Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (5): 503-512.DOI: 10.16819/j.1001-7216.2021.200909
• Research Papers • Previous Articles Next Articles
Chunquan ZHU#, Qingshan XU#, Xiaochuang CAO, Lianfeng ZHU, Yali KONG, Qianyu JIN, Junhua ZHANG*()
Received:
2020-09-14
Revised:
2020-12-31
Online:
2021-09-10
Published:
2021-09-10
Contact:
Junhua ZHANG
About author:
#These authors contributed equally to this work
朱春权#, 徐青山#, 曹小闯, 朱练峰, 孔亚丽, 金千瑜, 张均华*()
通讯作者:
张均华
作者简介:
#共同第一作者
基金资助:
Chunquan ZHU, Qingshan XU, Xiaochuang CAO, Lianfeng ZHU, Yali KONG, Qianyu JIN, Junhua ZHANG. Effects of Substrates with Different Properties on Chilling Tolerance of Early Rice Seedlings[J]. Chinese Journal OF Rice Science, 2021, 35(5): 503-512.
朱春权, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 金千瑜, 张均华. 不同属性特征基质对早稻秧苗耐低温的影响[J]. 中国水稻科学, 2021, 35(5): 503-512.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.200909
处理 Treatment | 基质类型 Substrate type | 温度Temperature/℃ | 时间Time/h | |||
---|---|---|---|---|---|---|
白天 Day | 晚上 Night | 白天 Day | 晚上 Night | |||
A1 | 无土基质 Soilless substrate | 18 | 10 | 12 | 12 | |
A2 | 无土基质Soilless substrate | 13 | 7 | 12 | 12 | |
A3 | 无土基质Soilless substrate | 8 | 4 | 12 | 12 | |
B1 | 发酵基质Fermentation substrate | 18 | 10 | 12 | 12 | |
B2 | 发酵基质Fermentation substrate | 13 | 7 | 12 | 12 | |
B3 | 发酵基质Fermentation substrate | 8 | 4 | 12 | 12 | |
C1 | 水稻土Paddy soil | 18 | 10 | 12 | 12 | |
C2 | 水稻土Paddy soil | 13 | 7 | 12 | 12 | |
C3 | 水稻土Paddy soil | 8 | 4 | 12 | 12 |
Table 1 Scheme of experimental design.
处理 Treatment | 基质类型 Substrate type | 温度Temperature/℃ | 时间Time/h | |||
---|---|---|---|---|---|---|
白天 Day | 晚上 Night | 白天 Day | 晚上 Night | |||
A1 | 无土基质 Soilless substrate | 18 | 10 | 12 | 12 | |
A2 | 无土基质Soilless substrate | 13 | 7 | 12 | 12 | |
A3 | 无土基质Soilless substrate | 8 | 4 | 12 | 12 | |
B1 | 发酵基质Fermentation substrate | 18 | 10 | 12 | 12 | |
B2 | 发酵基质Fermentation substrate | 13 | 7 | 12 | 12 | |
B3 | 发酵基质Fermentation substrate | 8 | 4 | 12 | 12 | |
C1 | 水稻土Paddy soil | 18 | 10 | 12 | 12 | |
C2 | 水稻土Paddy soil | 13 | 7 | 12 | 12 | |
C3 | 水稻土Paddy soil | 8 | 4 | 12 | 12 |
基质类型 Substrate type | 碱解氮 Alkaline N / (mg·kg-1) | 速效磷 Available P / (mg·kg-1) | 速效钾 Available K / (mg·kg-1) | 总氮 Total N /(g·kg-1) | 总磷 Total P /(g·kg-1) | 总钾 Total P /(g·kg-1) | 有机质 Organic matter /(g·kg-1) |
---|---|---|---|---|---|---|---|
无土基质Soilless substrate | 1100.63±27.20 a | 87.60±3.84 b | 1899.73±23.10 b | 4.99±0.50 b | 2.65±0.37 b | 11.47±0.79 b | 22.51±0.83 a |
发酵基质Fermentation substrate | 477.87±52.20 b | 369.94±2.76 a | 4091.60±119.55 a | 9.22±0.23 a | 9.81±0.17 a | 14.25±0.19 a | 18.49±0.15 b |
水稻土Paddy soil | 88.43±3.31 c | 50.70±2.24 c | 499.67±6.00 c | 2.14±0.34 c | 2.45±0.19 b | 14.11±0.15 a | 4.05±1.26 c |
Table 2 Nutrient contents in seedling raising substrate.
基质类型 Substrate type | 碱解氮 Alkaline N / (mg·kg-1) | 速效磷 Available P / (mg·kg-1) | 速效钾 Available K / (mg·kg-1) | 总氮 Total N /(g·kg-1) | 总磷 Total P /(g·kg-1) | 总钾 Total P /(g·kg-1) | 有机质 Organic matter /(g·kg-1) |
---|---|---|---|---|---|---|---|
无土基质Soilless substrate | 1100.63±27.20 a | 87.60±3.84 b | 1899.73±23.10 b | 4.99±0.50 b | 2.65±0.37 b | 11.47±0.79 b | 22.51±0.83 a |
发酵基质Fermentation substrate | 477.87±52.20 b | 369.94±2.76 a | 4091.60±119.55 a | 9.22±0.23 a | 9.81±0.17 a | 14.25±0.19 a | 18.49±0.15 b |
水稻土Paddy soil | 88.43±3.31 c | 50.70±2.24 c | 499.67±6.00 c | 2.14±0.34 c | 2.45±0.19 b | 14.11±0.15 a | 4.05±1.26 c |
基质类型 Substrate type | pH值 pH value | 电导率 EC/(mS·cm-1) | 容重Bulk density/(g·cm-3) | 总孔隙度 Total porosity /% | 通气孔隙度 Aeration porosity /% | 持水孔隙度 Water-holding porosity/% |
---|---|---|---|---|---|---|
无土基质Soilless substrate | 6.39±0.02 c | 3.57±0.04 a | 0.29±0.01 c | 71.76±0.56 a | 7.33±0.24 b | 64.44±2.45 a |
发酵基质Fermentation substrate | 6.86±0.03 a | 2.50±0.06 b | 0.61±0.01 b | 56.48±0.50 b | 23.70±1.21 a | 32.78±1.81 c |
水稻土Paddy soil | 6.78±0.03 b | 0.13±0.00 c | 0.92±0.00 a | 57.57±0.44 b | 6.13±0.44 c | 51.44±1.73 b |
Table 3 Physical and chemical properties of seedling raising substrate.
基质类型 Substrate type | pH值 pH value | 电导率 EC/(mS·cm-1) | 容重Bulk density/(g·cm-3) | 总孔隙度 Total porosity /% | 通气孔隙度 Aeration porosity /% | 持水孔隙度 Water-holding porosity/% |
---|---|---|---|---|---|---|
无土基质Soilless substrate | 6.39±0.02 c | 3.57±0.04 a | 0.29±0.01 c | 71.76±0.56 a | 7.33±0.24 b | 64.44±2.45 a |
发酵基质Fermentation substrate | 6.86±0.03 a | 2.50±0.06 b | 0.61±0.01 b | 56.48±0.50 b | 23.70±1.21 a | 32.78±1.81 c |
水稻土Paddy soil | 6.78±0.03 b | 0.13±0.00 c | 0.92±0.00 a | 57.57±0.44 b | 6.13±0.44 c | 51.44±1.73 b |
处理 Treatment | 株高 Plant height /cm | 根长 Root height /cm | 叶龄 Leaf age /d | 百株地上部干质量 Shoot weight per 100 plants/g | 百株根部干质量 Root weight per 100 plants/g | 茎基宽 Width of shoot base per 10 plants/cm |
---|---|---|---|---|---|---|
A1 | 7.82±0.26 a | 6.75±0.26 d | 1.98±0.10 a | 1.04±0.04 a | 0.21±0.01 cd | 1.54±0.02 a |
A2 | 5.93±0.27 c | 5.44±0.22 f | 1.90±0.00 b | 0.61±0.02 d | 0.16±0.01 e | 1.48±0.05 ab |
A3 | 4.81±0.25 e | 5.38±0.23 f | 1.90±0.00 b | 0.59±0.01 d | 0.14±0.01 e | 1.37±0.01 c |
B1 | 7.39±0.29 b | 10.44±0.54 a | 1.91±0.06 b | 0.90±0.11 b | 0.32±0.01 a | 1.53±0.04 a |
B2 | 5.65±0.24 c | 8.13±0.31 b | 1.90±0.00 b | 0.64±0.02 d | 0.27±0.01 b | 1.50±0.01 ab |
B3 | 5.23±0.27 d | 7.18±0.28 c | 1.90±0.00 b | 0.56±0.02 d | 0.23±0.02 cd | 1.40±0.02 bc |
C1 | 7.24±0.42 b | 7.33±0.41 c | 1.93±0.07 b | 0.79±0.01 c | 0.27±0.01 b | 1.48±0.03 ab |
C2 | 5.20±0.30 d | 6.41±0.35 de | 1.90±0.00 b | 0.62±0.02 d | 0.24±0.02 c | 1.45±0.01 abc |
C3 | 4.44±0.20 f | 6.07±0.31 e | 1.90±0.00 b | 0.53±0.01 d | 0.20±0.01 d | 1.36±0.01 c |
Table 4 Effects of different temperature treatments on rice roots and aboveground part growth characteristics.
处理 Treatment | 株高 Plant height /cm | 根长 Root height /cm | 叶龄 Leaf age /d | 百株地上部干质量 Shoot weight per 100 plants/g | 百株根部干质量 Root weight per 100 plants/g | 茎基宽 Width of shoot base per 10 plants/cm |
---|---|---|---|---|---|---|
A1 | 7.82±0.26 a | 6.75±0.26 d | 1.98±0.10 a | 1.04±0.04 a | 0.21±0.01 cd | 1.54±0.02 a |
A2 | 5.93±0.27 c | 5.44±0.22 f | 1.90±0.00 b | 0.61±0.02 d | 0.16±0.01 e | 1.48±0.05 ab |
A3 | 4.81±0.25 e | 5.38±0.23 f | 1.90±0.00 b | 0.59±0.01 d | 0.14±0.01 e | 1.37±0.01 c |
B1 | 7.39±0.29 b | 10.44±0.54 a | 1.91±0.06 b | 0.90±0.11 b | 0.32±0.01 a | 1.53±0.04 a |
B2 | 5.65±0.24 c | 8.13±0.31 b | 1.90±0.00 b | 0.64±0.02 d | 0.27±0.01 b | 1.50±0.01 ab |
B3 | 5.23±0.27 d | 7.18±0.28 c | 1.90±0.00 b | 0.56±0.02 d | 0.23±0.02 cd | 1.40±0.02 bc |
C1 | 7.24±0.42 b | 7.33±0.41 c | 1.93±0.07 b | 0.79±0.01 c | 0.27±0.01 b | 1.48±0.03 ab |
C2 | 5.20±0.30 d | 6.41±0.35 de | 1.90±0.00 b | 0.62±0.02 d | 0.24±0.02 c | 1.45±0.01 abc |
C3 | 4.44±0.20 f | 6.07±0.31 e | 1.90±0.00 b | 0.53±0.01 d | 0.20±0.01 d | 1.36±0.01 c |
处理 Treatment | 地上部氮含量 Shoot N content /(g kg-1) | 根系氮含量 Root N content /(g·kg-1) | 地上部磷含量 Shoot P content /(g kg-1) | 根系磷含量 Root P content /(g kg-1) | 地上部钾含量 Shoot K content /(g kg-1) | 根系钾含量 Root K content /(g·kg-1) |
---|---|---|---|---|---|---|
A1 | 47.93±0.58 a | 30.56±0.25 a | 5.86±0.07 bc | 3.98±0.11 b | 23.42±0.26 c | 24.32±0.23 c |
A2 | 42.21±0.11 c | 26.64±0.58 b | 5.54±0.07 c | 3.85±0.77 b | 20.89±0.32 de | 20.52±0.13 e |
A3 | 43.86±0.34 b | 26.20±0.04 b | 5.19±0.04 d | 3.71±0.21 bc | 20.23±0.18 e | 18.40±0.74 f |
B1 | 34.60±0.36 d | 16.89±0.47 c | 6.19±0.23 a | 4.69±0.16 a | 31.97±0.61 a | 35.24±0.19 a |
B2 | 34.69±0.18 d | 16.11±0.48 cd | 6.13±0.13 ab | 4.83±0.27 a | 31.24±0.58 a | 29.14±0.47 b |
B3 | 29.77±0.67 e | 15.49±0.47 de | 6.02±0.07 ab | 4.91±0.24 a | 29.11±0.79 b | 22.14±0.07 d |
C1 | 29.09±0.46 e | 14.69±0.38 ef | 5.08±0.03 d | 3.23±0.13 bc | 24.32±0.26 c | 20.00±0.24 e |
C2 | 29.62±0.26 e | 13.13±0.46 g | 5.06±0.05 d | 3.05±0.16 c | 21.61±0.36 d | 17.27±0.11 g |
C3 | 26.82±0.57 f | 13.87±0.25 fg | 4.98±0.13 d | 3.24±0.12 bc | 17.50±0.21 f | 15.80±0.23 h |
Table 5 Nutrient contents in rice under different temperature treatments.
处理 Treatment | 地上部氮含量 Shoot N content /(g kg-1) | 根系氮含量 Root N content /(g·kg-1) | 地上部磷含量 Shoot P content /(g kg-1) | 根系磷含量 Root P content /(g kg-1) | 地上部钾含量 Shoot K content /(g kg-1) | 根系钾含量 Root K content /(g·kg-1) |
---|---|---|---|---|---|---|
A1 | 47.93±0.58 a | 30.56±0.25 a | 5.86±0.07 bc | 3.98±0.11 b | 23.42±0.26 c | 24.32±0.23 c |
A2 | 42.21±0.11 c | 26.64±0.58 b | 5.54±0.07 c | 3.85±0.77 b | 20.89±0.32 de | 20.52±0.13 e |
A3 | 43.86±0.34 b | 26.20±0.04 b | 5.19±0.04 d | 3.71±0.21 bc | 20.23±0.18 e | 18.40±0.74 f |
B1 | 34.60±0.36 d | 16.89±0.47 c | 6.19±0.23 a | 4.69±0.16 a | 31.97±0.61 a | 35.24±0.19 a |
B2 | 34.69±0.18 d | 16.11±0.48 cd | 6.13±0.13 ab | 4.83±0.27 a | 31.24±0.58 a | 29.14±0.47 b |
B3 | 29.77±0.67 e | 15.49±0.47 de | 6.02±0.07 ab | 4.91±0.24 a | 29.11±0.79 b | 22.14±0.07 d |
C1 | 29.09±0.46 e | 14.69±0.38 ef | 5.08±0.03 d | 3.23±0.13 bc | 24.32±0.26 c | 20.00±0.24 e |
C2 | 29.62±0.26 e | 13.13±0.46 g | 5.06±0.05 d | 3.05±0.16 c | 21.61±0.36 d | 17.27±0.11 g |
C3 | 26.82±0.57 f | 13.87±0.25 fg | 4.98±0.13 d | 3.24±0.12 bc | 17.50±0.21 f | 15.80±0.23 h |
养分含量 Nutrient content | 碱解氮 Alkaline N content | 速效磷 Available P content | 速效钾 Available K content |
---|---|---|---|
地上部氮Shoot N content | 0.947** | - | - |
根系氮Root N content | 0.948** | - | - |
地上部磷Shoot P content | - | 0.858** | - |
根系磷Root P content | - | 0.903** | - |
地上部钾Shoot K content | - | - | 0.856** |
根系钾Root K content | - | - | 0.791** |
Table 6 Correlation of nutrient contents between seedling raising substrate and rice seedlings.
养分含量 Nutrient content | 碱解氮 Alkaline N content | 速效磷 Available P content | 速效钾 Available K content |
---|---|---|---|
地上部氮Shoot N content | 0.947** | - | - |
根系氮Root N content | 0.948** | - | - |
地上部磷Shoot P content | - | 0.858** | - |
根系磷Root P content | - | 0.903** | - |
地上部钾Shoot K content | - | - | 0.856** |
根系钾Root K content | - | - | 0.791** |
Fig. 1. Proline content (A) and soluble protein contents (B) in rice under different temperature treatments.Different letters above the columns indicate significant difference at P<0.05.
处理 Treatment | 超氧化物歧化酶 SOD/(U·g-1) | 过氧化物酶 POD/(U·g-1) | 过氧化氢酶 CAT/(nmol·min-1g-1) | 谷胱甘肽转移酶 GST/(nmol·min-1g-1) | 丙二醛 MDA/(nmol·g-1) |
---|---|---|---|---|---|
A1 | 874.81±15.74 b | 25 658.80±560.06 g | 71.43±1.61 g | 1 685.03±12.29 b | 17.63±0.71 de |
A2 | 951.64±8.78 a | 30 529.72±677.72 f | 241.67±9.35 e | 1 658.03±45.42 b | 18.50±0.26 cde |
A3 | 951.64±10.51 a | 46 423.71±343.76 c | 443.59±16.32 b | 1 842.49±27.30 a | 21.42±0.48 b |
B1 | 870.96±20.39 b | 34 879.49±412.25 e | 96.63±2.74 g | 1 020.68±40.80 d | 17.42±0.51 e |
B2 | 972.06±7.44 a | 39 903.96±436.82 d | 389.94±6.45 c | 1 396.50±76.34 c | 17.56±0.52 de |
B3 | 951.08±25.08 a | 67 467.43±754.67 a | 608.51±13.69 a | 1 404.21±24.02 c | 19.14±0.20 cd |
C1 | 870.88±18.74 b | 28 890.89±426.78 f | 75.65±1.05 g | 1 408.21±52.31 c | 17.53±0.68 e |
C2 | 855.95±19.74 b | 40 492.02±786.14 d | 200.78±11.55 f | 1 445.14±6.09 c | 19.38±0.62 c |
C3 | 897.51±22.83 b | 57 541.67±594.53 b | 291.15±15.03 d | 1 411.59±12.33 c | 24.06±0.77 a |
Table 7 Activities of anti-oxidase in rice under different temperature treatments.
处理 Treatment | 超氧化物歧化酶 SOD/(U·g-1) | 过氧化物酶 POD/(U·g-1) | 过氧化氢酶 CAT/(nmol·min-1g-1) | 谷胱甘肽转移酶 GST/(nmol·min-1g-1) | 丙二醛 MDA/(nmol·g-1) |
---|---|---|---|---|---|
A1 | 874.81±15.74 b | 25 658.80±560.06 g | 71.43±1.61 g | 1 685.03±12.29 b | 17.63±0.71 de |
A2 | 951.64±8.78 a | 30 529.72±677.72 f | 241.67±9.35 e | 1 658.03±45.42 b | 18.50±0.26 cde |
A3 | 951.64±10.51 a | 46 423.71±343.76 c | 443.59±16.32 b | 1 842.49±27.30 a | 21.42±0.48 b |
B1 | 870.96±20.39 b | 34 879.49±412.25 e | 96.63±2.74 g | 1 020.68±40.80 d | 17.42±0.51 e |
B2 | 972.06±7.44 a | 39 903.96±436.82 d | 389.94±6.45 c | 1 396.50±76.34 c | 17.56±0.52 de |
B3 | 951.08±25.08 a | 67 467.43±754.67 a | 608.51±13.69 a | 1 404.21±24.02 c | 19.14±0.20 cd |
C1 | 870.88±18.74 b | 28 890.89±426.78 f | 75.65±1.05 g | 1 408.21±52.31 c | 17.53±0.68 e |
C2 | 855.95±19.74 b | 40 492.02±786.14 d | 200.78±11.55 f | 1 445.14±6.09 c | 19.38±0.62 c |
C3 | 897.51±22.83 b | 57 541.67±594.53 b | 291.15±15.03 d | 1 411.59±12.33 c | 24.06±0.77 a |
[1] | Sasaki T, Burr B. International rice genome sequencing project: The effort to completely sequence the rice genome[J]. Current Opinion in Plant Biology, 2000, 3(2): 138-141. |
[2] | 万春光. 不同引发处理对水稻苗期耐冷性及老化水稻种子萌发的影响[D]. 哈尔滨: 黑龙江大学, 2011. |
Wan C G. Effects of different initiation treatments on cold tolerance and germination of aged rice seeds in seedling stage[D]. Harbin: Heilongjiang University, 2011. (in Chinese with English abstract) | |
[3] | 程式华. 2019年中国水稻产业发展报告[M]. 北京: 中国农业科学技术出版社, 2019: 147. |
Chen S H. China Rice Industry Development Report in 2019[M]. Beijing: China Agricultural Science and Technology Press, 2019: 147. (in Chinese) | |
[4] | 王一帆, 赵海岩. 北方粳稻高产新技术[M]. 北京: 中国农业科学技术出版社, 2006: 1-10. |
Wang Y F, Zhao H Y. New Technology for High Yield of japonica Rice in North China[M]. Beijing: China Agricultural Science and Technology Press, 2006: 1-10. (in Chinese with English abstract) | |
[5] | Cruz R, Duarte I, Cabreira C. Inheritance of rice cold tolerance at the seedling stage[J]. Scientia Agricola, 2010, 67(6): 669-674. |
[6] | 赵利辉, 刘友良. 冷胁迫对水稻幼苗根系液泡膜质子泵的伤害及钙的调节作用[J]. 南京农业大学学报, 2000, 23(3): 5-8. |
Zhao L H, Liu Y L. Injury of chilling stress to vacuolar proton pumps in roots of rice seedlings and Ca2+ regulation[J]. Journal of Nanjing Agricultural University, 2000, 23(3): 5-8. (in Chinese with English abstract) | |
[7] | 郭确, 潘瑞炽. ABA对水稻幼苗抗冷性的影响[J]. 植物生理学报, 1984, 10(4): 295-303. |
Guo Q, Pan R C. Effects of ABA on cold resistance of rice seedlings[J]. Journal of Plant Physiology, 1984, 10(4): 295-303. (in Chinese with English abstract) | |
[8] | 吴旺嫔, 周伟江, 唐才宝, 刘坤, 曾红丽, 王悦. 2, 4- 表油菜素内酯对低温胁迫下水稻种子萌发及生理特性的影响[J]. 分子植物育种, 2020, 18(13): 4427-4434. |
Wu W P, Zhou W J, Tang C B, Liu K, Zeng H L, Wang Y. Effects of exogenous 2, 4-epibrassinolide on germination and physiological characteristics of rice seeds under chilling stress[J]. Molecular Plant Breeding, 2020, 18(13): 4427-4434. (in Chinese with English abstract) | |
[9] | 饶玉春, 杨窑龙, 黄李超, 潘建伟, 马伯军, 钱前, 曾大力. 水稻耐冷胁迫的研究进展[J]. 分子植物育种, 2013, 11(3): 443-450. |
Rao Y C, Yang Y L, Huang L C, Pan J W, Ma B J, Qian Q, Zeng D L. Research progress on cold stress in rice[J]. Molecular Plant Breeding, 2013, 11(3): 443-450. (in Chinese with English abstract) | |
[10] | Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]. Planta, 2007, 226: 1007-1016. |
[11] | 文中华, 刘喜雨, 孟军, 刘遵奇, 史国宏. 生物炭和腐熟秸秆组配基质对水稻幼苗生长的影响[J]. 沈阳农业大学学报, 2020, 51(1): 10-17. |
Wen Z H, Liu X Y, Meng J, Liu Z Q, Shi G H. Research on biochar and rotten straw-based matrix on the growth of rice seedlings[J]. Journal of Shenyang Agricultural University, 2020, 51(1): 10-17. (in Chinese with English abstract) | |
[12] | 戚秀秀, 魏畅, 刘晓丹, 张林利, 姜瑛, 张登晓. 根际促生菌应用于基质对水稻幼苗生长的影响[J]. 土壤, 2020, 52(5): 1025-1032. |
Qi X X, Wei C, Liu X D, Zhang L L, Jiang Y, Zhang D X. Effects of plant growth-promoting rhizobacteria added in seedling substrate on rice growth[J]. Soils, 2020, 52(5): 1025-1032. (in Chinese with English abstract) | |
[13] | 王德伟. 工厂化大棚水稻育苗不同基质对比[J]. 农技服务, 2019, 36(7): 23-24. |
Wang D W. Comparison of different substrates of rice seedling in factory greenhouse[J]. Agricultural Extension Service, 2019, 36(7): 23-24. (in Chinese) | |
[14] | 钱银飞, 张洪程, 钱宗华, 刘艳阳, 李杰, 郭振华, 陈烨, 张强. 我国水稻机插秧发展问题的探讨[J]. 农机化研究, 2009, 31(10): 1-5. |
Qian Y F, Zhang H C, Qian Z H, Liu Y Y, Li J, Guo Z H, Chen Y, Zhang Q. Discussion on development of mechanical-transplanting rice in China[J]. Agricultural Mechanization Research, 2009, 31(10): 1-5. (in Chinese with English abstract) | |
[15] | 徐安平. 新常态下中国农业机械化发展问题探讨[J]. 北京农业, 2015(20): 130-131. |
Xu A P. Discussion on the development of agricultural mechanization in China under the new normal conditions[J]. Beijing Agricultural, 2015(20): 130-131. (in Chinese) | |
[16] | 丁桂珍, 王显, 李亚伟. 姜堰市水稻基质育秧存在的问题及对策[J]. 中国稻米, 2013, 19(6): 96-97. |
Ding G Z, Wang X, Li Y W. Problems and countermeasures of rice matric seedling raising in Jiangyan City[J]. China Rice, 2013, 19(6): 96-97. (in Chinese) | |
[17] | 张楠, 孙彬, 于洪久, 钟鹏, 郭炜, 刘杰. 不同育秧基质对寒地水稻秧苗素质的影响[J]. 安徽农业科学, 2018, 46(1): 39-41. |
Zhang N, Sun B, Yu H J, Zhong P, Guo Y W, Liu J. Influence of different raising substrate on quality of rice seedling in cold region[J]. Journal of Anhui Agricultural Science, 2018, 46(1): 39-41. (in Chinese with English abstract) | |
[18] | 郭世荣. 无土栽培学[M]. 北京: 中国农业出版社, 2003. |
Guo S R. Soilless Culture[M]. Beijing: China Agricultural Press, 2003. (in Chinese) | |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 南京: 河海大学出版社, 2000. |
Lu R K. Methods of Soil Agricultural Chemical Analysis[M]. Nanjing: Hehai University Press, 2000. (in Chinese) | |
[20] | 林育炯, 张均华, 胡继杰, 朱练峰, 曹小闯, 禹盛苗, 金千瑜. 不同类型基质对机插水稻秧苗生理特征及产量的影响[J]. 农业工程学报, 2016(8): 18-26. |
Lin Y J, Zhang J H, Hu J J, Zhu L F, Cao X C, Yu S M, Jin Q Y. Effects of different seedling substrates on physiological characters and grain yield of mechanized-transplanted rice[J]. Journal of Agricultural Engineering, 2016(8): 18-26. (in Chinese with English abstract) | |
[21] | Stoscheck C M. Quantitation of protein[J]. Methods Enzymology, 1990, 182: 50-68. |
[22] | Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil, 1973, 39(1): 205-207. |
[23] | Wang H H, Hou J J, Li Y, Zhang Y Y, Huang J J, Liang W H. Nitric oxide-mediated cytosolic glucose-6 -phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration[J]. Plant and Soil, 2017, 416(1-2): 39-52. |
[24] | Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1): 276-287. |
[25] | Dhindsa R S, Plumbdhindsa P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32(126): 93-101. |
[26] | Chen J, Wang W H, Wu F H, You C Y, Liu T W, Dong X J, He J X, Zheng H L. Hydrogen sulfide alleviates aluminum toxicity in barley seedlings[J]. Plant and Soil, 2013, 362(1-2): 301-318. |
[27] | Chen J, Duan R X, Hu W J, Zhang N N, Lin X Y, Zhang J H, Zheng H L. Unravelling calcium-alleviated aluminium toxicity in Arabidopsis thaliana: Insights into regulatory mechanisms using proteomics[J]. Journal of Proteomics, 2019, 199: 15-30. |
[28] | Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 6(160): 1209-1221. |
[29] | Tian Y, Zhang H W, Pan X W, Chen X L, Zhang Z J, Lu X Y, Huang R F. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings[J]. Transgenic Research, 2011, 20(4): 857-866. |
[30] | 周跃华, 聂艳丽, 赵永红, 李永梅, 何飞飞. 国内外固体基质研究概况[J]. 中国生态农业学报, 2005(4): 46-49. |
Zhou Y H, Nie Y L, Zhao Y H, Li Y M, He F F. Research on solid substrate in the whole world[J]. Chinese Journal of Eco-Agriculture, 2005(4): 46-49. (in Chinese with English abstract) | |
[31] | 田曦. 几种有机物料堆肥的腐熟度评价及复配基质的筛选[D]. 兰州: 甘肃农业大学, 2012. |
Tian X. Study on evaluating the rotten degree of several organic decomposing matter and choosing the complex medium [D]. Lanzhou: Gansu Agricultural University, 2012. (in Chinese with English abstract) | |
[32] | 仲海洲. 利用废弃生物质开发水稻育秧基质及其应用效果研究[D]. 杭州: 浙江大学, 2013. |
Zhong H Z. Study on utilization of biomass waste to develop rice seedling substrate[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[33] | Bahuguna R N, Jagadish K S V. Temperature regulation of plant phenological development[J]. Environmental and Experimental Botany, 2015, 111: 83-90. |
[34] | Farrell T C, Fox K M, Williams R L, Fukai S. Genotypic variation for cold tolerance during reproductive development in rice: Screening with cold air and cold water[J]. Field Crops Research, 2006, 98(2-3): 178-194. |
[35] | Shimono H, Hasegawa T, Fujimura S, Iwama K. Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages[J]. Field Crops Research, 2004, 89(1): 70-83. |
[36] | 曲辉辉, 姜丽霞, 朱海霞, 闫平, 宫丽娟, 吕佳佳, 王晾晾, 纪仰慧. 孕穗期低温对黑龙江省主栽水稻品种空壳率的影响[J]. 生态学杂志, 2011, 30(3): 489-493. |
Qu H H, Jiang L X, Zhu H X, Yan P, Gong L J, Lü J J, Wang L L, Ji Y H. Effects of low temperature at booting stage on the percentage of unfilled grains of major rice varieties in Heilongjiang Province[J]. Chinese Journal of Ecology, 2011, 30(3): 489-493. (in Chinese with English abstract) | |
[37] | 王国莉, 郭振飞. 低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响[J]. 中国水稻科学, 2005, 19(4): 381-383. |
Wang G L, Guo Z F. Effects of chilling stress on photosynthetic rate and the parameters of chlorophyll fluorescence in two rice varieties differing in sensitivity[J]. Chinese Journal of Rice Science, 2005, 19(4): 381-383. (in Chinese with English abstract) | |
[38] | 丁彦. 水稻材料WDl的抗寒研究[D]. 长沙: 湖南农业大学, 2006. |
Ding Y. Research on cold tolerance in WD1 of rice[D]. Changsha: Hunan Agricultural University, 2006. (in Chinese with English abstract) | |
[39] | 王淼. 不同基因型水稻苗期耐冷性与硅的关系[D]. 哈尔滨: 黑龙江大学, 2012. |
Wang M. Relationship between cold tolerance and silicon in rice seedling with different genotypes[D]. Harbin: Heilongjiang University, 2012. (in Chinese with English abstract) | |
[40] | Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-shinozaki K, Wada K, Shinozaki K. Characterization of the gene for Δ1 -pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L[J]. Plant Molecular Biology, 1997, 33(5): 857-865. |
[41] | 宋广树, 孙忠富, 王夏, 刘妍. 不同生育时期低温处理对水稻品质的影响[J]. 中国农学通报, 2011, 27(18): 174-179. |
Song G S, Sun Z F, Wang X, Liu Y. Effect of low temperature on rice quality in different growth period[J]. Chinese Agricultural Science Bulletin, 2011, 27(18): 174-179. (in Chinese with English abstract) | |
[42] | 陈思思. 苗期和拔节期低温胁迫对扬麦16产量和生理特性的影响[D]. 扬州: 扬州大学, 2010. |
Chen S S. Effects of low temperature at seedling stage and jointing stage on grain yield and physiological parameters in wheat Yangmai 16[D]. Yangzhou: Yangzhou University, 2010. (in Chinese with English abstract) | |
[43] | Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399. |
[44] | 祝涛, 杨美英. 低温处理对不同品种水稻苗期保护酶活性的影响[J]. 吉林农业, 2010(7): 95. |
Zhu T, Yang M Y. Effect of low temperature treatment on protective enzyme activity of different rice varieties at seedling stage[J]. Agriculture of Jilin, 2010(7): 95. (in Chinese) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||