Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (5): 397-405.DOI: 10.16819/j.1001-7216.2020.0211
• Research Papers • Previous Articles Next Articles
Licheng ZHANG1,2, Yixing LI2, Tiankang WANG2, Mudan QIU2, Shufeng SONG2, Hao DONG2,3, Lei LI1,2, Jianfeng LIU1,*(), Li LI2,*(
)
Received:
2020-02-20
Revised:
2020-05-19
Online:
2020-09-10
Published:
2020-09-10
Contact:
Jianfeng LIU, Li LI
张立成1,2, 李懿星2, 王天抗2, 邱牡丹2, 宋书锋2, 董皓2,3, 李磊1,2, 刘建丰1,*(), 李莉2,*(
)
通讯作者:
刘建丰,李莉
基金资助:
CLC Number:
Licheng ZHANG, Yixing LI, Tiankang WANG, Mudan QIU, Shufeng SONG, Hao DONG, Lei LI, Jianfeng LIU, Li LI. A Preliminary Study on the Function of Rice Heading Date Gene OsDof6[J]. Chinese Journal OF Rice Science, 2020, 34(5): 397-405.
张立成, 李懿星, 王天抗, 邱牡丹, 宋书锋, 董皓, 李磊, 刘建丰, 李莉. 水稻抽穗期基因OsDof6功能的初步研究[J]. 中国水稻科学, 2020, 34(5): 397-405.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.0211
引物名称 | 序列 |
---|---|
Primer name | Sequence (5'-3') |
Cas-B1′ | TTCAGAGGTCTCTCTCGCACTGGAATCGGCAGCAAAGG |
Cas-BL | AGCGTGGGTCTCGACCGGGTCCATCCACTCCAAGCTC |
SP1 | CCCGACATAGATGCAATAACTTC |
SP2 | GCGCGGTGTCATCTATGTTACT |
JC-Dof6-F | AGTAGCTCACCCTGTGATCCAT |
JC-Dof6-R | GCCGACGACGAGGACTTC |
Dof6-U3-F | GGCACCGGTACAAGCAGGGCGCCG |
Dof6-U3-R | AAACCGGCGCCCTGCTTGTACCGG |
1300-Dof6-F | GCCCAGATCAACTAGTATGCTGCCGTACGCG |
1300-Dof6-R | TGCTCACCATGGATCCTGGCATGTAAAGAGCC |
qPCR-Dof6-F | CATGAGCCTCCATGAGTG |
qPCR-Dof6-R | ATGTAAAGAGCCTCCAATCC |
qPCR-Hd1-F | CTCTTGGCTTCTCCTCTC |
qPCR-Hd1-R | CTGTTGTTGTTGTCGTTATTG |
qPCR-Ghd7-F | TACAAGGAGAAGAGGAAGAAG |
qPCR-Ghd7-R | CATCTCGGCATAGGCTTT |
qPCR-Hd3a-F | GTATCTACATTGGTTGGTCACT |
qPCR-Hd3a-R | TCGTAGCACATCACCTCTT |
qPCR-RFT1-F | TAACCTTAGGGAGTATCTACA |
qPCR-RFT1-R | GTAGCACATCACCTCTTG |
Table 1 Primer sequence.
引物名称 | 序列 |
---|---|
Primer name | Sequence (5'-3') |
Cas-B1′ | TTCAGAGGTCTCTCTCGCACTGGAATCGGCAGCAAAGG |
Cas-BL | AGCGTGGGTCTCGACCGGGTCCATCCACTCCAAGCTC |
SP1 | CCCGACATAGATGCAATAACTTC |
SP2 | GCGCGGTGTCATCTATGTTACT |
JC-Dof6-F | AGTAGCTCACCCTGTGATCCAT |
JC-Dof6-R | GCCGACGACGAGGACTTC |
Dof6-U3-F | GGCACCGGTACAAGCAGGGCGCCG |
Dof6-U3-R | AAACCGGCGCCCTGCTTGTACCGG |
1300-Dof6-F | GCCCAGATCAACTAGTATGCTGCCGTACGCG |
1300-Dof6-R | TGCTCACCATGGATCCTGGCATGTAAAGAGCC |
qPCR-Dof6-F | CATGAGCCTCCATGAGTG |
qPCR-Dof6-R | ATGTAAAGAGCCTCCAATCC |
qPCR-Hd1-F | CTCTTGGCTTCTCCTCTC |
qPCR-Hd1-R | CTGTTGTTGTTGTCGTTATTG |
qPCR-Ghd7-F | TACAAGGAGAAGAGGAAGAAG |
qPCR-Ghd7-R | CATCTCGGCATAGGCTTT |
qPCR-Hd3a-F | GTATCTACATTGGTTGGTCACT |
qPCR-Hd3a-R | TCGTAGCACATCACCTCTT |
qPCR-RFT1-F | TAACCTTAGGGAGTATCTACA |
qPCR-RFT1-R | GTAGCACATCACCTCTTG |
元件名称 | 代表序列 | 功能 | 数量 |
---|---|---|---|
Element name | Representative sequence | Function | Number |
3-AF1 binding site | AAGAGATATTT | 光响应元件 | 1 |
Box 4 | ATTAAT | 参与光响应的保守DNA模块的一部分 | 2 |
GT1-motif | GGTTAA | 光响应元件 | 3 |
Sp1 | CC(G/A)CCC | 光响应元件 | 2 |
TCCC-motif | TCTCCCT | 光响应元件的一部分 | 3 |
TGGCA-motif | GATGGAAGTGGCA | 光响应元件的一部分 | 1 |
Circadian | CAANNNNATC | 参与昼夜节律控制的顺式作用调节元件 | 4 |
CGTCA-motif | CGTCA | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
TGACG-motif | TGACG | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
GARE-motif | AAACAGA | 赤霉素应答元件 | 1 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用调控元件 | 1 |
Skn-1_motif | GTCAT | 胚乳表达所需的顺式作用调节元件 | 2 |
NON-box | AGATCGACG | 与分生组织特异性激活相关的顺式作用调控元件 | 1 |
TC-rich repeats | ATTTTCTTCA | 参与防御和应激反应的顺式作用元件 | 1 |
HSE | AAAAAATTTC | 热应激反应中的顺式作用元件 | 1 |
MBS | CAACTG | MYB结合位点参与干旱诱导 | 1 |
MBSⅠ | TTTTTACGGTTA | MYB结合位点参与类黄酮生物合成基因调控 | 1 |
Box III | CATTTACACT | 蛋白结合位点 | 1 |
CAAT-box | CCAAT | 启动子和增强子区常见顺式作用元件 | 36 |
TATA-box | TTTTA/TATA | 核心启动子元件 | 51 |
Table 2 Functional element analysis of the 1.5 kb promoter region upstream of OsDof6 gene ATG.
元件名称 | 代表序列 | 功能 | 数量 |
---|---|---|---|
Element name | Representative sequence | Function | Number |
3-AF1 binding site | AAGAGATATTT | 光响应元件 | 1 |
Box 4 | ATTAAT | 参与光响应的保守DNA模块的一部分 | 2 |
GT1-motif | GGTTAA | 光响应元件 | 3 |
Sp1 | CC(G/A)CCC | 光响应元件 | 2 |
TCCC-motif | TCTCCCT | 光响应元件的一部分 | 3 |
TGGCA-motif | GATGGAAGTGGCA | 光响应元件的一部分 | 1 |
Circadian | CAANNNNATC | 参与昼夜节律控制的顺式作用调节元件 | 4 |
CGTCA-motif | CGTCA | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
TGACG-motif | TGACG | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
GARE-motif | AAACAGA | 赤霉素应答元件 | 1 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用调控元件 | 1 |
Skn-1_motif | GTCAT | 胚乳表达所需的顺式作用调节元件 | 2 |
NON-box | AGATCGACG | 与分生组织特异性激活相关的顺式作用调控元件 | 1 |
TC-rich repeats | ATTTTCTTCA | 参与防御和应激反应的顺式作用元件 | 1 |
HSE | AAAAAATTTC | 热应激反应中的顺式作用元件 | 1 |
MBS | CAACTG | MYB结合位点参与干旱诱导 | 1 |
MBSⅠ | TTTTTACGGTTA | MYB结合位点参与类黄酮生物合成基因调控 | 1 |
Box III | CATTTACACT | 蛋白结合位点 | 1 |
CAAT-box | CCAAT | 启动子和增强子区常见顺式作用元件 | 36 |
TATA-box | TTTTA/TATA | 核心启动子元件 | 51 |
Fig. 2. Temporal and spatial expression analysis of OsDof6 gene. A, Prediction result; B, Experimental result of real-time PCR. P3-P8 indicate different panicle developmental stages, i.e. 1-2 mm long, 5-10 mm long, 15-50 mm long, 50-100 mm long, turning green and heading soon, respectively.
Fig. 4. Construction of OsDof6 gene editing vector and analysis of mutation types of mutants. A, Model of OsDof6 gene editing vector; B, Identification of plant expression vector MT-Dof6 by PCR; C, Identification of plant expression vector MT-Dof6 by sequencing; D, Analysis of mutation types in Dof6 mutants. The number on the gene sequence in the figure D refers to the order of the bases from ATG. The red sequence indicates target site. The yellow area in the picture indicates the Dof protein domain, and the red area indicates the non-Dof protein domain after mutation.
编号 Mutant No. | 株高 | 分蘖个数 Tiller number | 穗长 | 每穗粒数 | 结实率 | 千粒重 | 单株产量 |
---|---|---|---|---|---|---|---|
Plant height/cm | Panicle length/cm | Grain number per panicle | Seed setting rate/% | 1000-grain weight/g | Yield per plant/g | ||
9522 | 87.3±2.1 | 19.0±1.3 | 17.7±0.2 | 167.0±6.6 | 96.4±1.0 | 23.82±0.21 | 73.51±4.21 |
9522Dof6-1 | 86.9±0.9 | 18.7±1.0 | 17.3±0.5 | 172.0±5.4 | 96.8±1.2 | 23.76±0.11 | 73.62±3.36 |
9522Dof6-3 | 86.6±0.8 | 15.7±1.2* | 17.7±0.4 | 164.8±4.1 | 96.9±1.8 | 23.79±0.15 | 60.32±5.24* |
9522Dof6-4 | 87.0±0.8 | 15.7±1.2* | 17.6±0.5 | 162.0±4.8 | 96.5±1.1 | 23.74±0.23 | 59.45±5.72* |
Table 3 Investigation of yield traits in mutants and controls.
编号 Mutant No. | 株高 | 分蘖个数 Tiller number | 穗长 | 每穗粒数 | 结实率 | 千粒重 | 单株产量 |
---|---|---|---|---|---|---|---|
Plant height/cm | Panicle length/cm | Grain number per panicle | Seed setting rate/% | 1000-grain weight/g | Yield per plant/g | ||
9522 | 87.3±2.1 | 19.0±1.3 | 17.7±0.2 | 167.0±6.6 | 96.4±1.0 | 23.82±0.21 | 73.51±4.21 |
9522Dof6-1 | 86.9±0.9 | 18.7±1.0 | 17.3±0.5 | 172.0±5.4 | 96.8±1.2 | 23.76±0.11 | 73.62±3.36 |
9522Dof6-3 | 86.6±0.8 | 15.7±1.2* | 17.7±0.4 | 164.8±4.1 | 96.9±1.8 | 23.79±0.15 | 60.32±5.24* |
9522Dof6-4 | 87.0±0.8 | 15.7±1.2* | 17.6±0.5 | 162.0±4.8 | 96.5±1.1 | 23.74±0.23 | 59.45±5.72* |
[1] | Yanagisawa S, Schmidt R J.Diversity and similarity among recognition sequences of Dof transcription factor[J]. Plant Journal, 1999, 17(2): 209-214. |
[2] | Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G.Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110. |
[3] | Diaz I, Vicente-Carbajosa J, Abraham Z, Martínez M, Moneda I I L, Carbonero P. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development[J]. Plant Journal, 2002, 29(4): 453-464. |
[4] | Yanagisawa S.Dof domain proteins: Plant-specific transcription factors associated with diverse phenomena unique to plants[J]. Plant and Cell Physiology, 2004, 4: 386-391. |
[5] | Yanagisawa S.A novel DNA-binding domain that may form a single zinc finger motif[J]. Nucleic Acids Research, 1995, 23(17): 3403-3410. |
[6] | Yanagisawa S.The DOF family of plant transcription factors[J]. Trends in Plant Science, 2003, 7(12): 555-560. |
[7] | Baumann K, Paolis A D, Costantino P, Gualberti G.The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants[J]. Plant Cell, 1999, 11(3): 323-334. |
[8] | Yamamoto M P, Onodera Y, Touno S M, Takaiwa F.Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes[J]. Plant Physiology, 2006, 141(4): 1694-1707. |
[9] | Li D, Yang C, Li X, Gan Q, Zhao X, Zhu L.Functional characterization of rice OsDof12[J]. Planta, 2009, 229(6): 1159-1169. |
[10] | Kim H S, Kim S J, Abbasi N, A R. Bressan, Yun D J, Yoo S S, Kwon S Y, Choi S B. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis[J]. Plant Journal, 2010, 64(3): 524-535. |
[11] | Chen W, Chao G, Singh K B.The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites[J]. Plant Journal, 1997, 10(6): 955-966. |
[12] | Ward J M, Cufr C A, Denzel M A, Neff M M.The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis[J]. Plant Cell, 2005, 17(2): 475-485. |
[13] | Yanagisawa S, Izui K.Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif[J]. Journal of Biological Chemistry, 1993, 268(21): 16028-16036. |
[14] | Lijavetzky D, Carbonero P, Vicente-Carbajosa J.Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J/OL].BMC Evolutionary Biology, 2003, 3(1): 17. |
[15] | Moreno-Risueno M A, Martínez M, Vicente-Carbajosa J, Carbonero P. The family of DOF transcription factors: From green unicellular algae to vascular plants[J]. Molecular Genetics and Genomics, 2007, 277(4): 379-390. |
[16] | Kushwaha H, Gupta S, Singh V, Rastogi S, Yadav D.Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis[J]. Molecular Biology Reports, 2011, 38(8): 5037-5053. |
[17] | Chen R, Ni Z, Nie X, Qin Y, Dong G, Sun Q.Isolation and characterization of genes encoding Myb transcription factor in wheat (Triticum aestivem L.)[J]. Plant Science (Oxford), 2005, 169(6): 1146-1154. |
[18] | Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht N C, Singh V K, Yadav D.Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor[J]. Planta, 2015, 241(3): 549-562. |
[19] | 周淑芬, 颜静宛, 刘华清, 林智敏, 陈睿, 杨绍华, 王锋. 水稻Dof基因家族的组织表达谱及胁迫诱导表达特征分析[J]. 分子植物育种, 2012, 10(6): 635-643. |
Zhou S F, Yan J W, Liu H Q, Lin Z M, Chen R, Yang S H, Wang F.Transcriptional profiling analysis of OsDof gene family in various rice tissues and their expression characteristics under different stresses[J]. Molecular Plant Breeding, 2012, 10(6): 635-643. (in Chinese with English abstract) | |
[20] | 纪剑辉, 周颖君, 杨雯, 谢晶, 华慧, 杨立明. 水稻Dof转录因子家族的鉴定与生物信息学分析[J]. 江苏农业学报, 2015, 31(6): 1191-1198. |
Ji J H, Zhou Y J, Yang W, Xie J, Hua H, Yang L M.Identification and bioinformatics analysis of Dof transcription factors family in rice[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(6): 1191-1198. (in Chinese with English abstract) | |
[21] | 邓尧. 基于CRISPR/Cas9技术的水稻OsD1基因的敲除及其功能初步探究[D]. 长沙: 湖南农业大学, 2018. |
Deng Y.Preliminary study on function of OsD1 based on CRISPR/Cas9 technology in rice[D]. Changsha: Hunan Agriculture University, 2018. (in Chinese with English abstract) | |
[22] | 赵金成, 裘烨, 陈光辉, 朱旭东. 水稻光温敏核不育系‘亮S’异交特性研究[J]. 作物研究, 2016, 30(5): 492-496. |
Zhao J C, Qiu Y, Chen G H, Zhu X D.Studies on the outcrossing characteristics of rice photo-thermo sensitive genic male sterile line ‘Liang S’[J]. Crop Research, 2016, 30(5): 492-496. (in Chinese) | |
[23] | Li Y, Lin J, Li L, Peng Y C, Wang W W, Zhou Y B, Tang D Y, Zhao X Y, Yu F, Liu X M.DHHC- cysteine-rich domain S-acyltransferase protein family in rice: Organization, phylogenetic relationship and expression pattern during development and stress[J]. Plant Systematics and Evolution, 2016, 302(10): 1405-1417. |
[24] | Takai T, Arai-Sanoh Y, Iwasawa N, Hayashi A, Yoshinaga S, Kondo M.Comparative mapping suggests repeated selection of the same quantitative trait locus for high leaf photosynthesis rate in rice high-yield breeding programs[J]. Crop Science, 2012, 52(6): 2649-2658. |
[25] | Gao H, Zheng X M, Fei G, Chen J, Jin M N, Ren Y L, Wu W X, Zhou K N, Sheng P K, Zhou F, Jiang L, Wang J, Zhang X, Guo X P, Wang J L, Cheng Z J, Wu C Y, Wang H Y, Wan J M. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice[J/OL]. PLoS Genetics, 2013, 9(2): e1003281. |
[26] | Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K.Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response[J]. Plant Journal, 2013: 36-46. |
[27] | Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K.Adaptation of photoperiodic control pathways produces short-day flowering in rice[J]. Nature, 2003, 422(6933): 719-722. |
[28] | Komiya R, Yokoi S, Shimamoto K.A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice[J]. Development, 2009, 136(20): 3443-3450. |
[29] | Wu Q, Liu X, Yin D, Yuan H, Xie Q, Zhao X F, Li X B, Zhu L H, Li S G, Li D Y.Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2017, 17(1): 166. |
[30] | Tsuji H, Tachibana C, Tamaki S, Taoka K, Kyozuka J, Shimamoto K.Hd3a promotes lateral branching in rice[J]. Plant Journal, 2015, 82(2): 256-266. |
[31] | Dai C, Xue H W.Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signaling[J]. EMBO Journal, 2010, 29(11): 1916-1927. |
[32] | Zhang Y, Verhoeff N I, Chen Z, Chen S, Wang M, Zhu Z, Ouwerkerk P B F. Functions of OsDof25 in regulation of OsC4PPDK[J]. Plant Molecular Biology, 2015, 89(3): 229-242. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||