.733** | |
崩解值 Breakdown | 0.540* | –0.330 | 0.640* | –0.897** | |
消减值Setback | 0.611* | 0.809** | 0.623* | –0.022 | |
回复值 Consistence | 0.984** | 0.423 | 0.982** | –0.728** | |
起始糊化温度 Pasting temperature | -0.172 | –0.468 | 0.903** | –0.464 |
[1] | 崔士友, 张蛟蛟, 碳管理:盐土治理的一种新思路.农学学报, 2015, 5(12): 44-50. |
Cui S Y, Zhang JJ.Carbon management: A new approach to the governance of saline soils.J Agric, 2015,5(12):44-50.(in Chinese with English abstract) | |
[2] | 国家统计局.中国统计年鉴.北京: 中国统计出版社, 2014. |
National Bureau of Statistics.China Statistical Yearbook.Bejing: China Statistics Press, 2016.(in Chinese) | |
[3] | Horie T, Karahara I, Katsuhara M.Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants.Rice, 2012, 5(1):11. |
[4] | Zeng L, Shannon M C, Grieve C M.Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters.Euphytica, 2002, 127(2):235-245. |
[5] | Zeng L, Poss J A, Wilson C, Ase D, Gregorio G B, Grieve C M.Evaluation of salt tolerance in rice genotypes by physiological characters.Euphytica, 2003, 129(3):281-292. |
[6] | Heenan D P, Lewin L G, Mccaffery D W.Salinity tolerance in rice varieties at different growth stages. Australian J ExpAgric, 1988, 28(3):343-349. |
[7] | Xie J H, Zapataarias F J, Shen M, Afza R.Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica,2000, 116(2): 105-110. |
[8] | 杨福, 梁正伟, 王志春.水稻耐盐碱鉴定标准评价及建议与展望.植物遗传资源学报, 2011, 12(4): 625-628. |
Yang F, Liang Z W, Wang Z C.Evaluation, suggestion and prospect on identification standards of saline-alkali tolerance in rice.J Plant Genetic Resour, 2011, 12(4): 625-628. (in Chinese with English abstract) | |
[9] | 陈志德, 仲维功, 杨杰, 黄转运.水稻新种质资源的耐盐性鉴定评价.植物遗传资源学报, 2004, 5(4): 351-355. |
Chen Z D, Chong W G, Yang J, Huang Z Y.Evaluation of salt tolerance of rice (Oryza sativa L.) germplasm. J Plant GenetResour, 2004, 5(4): 351-355.(in Chinese with English abstract) | |
[10] | 方先文, 汤陵华, 王艳平.耐盐水稻种质资源的筛选.植物遗传资源学报, 2004, 5(3): 295-298. |
Fang X W, Tang L H, Wang Y P.Selection on rice germplasm tolerant to salt stress.J Plant Genet Resour, 2004, 5(3): 295-298.(in Chinese with English abstract) | |
[11] | Zeng L H, Shannon M C.Effects of salinity on grain yield and yield components of rice at different seeding densities.Agron J, 2000, 92(3):418-423. |
[12] | Zeng L H, Shannon M C.Salinity effects on seedling growth and yield components of rice.Crop Sci, 2000, 40(4):996-1003. |
[13] | 朱萍, 王华, 夏伟, 顾艾节, 汤梅林, 周士良.微酸性有机肥用量对滩涂土壤理化性状及水稻产量的影响.上海农业学报, 2015(6): 101-103. |
Zhu P, Wang H, Xia W, GuA J, Tang M L, Zhou S L. Effects of acidulous organic fertilizer rates on both beach soil physicochemical properties and rice yield.ActaAgric Shanghai,2015(6):101-103. (in Chinese with English abstract) | |
[14] | Julino B O.The chemical basis of rice grain quality∥Chemical aspect of rice grain quality. Manila: IRRI, 1979: 69-90. |
[15] | 张文绪, 汤圣祥.我国水稻品种蒸煮品质的初步研究.中国农业科学, 1981, 14(6): 1-4. |
Zhang W X, Tang S X.A preliminary study on the cooking qualities of chines rice varieties (O. sativa L.).SciAgric Sin, 1981, 14(6): 1-4.(in Chinese with English abstract) | |
[16] | 陈能, 罗玉坤, 朱智伟, 张伯平, 郑有川, 谢黎虹.优质食用稻米品质的理化指标与食昧相关性研究.中国水稻科学, 1997, 11(2): 70-76. |
Chen N, Luo Y K, Zhu Z W, Zhang B P, Zheng Y C, Xie L H.Correlation between eating quality and physico-chemical properties of high grain quality rice.Chin J Rice Sci, 1997, 11(2): 70-76.(in Chinese with English abstract) | |
[17] | 张欣, 施利利, 丁得亮, 王松文, 崔晶.74份优质粳稻品种的理化特征和食味特性研究.食品科技, 2010, (9): 178-181. |
Zhang X, Shi L L, Ding D L, Wang S W, Cui J.Study on physicochemical properties and palatability characteristics of 74 high-quality rice varieties.Food Sci&Technol, 2010, (9): 178-181. (in Chinese with English abstract) | |
[18] | 崔世友, 张蛟蛟.盐分逆境对园艺作物品质的影响.农学学报, 2014, (12): 60-62. |
Cui S Y, Zhang J J.Effects of salt stress on the quality of horticultural crops.JAgric, 2014 (12): 60-62. (in Chinese with English abstract) | |
[19] | 李红宇, 潘世驹, 钱永德, 马艳, 司洋, 高尚, 郑桂萍, 姜玉伟, 周健.混合盐碱胁迫对寒地水稻产量和品质的影响.南方农业学报, 2015, 46(12): 2100-2105. |
Li H Y, Pan S J, Qian Y D, Ma Y, Si Y, Gao S, Zheng J P, Jiang Y W, Zhou J.Effects of saline-alkali stress on yield and quality of rice in cold region.J SouthAgric, 2015, 46(12): 2100-2105. (in Chinese with English abstract) | |
[20] | 杨福, 梁正伟, 王志春, 张军, 陈渊.水稻耐盐碱品种(系)筛选试验与省区域试验产量性状的比较.吉林农业大学学报, 2007, 29(6): 596-600. |
Yang F, Liang Z W, Wang Z C, Zhang J, Chen Y.Comparison of yield characters between screening test of saline-alkali tolerant rice varieties and regional experiment.J Jilin AgricUniv, 2007, 29(6): 596-600.(in Chinese with English abstract) | |
[21] | 步金宝, 赵宏伟, 刘化龙, 王敬国, 兴旺.盐碱胁迫对寒地粳稻产量形成机理的研究.农业现代化研究, 2012, 33(4): 485-488. |
BuJ B, ZhaoH W,LiuH L,WangJ G,Xing W. Study on yield formation mechanism of salinity and alkalinity stress in japonica rice of cold region. ResAgricModern, 2012, 33(4): 485-488. (in Chinese with English abstract) | |
[22] | 刘晓龙, 徐晨, 徐克章, 崔菁菁, 安久海, 凌凤楼, 张治安, 武志海.盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响.作物杂志, 2014, (2): 88-92. |
Liu X L, Xu C, Xu K Z, Cui J J, An J H, Ling F L, Zhang Z A, Wu Z H.Effects on characteristics of photosynthesis and chlorophyll fluorescence of rice under salt stress.Crops, 2014, (2): 88-92. (in Chinese with English abstract) | |
[23] | 王仁雷, 华春, 刘友良.盐胁迫对水稻光合特性的影响.南京农业大学学报, 2002, 25(4): 11-14. |
Wang R L, Hua C, Liu Y L.Effect of salt stress on photosynthetic characteristics in rice.J Nanjing AgriUniv, 2002, 25(4):11-14.(in Chinese with English abstract) | |
[24] | 徐晨, 凌风楼, 徐克章, 武志海, 刘晓龙, 安久海, 赵兰坡.盐胁迫对不同水稻品种光合特性和生理生化特性的影响.中国水稻科学, 2013, 27(3): 280-286. |
Xu C, Ling F L, Xu K Z, Wu Z H, Liu X L, An J H, Zhao L P.Effect of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties.Chin J Rice Sci, 2013, 27(3): 280-286.(in Chinese with English abstract) | |
[25] | Desamero N V, Romero M V, Aquino D V, Tibayan P A, Guloy M B, Valdez R E, Ablaza M J C, Dimaano Y A, Chico M V, Cardenas C C, Orbon C A, Cavite O V. Rice grain quality as affected by salt stress.Philipp J Crop Sci, 2003, 28(S1): 70-70. |
[26] | Surekha Rao P, Mishra B, Gupta S R.Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes.Rice Sci, 2013, 20(4): 284-291. |
[27] | 余为仆. 秸秆还田条件下盐胁迫对水稻产量与品质形成的影响.扬州: 扬州大学. 2014. |
Yu W P.Effect of salt stress associated with straw returning on yield and quality of rice. Yangzhou: Yangzhou University, 2014. (in Chinese with English abstract) | |
[28] | 高焕晔, 王三根, 宗学凤, 腾中华, 赵芳明, 刘照.灌浆结实期高温干旱复合胁迫对稻米直链淀粉及蛋白质含量的影响.中国生态农业学报, 2012, 20(1): 40-47. |
Gao H Y, Wang S G, Zong X F, Teng Z H, Zhao F M, Liu Z.Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage.Chin J Eco-Agric, 2012, 20(1): 40-47. (in Chinese with English abstract) | |
[29] | 张桂莲, 廖斌, 李博, 蔡志欢.花后高温对稻米品质及胚乳淀粉粒结构的影响.中国农学通报, 2016, 32(9): 10-14. |
Zhang G L, Liao B, Li B, Cai Z H.Effect of high temperature after anthesis on rice quality and starch granule structure of endosperm.Chin AgricSci Bull, 2012, 20(1): 40-47. (in Chinese with English abstract) | |
[30] | 杨东雷, 董伟欣, 张迎迎, 何祖华.赤霉素调节植物对非生物逆境的耐性.中国科学: 生命科学, 2013, 43: 1119-1126. |
Yang D L, Dong W X, Zhang Y Y, He Z H.Gibberellins modulates abiotic stress tolerance in plant.Sci Sin Vitae, 2013, 43: 1119-1126. | |
[31] | 王静超, 王志琴.多胺在水稻产量形成与响应逆境中的作用.安徽农业科学, 2012, 40(8): 4473-4477. |
Wang J C, Wang Z Q.Functions of polyamines in the rice yield formation and response to stress.J Anhui AgricSci, 2012, 40(8): 4473-4477. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[4] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
[5] | ZHOU Tian, WU Shaohua, KANG Jianhong, WU Hongliang, YANG Shenglong, WANG Xingqiang, LI Yu, HUANG Yufeng. Effects of Planting Patterns on Starch Content and Activities of Key Starch Enzymes in Rice Grains [J]. Chinese Journal OF Rice Science, 2024, 38(3): 303-315. |
[6] | LIU Huimin, ZHOU Jieqiang, HU Yuanyi, TIAN Yan, LEI Bin, LI Jianwu, WEI Zhongwei, TANG Wenbang. Super-high Yield Characteristics of Two-line Hybrid Rice Zhuoliangyou 1126 [J]. Chinese Journal OF Rice Science, 2024, 38(2): 160-171. |
[7] | PENG Xianlong, DONG Qiang, ZHANG Chen, LI Pengfei, LI Bolin, LIU Zhilei, YU Cailian. Effects of Straw Return Rate on Soil Reducing Substances and Rice Growth Under Different Soil Conditions [J]. Chinese Journal OF Rice Science, 2024, 38(2): 198-210. |
[8] | ZHU Wang, ZHANG Xiang, GENG Xiaoyu, ZHANG Zhe, CHEN Yinglong, WEI Huanhe, DAI Qigen, XU Ke, ZHU Guanglong, ZHOU Guisheng, MENG Tianyao. Morphological and Physiological Characteristics of Rice Roots Under Combined Salinity-Drought Stress and Their Relationships with Yield Formation [J]. Chinese Journal OF Rice Science, 2023, 37(6): 617-627. |
[9] | ZOU Yuao, WU Qixia, ZHOU Qianshun, ZHU Jianqiang, YAN Jun. Response of Middle-season Hybrid Rice to Flooding Stress at the Booting Stage [J]. Chinese Journal OF Rice Science, 2023, 37(6): 642-656. |
[10] | YUAN Pei, ZHOU Xuan, YANG Wei, YIN Lingjie, JIN Tuo, PENG Jianwei, RONG Xiangmin, TIAN Chang. Effects of Combined Application of Chemical Fertilizers and Nitrogen Reduction on the Yield of Double-cropping Rice and the Risk of Nitrogen and Phosphorus Loss in Field Water in Dongting Lake Area [J]. Chinese Journal OF Rice Science, 2023, 37(5): 518-528. |
[11] | XIAO Dakang, HU Ren, HAN Tianfu, ZHANG Weifeng, HOU Jun, REN Keyu. Effects of Nitrogen Fertilizer Consumption and Operation on Rice Yield and Its Components in China:A Meta-analysis [J]. Chinese Journal OF Rice Science, 2023, 37(5): 529-542. |
[12] | HUANG Yaru, XU Peng, WANG Lele, HE Yizhe, WANG Hui, KE Jian, HE Haibing, WU Liquan, YOU Cuicui. Effects of Exogenous Trehalose on Grain Filling Characteristics and Yield Formation of japonica Rice Cultivar W1844 [J]. Chinese Journal OF Rice Science, 2023, 37(4): 379-391. |
[13] | DONG Liqiang, YANG Tiexin, LI Rui, SHANG Wenqi, MA Liang, LI Yuedong, SUI Guomin. Effect of Plant-row Spacing on Rice Yield and Root Morphological and Physiological Characteristics in Super High Yield Field [J]. Chinese Journal OF Rice Science, 2023, 37(4): 392-404. |
[14] | WANG Wenting, MA Jiaying, LI Guangyan, FU Weimeng, LI Hubo, LIN Jie, CHEN Tingting, FENG Baohua, TAO Longxing, FU Guanfu, QIN Yebo. Effect of Different Fertilizer Application Rates on Rice Yield and Quality Formation and Its Relationship with Energy Metabolism at High Temperature [J]. Chinese Journal OF Rice Science, 2023, 37(3): 253-264. |
[15] | YANG Xiaolong, WANG Biao, WANG Benfu, ZHANG Zhisheng, ZHANG Zuolin, YANG Lantian, CHENG Jianping, LI Yang. Effects of Different Water Management on Yield and Rice Quality of Dry-seeded Rice [J]. Chinese Journal OF Rice Science, 2023, 37(3): 285-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||