Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (5): 513-518.DOI: 10.16819/j.1001-7216.2021.210107
• Research Papers • Previous Articles
Yanda LI*(), Chun YE, Zhongsheng CAO, Binfeng SUN, Shifu SHU, Licai CHEN
Received:
2021-01-11
Revised:
2021-04-03
Online:
2021-09-10
Published:
2021-09-10
Contact:
Yanda LI
李艳大*(), 叶春, 曹中盛, 孙滨峰, 舒时富, 陈立才
通讯作者:
李艳大
基金资助:
Yanda LI, Chun YE, Zhongsheng CAO, Binfeng SUN, Shifu SHU, Licai CHEN. Comparison of Droplet Deposition Characteristics in Rice Canopy and Benefit Between Unmanned Aerial Vehicle Spray and Artificial Spray[J]. Chinese Journal OF Rice Science, 2021, 35(5): 513-518.
李艳大, 叶春, 曹中盛, 孙滨峰, 舒时富, 陈立才. 无人机与人工喷施雾滴在水稻冠层内沉积特征及效益比较[J]. 中国水稻科学, 2021, 35(5): 513-518.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.210107
喷施方式 Spraying way | 飞行高度 Flying height / m | 施药量 Pesticide dosage / (g·hm-2) | 雾滴沉积量 Deposition amount of droplet / (µL·cm-2) | ||||
---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | |||||
无人机 | 1.5 | 140 | 0.0921 b | 0.1423 c | 0.2480 b | ||
Unmanned aerial vehicle | 180 | 0.1335 a | 0.1635 b | 0.3225 a | |||
220 | 0.1424 a | 0.1862 a | 0.3409 a | ||||
2.0 | 140 | 0.0545 c | 0.1097 b | 0.1616 c | |||
180 | 0.0973 b | 0.1622 a | 0.2695 b | ||||
220 | 0.1306 a | 0.1661 a | 0.3072 a | ||||
2.5 | 140 | 0.0347 c | 0.0650 c | 0.0991 c | |||
180 | 0.0670 b | 0.1270 b | 0.1898 b | ||||
220 | 0.1102 a | 0.1464 a | 0.2609 a | ||||
人工Artificial | 140 | 1.3133 b | 5.9077 b | 12.0489 b | |||
180 | 1.6386 a | 6.2308 b | 13.3876 b | ||||
220 | 1.8317 a | 6.8254 a | 14.0021 a | ||||
平均Mean | 无人机Unmanned aerial vehicle | 0.0958 b | 0.1409 b | 0.2444 b | |||
人工Artificial | 1.5945 a | 6.3213 a | 13.1462 a |
Table 1 Distribution characteristic of deposition amount of droplets under different spraying ways.
喷施方式 Spraying way | 飞行高度 Flying height / m | 施药量 Pesticide dosage / (g·hm-2) | 雾滴沉积量 Deposition amount of droplet / (µL·cm-2) | ||||
---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | |||||
无人机 | 1.5 | 140 | 0.0921 b | 0.1423 c | 0.2480 b | ||
Unmanned aerial vehicle | 180 | 0.1335 a | 0.1635 b | 0.3225 a | |||
220 | 0.1424 a | 0.1862 a | 0.3409 a | ||||
2.0 | 140 | 0.0545 c | 0.1097 b | 0.1616 c | |||
180 | 0.0973 b | 0.1622 a | 0.2695 b | ||||
220 | 0.1306 a | 0.1661 a | 0.3072 a | ||||
2.5 | 140 | 0.0347 c | 0.0650 c | 0.0991 c | |||
180 | 0.0670 b | 0.1270 b | 0.1898 b | ||||
220 | 0.1102 a | 0.1464 a | 0.2609 a | ||||
人工Artificial | 140 | 1.3133 b | 5.9077 b | 12.0489 b | |||
180 | 1.6386 a | 6.2308 b | 13.3876 b | ||||
220 | 1.8317 a | 6.8254 a | 14.0021 a | ||||
平均Mean | 无人机Unmanned aerial vehicle | 0.0958 b | 0.1409 b | 0.2444 b | |||
人工Artificial | 1.5945 a | 6.3213 a | 13.1462 a |
喷施方式 Spraying way | 飞行高度 Flying height/m | 施药量 Pesticide dosage / (g·hm-2) | 均匀性 Uniformity / % | 穿透性 Penetrability / % | ||||
---|---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | ||||||
无人机 Unmanned aerial vehicle | 1.5 | 140 | 16.72 a | 10.40 a | 10.07 a | 49.49 a | ||
180 | 12.89 b | 10.32 a | 9.88 a | 49.19 a | ||||
220 | 10.92 b | 9.84 b | 9.41 b | 46.72 b | ||||
2.0 | 140 | 12.48 a | 10.19 a | 9.05 a | 49.33 a | |||
180 | 10.70 b | 9.86 b | 6.15 b | 49.31 a | ||||
220 | 10.63 b | 9.43 c | 6.04 b | 46.41 b | ||||
2.5 | 140 | 10.75 a | 9.68 a | 5.93 a | 48.65 a | |||
180 | 9.71 a | 9.28 a | 5.45 b | 47.99 a | ||||
220 | 6.20 b | 6.05 b | 5.27 c | 45.62 b | ||||
人工 Artificial | 140 | 42.96 a | 24.84 a | 13.90 a | 83.86 a | |||
180 | 35.22 b | 19.53 b | 12.65 b | 83.56 a | ||||
220 | 34.31 b | 16.43 c | 11.57 b | 81.00 b | ||||
平均Mean | 无人机 Unmanned aerial vehicle | 11.22 b | 9.45 b | 7.47 b | 48.08 b | |||
人工Artificial | 37.49 a | 20.27 a | 12.70 a | 82.81 a |
Table 2 Distribution characteristics of uniformity and penetration of droplets under different spraying ways.
喷施方式 Spraying way | 飞行高度 Flying height/m | 施药量 Pesticide dosage / (g·hm-2) | 均匀性 Uniformity / % | 穿透性 Penetrability / % | ||||
---|---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | ||||||
无人机 Unmanned aerial vehicle | 1.5 | 140 | 16.72 a | 10.40 a | 10.07 a | 49.49 a | ||
180 | 12.89 b | 10.32 a | 9.88 a | 49.19 a | ||||
220 | 10.92 b | 9.84 b | 9.41 b | 46.72 b | ||||
2.0 | 140 | 12.48 a | 10.19 a | 9.05 a | 49.33 a | |||
180 | 10.70 b | 9.86 b | 6.15 b | 49.31 a | ||||
220 | 10.63 b | 9.43 c | 6.04 b | 46.41 b | ||||
2.5 | 140 | 10.75 a | 9.68 a | 5.93 a | 48.65 a | |||
180 | 9.71 a | 9.28 a | 5.45 b | 47.99 a | ||||
220 | 6.20 b | 6.05 b | 5.27 c | 45.62 b | ||||
人工 Artificial | 140 | 42.96 a | 24.84 a | 13.90 a | 83.86 a | |||
180 | 35.22 b | 19.53 b | 12.65 b | 83.56 a | ||||
220 | 34.31 b | 16.43 c | 11.57 b | 81.00 b | ||||
平均Mean | 无人机 Unmanned aerial vehicle | 11.22 b | 9.45 b | 7.47 b | 48.08 b | |||
人工Artificial | 37.49 a | 20.27 a | 12.70 a | 82.81 a |
施药量 Pesticide dosage /(g·hm-2) | 喷施方式 Spraying way | 防治效果 Control efficacy/% | 稻谷产量 Grain yield /(kg·hm-2) | 用药成本 Pesticide /(Yuan·hm-2) | 用工成本 Labor cost /(Yuan·hm-2) | 稻谷收益 Output /(Yuan·hm-2) | 净收益 Net income /(Yuan·hm-2) | 产投比 Output-input ratio |
---|---|---|---|---|---|---|---|---|
140 | 无人机S1 | 56.82 a | 8130.96 a | 154 a | 135 b | 20 327 a | 20 038 a | 70.3 a |
人工S2 | 57.59 a | 8130.43 a | 154 a | 300 a | 20 326 a | 19 872 b | 44.8 b | |
180 | 无人机S1 | 66.52 a | 8210.45 a | 198 a | 135 b | 20 526 a | 20 193 a | 61.6 a |
人工S2 | 67.21 a | 8212.58 a | 198 a | 300 a | 20 531 a | 20 033 b | 41.2 b | |
220 | 无人机S1 | 86.44 a | 8279.13 a | 242 a | 135 b | 20 698 a | 20 321 a | 54.9 a |
人工S2 | 86.72 a | 8279.13 a | 242 a | 300 a | 20 698 a | 20 156 b | 38.2 b | |
平均Mean | 无人机S1 | 69.93 a | 8206.85 a | 198 a | 135 b | 20 517 a | 20 184 a | 62.3 a |
人工S2 | 70.51 a | 8207.38 a | 198 a | 300 a | 20 518 a | 20 020 b | 41.4 b |
Table 3 Comparison of the control efficacy, grain yield and economic benefit under different spraying ways.
施药量 Pesticide dosage /(g·hm-2) | 喷施方式 Spraying way | 防治效果 Control efficacy/% | 稻谷产量 Grain yield /(kg·hm-2) | 用药成本 Pesticide /(Yuan·hm-2) | 用工成本 Labor cost /(Yuan·hm-2) | 稻谷收益 Output /(Yuan·hm-2) | 净收益 Net income /(Yuan·hm-2) | 产投比 Output-input ratio |
---|---|---|---|---|---|---|---|---|
140 | 无人机S1 | 56.82 a | 8130.96 a | 154 a | 135 b | 20 327 a | 20 038 a | 70.3 a |
人工S2 | 57.59 a | 8130.43 a | 154 a | 300 a | 20 326 a | 19 872 b | 44.8 b | |
180 | 无人机S1 | 66.52 a | 8210.45 a | 198 a | 135 b | 20 526 a | 20 193 a | 61.6 a |
人工S2 | 67.21 a | 8212.58 a | 198 a | 300 a | 20 531 a | 20 033 b | 41.2 b | |
220 | 无人机S1 | 86.44 a | 8279.13 a | 242 a | 135 b | 20 698 a | 20 321 a | 54.9 a |
人工S2 | 86.72 a | 8279.13 a | 242 a | 300 a | 20 698 a | 20 156 b | 38.2 b | |
平均Mean | 无人机S1 | 69.93 a | 8206.85 a | 198 a | 135 b | 20 517 a | 20 184 a | 62.3 a |
人工S2 | 70.51 a | 8207.38 a | 198 a | 300 a | 20 518 a | 20 020 b | 41.4 b |
[1] | 程勇翔, 王秀珍, 郭建平, 赵艳霞, 黄敬峰. 中国水稻生产的时空动态分析[J]. 中国农业科学, 2012, 45(17): 3473-3485. |
Cheng Y X, Wang X Z, Guo J P, Zhao Y X, Huang J F. The temporal-spatial dynamic analysis of China rice production[J]. Scientia Agricultura Sinica, 2012, 45(17): 3473-3485. (in Chinese with English abstract) | |
[2] | 李艳大, 黄俊宝, 叶春, 舒时富, 孙滨峰, 陈立才, 王康军, 曹中盛. 不同氮素水平下双季稻株型与冠层内光截获特征研究[J]. 作物学报, 2019, 45(9): 1375-1385. |
Li Y D, Huang, J B, Ye C, Shu S F, Sun B F, Chen L C, Wang K J, Cao Z S. Plant type and canopy light interception characteristics in double cropping rice canopy under different nitrogen rates[J]. Acta Agronomica Sinica, 2019, 45(9): 1375-1385. (in Chinese with English abstract) | |
[3] | Ghosh T, Pradhan C, Das A B. Control of stem-rot disease of rice caused by Sclerotium oryzae Catt and its cellular defense mechanism: A review[J]. Physiological and Molecular Plant Pathology, 2020, 112: 101536. |
[4] | 何勇, 肖舒裴, 方慧, 董涛, 唐宇, 聂鹏程, 吴剑坚, 骆少明. 植保无人机施药喷嘴的发展现状及其施药决策[J]. 农业工程学报, 2018, 34(13): 113-124. |
He Y, Xiao S P, Fang H, Dong T, Tang Y, Nie P C, Wu J J, Luo S M. Development situation and spraying decision of spray nozzle for plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 113-124. (in Chinese with English abstract) | |
[5] | 周志艳, 明锐, 臧禹, 何新刚, 罗锡文, 兰玉彬. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017, 33(20): 1-13. |
Zhou Z Y, Ming R, Zang Y, He X G, Lou X W, Lan Y B. Development status and countermeasures of agricultural aviation in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 1-13. (in Chinese with English abstract) | |
[6] | 张东彦, 兰玉彬, 陈立平, 王秀, 梁栋. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. |
Zhang D Y, Lan Y B, Chen L P, Wang X, Liang D. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract) | |
[7] | 薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201. |
Xue X Y, Lan Y B. Agricultural aviation applications in USA[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(5): 194-201. (in Chinese with English abstract) | |
[8] | 陈盛德, 兰玉彬, 李继宇, 周志艳, 刘爱民, 徐小杰. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4): 103-109. |
Chen S D, Lan Y B, Li J Y, Zhou Z Y, Liu A M, Xu X J. Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4): 103-109. (in Chinese with English abstract) | |
[9] | 韩冲冲, 李飞, 李保同, 石绪根, 熊忠华. 无人机喷施雾滴在水稻群体内的沉积分布及防效研究[J]. 江西农业大学学报, 2019, 41(1): 58-67. |
Han C C, Li F, Li B T, Shi X G, Xiong Z H. A study on deposition distribution of droplets by UAV spray in rice population and its efficacy[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(1): 58-67. (in Chinese with English abstract) | |
[10] | 朱祖武. 无人机农药喷洒与人工作业的比较试验[J]. 农机化研究, 2018, 40(5): 264-268. |
Zhu Z W. Comparative experiments between the unmanned aerial vehicle pesticide-spraying and artificial operation[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 264-268. (in Chinese) | |
[11] | 张京, 何雄奎, 宋坚利, 曾爱军, 刘亚佳, 李学锋. 无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J]. 农业机械学报, 2012, 43(12): 94-96. |
Zhang J, He X K, Song J L, Zeng A J, Liu Y J, Li X F. Influence of spraying parameters of unmanned aircraft on droplets deposition[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(12): 94-96. (in Chinese with English abstract) | |
[12] | 邱白晶, 王立伟, 蔡东林, 吴建浩, 丁国荣, 管贤平. 无人直升机飞行高度与速度对喷雾沉积分布的影响[J]. 农业工程学报, 2013, 29(24): 25-32. |
Qiu B J, Wang L W, Cai D L, Wu J H, Ding G R, Guan X P. Effects of flight altitude and speed of unmanned helicopter on spray deposition uniform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 25-32. (in Chinese with English abstract) | |
[13] | 秦维彩, 薛新宇, 周立新, 张宋超, 孙竹, 孔伟, 王宝坤. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报, 2014, 30(5): 50-56. |
Qin W C, Xue X Y, Zhou L X, Zhang S C, Sun Z, Kong W, Wang B K. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 50-56. (in Chinese with English abstract) | |
[14] | Zhang D Y, Chen L P, Zhang R R, Xu G, Lan Y B, Wesley C H, Wang X, Xu M. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510G airplanes[J]. International Journal of Agricultural and Biological Engineering, 2015, 8(2): 21-30. |
[15] | Fritz B K, Hoffmann W C. Update to the USDA-ARS fixed-wing spray nozzle models[J]. Transactions of the ASABE, 2015, 58(2): 281-295. |
[16] | 王昌陵, 宋坚利, 何雄奎, 王志翀, 王士林, 蒙艳华. 植保无人机飞行参数对施药雾滴沉积分布特性的影响[J]. 农业工程学报, 2017, 33(23): 109-116. |
Wang C L, Song J L, He X K, Wang Z C, Wang S L, Meng Y H. Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 109-116. (in Chinese with English abstract) | |
[17] | Bradley K F, Hoffmann W C, Bagley W E, Kruger G R, Czaczyk Z, Henry R S. Measuring droplet size of agricultural spray nozzles-measurement distance and airspeed effects[J]. Atomization and Sprays, 2014, 24(9): 747-760. |
[18] | 王志翀, Herbst A, Bonds J, 曾爱军, 赵铖, 何雄奎. 植保无人机低空低量施药雾滴沉积飘移分布立体测试方法[J]. 农业工程学报, 2020, 36(4): 54-62. |
Wang Z C, Herbst A, Bonds J, Zeng A J, Zhao C, He X K. Stereoscopic test method for low-altitude and low-volume spraying deposition and drift distribution of plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 54-62. (in Chinese with English abstract) | |
[19] | Huang Y, Zhan W, Fritz B K, Thomson S J. Optimizing selection of controllable variables to minimize downwind drift from aerially applied sprays[J]. Applied Engineering in Agriculture, 2012, 28(3): 307-314. |
[20] | 田志伟, 薛新宇, 崔龙飞, 陈晨, 彭斌, 刘兵. 植保无人机昼夜作业的雾滴沉积特性及棉蚜防效对比[J]. 农业工程学报, 2020, 36(5): 69-77. |
Tian Z W, Xue X Y, Cui L F, Chen C, Peng B, Liu B. Comparison of droplet deposition characteristics and cotton aphid control effect of plant protection UAV working during the day and night[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 69-77. (in Chinese with English abstract) | |
[21] | 何勇, 吴剑坚, 方慧, 郑启帅, 肖舒裴, 岑海燕. 植保无人机雾滴沉积效果研究综述[J]. 浙江大学学报: 农业与生命科学版, 2018, 44(4): 392-398. |
He Y, Wu J J, Fang H, Zheng Q S, Xiao S P, Cen H Y. Research on deposition effect of droplets based on plant protection unmanned aerial vehicle: A review[J]. Journal of Zhejiang University (Agriculture & Life Science), 2018, 44(4): 392-398. (in Chinese with English abstract) | |
[22] | Zhu H P, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution[J]. Computers and Electronics in Agriculture, 2011, 76(1): 38-43. |
[23] | 王亚梁, 朱德峰, 向镜, 陈惠哲, 张玉屏, 徐一成, 张义凯. 杂交稻低播量精量播种育秧及机插取秧特性[J]. 中国水稻科学, 2020, 34(4): 332-338. |
Wang Y L, Zhu D F, Xiang J, Chen H H, Zhang Y P, Xu Y C, Zhang Y K. Characteristics of seedling raising and mechanized transplanting of hybrid rice with a low seeding rate by precise seeding method[J]. Chinese Journal of Rice Science, 2020, 34(4): 332-338. (in Chinese with English abstract) | |
[24] | Lan Y B, Chen S D, Fritz B K. Current status and future trends of precision agricultural aviation technologies[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 1-17. |
[25] | 陈盛德, 兰玉彬, 李继宇, 周志艳, 金济, 刘爱民. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46. |
Chen S D, Lan Y B, Li J Y, Zhou Z Y, Jin J, Liu A M. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 40-46. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||