Chinese Journal OF Rice Science ›› 2018, Vol. 32 ›› Issue (1): 23-34.DOI: 10.16819/j.1001-7216.2018.7075
• Orginal Article • Previous Articles Next Articles
Han LIN1, Jiangmin XU1, Huqian HU1, An ZHENG1, Wanlu XU1, Ping LOU1, Yuexing WANG2, Dali ZENG2,*(), Yuchun RAO1,2,*(
)
Received:
2017-06-20
Revised:
2017-08-21
Online:
2018-01-10
Published:
2018-01-10
Contact:
Dali ZENG, Yuchun RAO
About author:
These authors contributed equally to this work:LIN Han, XU Jiangmin, HU Huqian;
林晗1, 徐江民1, 胡瑚倩1, 郑安1, 徐婉璐1, 漏平1, 王跃星2, 曾大力2,*(), 饶玉春1,2,*(
)
通讯作者:
曾大力,饶玉春
作者简介:
共同第一作者:林晗, 徐江民, 胡瑚倩;
基金资助:
CLC Number:
Han LIN, Jiangmin XU, Huqian HU, An ZHENG, Wanlu XU, Ping LOU, Yuexing WANG, Dali ZENG, Yuchun RAO. Identifying of QTLs for Resistance to Metal Irons Stress in Rice[J]. Chinese Journal OF Rice Science, 2018, 32(1): 23-34.
林晗, 徐江民, 胡瑚倩, 郑安, 徐婉璐, 漏平, 王跃星, 曾大力, 饶玉春. 水稻耐金属离子胁迫的QTL分析[J]. 中国水稻科学, 2018, 32(1): 23-34.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.7075
分子标记 Marker | 正向引物(5′-3′) Forward prime(5′-3′) | 反向引物(5′-3′) Reverse prime(5′-3′) |
---|---|---|
OsActin1 | TGGCATCTCTCAGCACATTCC | TGCACAATGGATGGGTCAGA |
LOC_Os01g50030 | AGTGAAAACAGCTGGGCATG | GCATTCTTGTGGTGACCGTT |
LOC_Os01g50060 | TGTGGGGTTAGCTCTTGGAG | TTTCACCGTTCAGCACCTTG |
LOC_Os01g50110 | TTTGGCGATCAGTTCTGTGC | TGCTCGTCGTTGATCAGAGA |
LOC_Os01g50360 | GGCTCTGAATGGGTTTTGGG | ATGTAAGGCAGTCAGGACCC |
LOC_Os01g50720 | GTGAACAATGCGCTCGAGAG | AAATGTGTCATGCCCTGCTC |
LOC_Os01g50820 | ATGCTCATCTACTTCCCGCA | CACTCCCGGCTGTAGTACTC |
LOC_Os01g50940 | CCGCCGGAAGATTTCATGAG | GCCTTGACCACCTCCTTCTT |
LOC_Os01g51260 | GCTCACGGTGTCACTCAATC | AGAAAGATTGGCTGGTGGGA |
LOC_Os01g51430 | CTGGGCATGAGAAGTTTCGG | CCAAACAAGAGCAGCCACAT |
LOC_Os01g52110 | CTTGCGAGAAATGGAGGAGC | CTTGCACTTCTGGCACTTGT |
LOC_Os01g52160 | TCGCTTTCCATCTAGAGCCA | CATACGGCGTGATATCCCCT |
LOC_Os01g52450 | TGCTGCTGGGATATATGGCA | CTCCATCCACAGCAATCACG |
Table 1 Primer sequences of real-time fluorescent quantitative PCR.
分子标记 Marker | 正向引物(5′-3′) Forward prime(5′-3′) | 反向引物(5′-3′) Reverse prime(5′-3′) |
---|---|---|
OsActin1 | TGGCATCTCTCAGCACATTCC | TGCACAATGGATGGGTCAGA |
LOC_Os01g50030 | AGTGAAAACAGCTGGGCATG | GCATTCTTGTGGTGACCGTT |
LOC_Os01g50060 | TGTGGGGTTAGCTCTTGGAG | TTTCACCGTTCAGCACCTTG |
LOC_Os01g50110 | TTTGGCGATCAGTTCTGTGC | TGCTCGTCGTTGATCAGAGA |
LOC_Os01g50360 | GGCTCTGAATGGGTTTTGGG | ATGTAAGGCAGTCAGGACCC |
LOC_Os01g50720 | GTGAACAATGCGCTCGAGAG | AAATGTGTCATGCCCTGCTC |
LOC_Os01g50820 | ATGCTCATCTACTTCCCGCA | CACTCCCGGCTGTAGTACTC |
LOC_Os01g50940 | CCGCCGGAAGATTTCATGAG | GCCTTGACCACCTCCTTCTT |
LOC_Os01g51260 | GCTCACGGTGTCACTCAATC | AGAAAGATTGGCTGGTGGGA |
LOC_Os01g51430 | CTGGGCATGAGAAGTTTCGG | CCAAACAAGAGCAGCCACAT |
LOC_Os01g52110 | CTTGCGAGAAATGGAGGAGC | CTTGCACTTCTGGCACTTGT |
LOC_Os01g52160 | TCGCTTTCCATCTAGAGCCA | CATACGGCGTGATATCCCCT |
LOC_Os01g52450 | TGCTGCTGGGATATATGGCA | CTCCATCCACAGCAATCACG |
性状 Trait | 阈值 Threshold value | 区间 Interval | 染色体 Chr. | 贡献率 Phenotypic variations explained/% | |
---|---|---|---|---|---|
亚铁胁迫2 d后平均最长根长 | 7.78 | RM1297 | –RM1061 | 1 | 24.47 |
The average longest root length after 2 d of ferrous treatment | |||||
亚铁胁迫4 d后平均最长根长 | 7.78 | RM1297 | –RM1061 | 1 | 23.01 |
The average longest root length after 4 d of ferrous treatment | |||||
镉胁迫2 d后平均最长根长 | 7.96 | RM3411 | –RM212 | 1 | 6.40 |
The average longest root length after 2 d of cadmium treatment | |||||
铝胁迫根平均伸长量 | 7.69 | SSIII-1 | –RM3306 | 4 | 11.11 |
The average root elongation after aluminum treatment | RM1370 | –SBE1 | 6 | 9.29 | |
铝胁迫根相对伸长率 | 7.69 | RM324 | –RM341 | 2 | 11.66 |
Relative root elongation rate after aluminum treatment | RM1083 | –SSII-1 | 10 | 8.68 | |
RM286 | –RM1812 | 11 | 8.84 | ||
钠胁迫叶片枯死率Withered leaf rate after sodium treatment | 7.71 | RM1026 | –RM205 | 9 | 12.21 |
Table 2 Location of QTLs related to tolerance to metal ions at the rice germination stage in the DH population.
性状 Trait | 阈值 Threshold value | 区间 Interval | 染色体 Chr. | 贡献率 Phenotypic variations explained/% | |
---|---|---|---|---|---|
亚铁胁迫2 d后平均最长根长 | 7.78 | RM1297 | –RM1061 | 1 | 24.47 |
The average longest root length after 2 d of ferrous treatment | |||||
亚铁胁迫4 d后平均最长根长 | 7.78 | RM1297 | –RM1061 | 1 | 23.01 |
The average longest root length after 4 d of ferrous treatment | |||||
镉胁迫2 d后平均最长根长 | 7.96 | RM3411 | –RM212 | 1 | 6.40 |
The average longest root length after 2 d of cadmium treatment | |||||
铝胁迫根平均伸长量 | 7.69 | SSIII-1 | –RM3306 | 4 | 11.11 |
The average root elongation after aluminum treatment | RM1370 | –SBE1 | 6 | 9.29 | |
铝胁迫根相对伸长率 | 7.69 | RM324 | –RM341 | 2 | 11.66 |
Relative root elongation rate after aluminum treatment | RM1083 | –SSII-1 | 10 | 8.68 | |
RM286 | –RM1812 | 11 | 8.84 | ||
钠胁迫叶片枯死率Withered leaf rate after sodium treatment | 7.71 | RM1026 | –RM205 | 9 | 12.21 |
Fig. 4. Expression analysis of Fe2+ tolerance genes. TN1-C and CJ06-C represent 1.75×103 mg/L iron treatment. *, ** represent significant difference between the treatment and the control at the 0.05 and 0.01 level, respectively.
基因ID Gene ID | 基因 Gene | 功能 Function |
---|---|---|
甲基转移酶 Methyltransferase | ||
29610 | LOC_Os01g50480 | SAM依赖性羧基甲基转移酶 SAM dependent carboxyl methyltransferase |
29597 | LOC_Os01g50610 | SAM依赖性羧基甲基转移酶 SAM dependent carboxyl methyltransferase |
50898 | LOC_Os01g50030 | 磷酸乙醇胺N-甲基转移酶 Phosphoethanolamine N-methyltransferase |
结构域蛋白 Domain containing protein | ||
50218 | LOC_Os01g50940 | 螺旋-环-螺旋DNA结合结构域蛋白 Helix-loop-helix DNA-binding domain containing protein |
50214 | LOC_Os01g51140 | 螺旋-环-螺旋DNA结合结构域蛋白 Helix-loop-helix DNA-binding domain containing protein |
29628 | LOC_Os01g50360 | NAC结构域蛋白 NAC domain containing protein |
50236 | LOC_Os01g50900 | Cupin结构域蛋白 Cupin domain containing protein |
50239 | LOC_Os01g51010 | 未知功能结构域292蛋白 DUF292 domain containing protein |
49652 | LOC_Os01g51990 | AN1锌指结构域蛋白 AN1-like zinc finger domain containing protein |
16764 | LOC_Os01g52410 | MYB类DNA结合结构域蛋白 MYB-like DNA-binding domain containing protein |
49619 | LOC_Os01g52160 | 重金属相关蛋白结构域 Heavy metal-associated domain containing protein |
转录因子 Transcription factor | ||
29592 | LOC_Os01g50720 | MYB转录因子家族 MYB family transcription factor |
50207 | LOC_Os01g51260 | MYB转录因子家族 MYB family transcription factor |
49627 | LOC_Os01g52090 | 转录因子样蛋白 Transcription factor like protein |
1822 | LOC_Os01g51610 | 转录因子 Transcription factor |
1976 | LOC_Os01g50110 | MYB转录因子 MYB transcription factor |
1805 | LOC_Os01g51690 | WRKY转录因子 WRKY transcription factor |
转运蛋白 Transporter | ||
49616 | LOC_Os01g52130 | 硫酸盐转运蛋白 Sulfate transporter |
29598 | LOC_Os01g50616 | 磷脂酰肌醇转移蛋白 Phosphatidylinositol transfer |
29637 | LOC_Os01g50060 | ACC脱氨酶 1-aminocyclopropane-1-carboxylate deaminase |
29639 | LOC_Os01g50080 | MDR类ABC运输蛋白 MDR-like ABC transporter |
29641 | LOC_Os01g50100 | ABC运输蛋白,ATP结合蛋白 ABC transporter, ATP-binding protein |
2459 | LOC_Os01g50820 | 高亲和性硝酸盐转运蛋白 High affinity nitrate transporters |
蛋白家族 Family protein | ||
29590 | LOC_Os01g50700 | 脱水蛋白家族 Dehydrin family protein |
28943 | LOC_Os01g51400 | 富亮氨酸重复蛋白家族 Leucine rich repeat family protein |
锌指蛋白 Zinc finger protein | ||
28911 | LOC_Os01g51710 | 锌指结构域蛋白 Zinc knuckle domain containing protein |
29595 | LOC_Os01g50750 | C3HC4型锌指结构域蛋白质 Zinc finger, C3HC4 type domain containing protein |
49623 | LOC_Os01g52030 | 锌指蛋白A20和AN1域包含胁迫相关蛋白Zinc finger A20 and AN1 domain-containing stress-associated protein |
49639 | LOC_Os01g52110 | 环锌指蛋白 Ring zinc finger protein |
酶 Enzyme | ||
16778 | LOC_Os01g52450 | 己糖激酶 Hexokinase |
49650 | LOC_Os01g51860 | 紫黄质脱环氧化酶 Violaxanthin de-epoxidase |
通道蛋白 Channel protein | ||
49625 | LOC_Os01g52070 | 钾通道AKT1 potassium channel AKT1 |
Table 3 The predicted genes involved in resistance to Fe toxicity on rice chromosome 1.
基因ID Gene ID | 基因 Gene | 功能 Function |
---|---|---|
甲基转移酶 Methyltransferase | ||
29610 | LOC_Os01g50480 | SAM依赖性羧基甲基转移酶 SAM dependent carboxyl methyltransferase |
29597 | LOC_Os01g50610 | SAM依赖性羧基甲基转移酶 SAM dependent carboxyl methyltransferase |
50898 | LOC_Os01g50030 | 磷酸乙醇胺N-甲基转移酶 Phosphoethanolamine N-methyltransferase |
结构域蛋白 Domain containing protein | ||
50218 | LOC_Os01g50940 | 螺旋-环-螺旋DNA结合结构域蛋白 Helix-loop-helix DNA-binding domain containing protein |
50214 | LOC_Os01g51140 | 螺旋-环-螺旋DNA结合结构域蛋白 Helix-loop-helix DNA-binding domain containing protein |
29628 | LOC_Os01g50360 | NAC结构域蛋白 NAC domain containing protein |
50236 | LOC_Os01g50900 | Cupin结构域蛋白 Cupin domain containing protein |
50239 | LOC_Os01g51010 | 未知功能结构域292蛋白 DUF292 domain containing protein |
49652 | LOC_Os01g51990 | AN1锌指结构域蛋白 AN1-like zinc finger domain containing protein |
16764 | LOC_Os01g52410 | MYB类DNA结合结构域蛋白 MYB-like DNA-binding domain containing protein |
49619 | LOC_Os01g52160 | 重金属相关蛋白结构域 Heavy metal-associated domain containing protein |
转录因子 Transcription factor | ||
29592 | LOC_Os01g50720 | MYB转录因子家族 MYB family transcription factor |
50207 | LOC_Os01g51260 | MYB转录因子家族 MYB family transcription factor |
49627 | LOC_Os01g52090 | 转录因子样蛋白 Transcription factor like protein |
1822 | LOC_Os01g51610 | 转录因子 Transcription factor |
1976 | LOC_Os01g50110 | MYB转录因子 MYB transcription factor |
1805 | LOC_Os01g51690 | WRKY转录因子 WRKY transcription factor |
转运蛋白 Transporter | ||
49616 | LOC_Os01g52130 | 硫酸盐转运蛋白 Sulfate transporter |
29598 | LOC_Os01g50616 | 磷脂酰肌醇转移蛋白 Phosphatidylinositol transfer |
29637 | LOC_Os01g50060 | ACC脱氨酶 1-aminocyclopropane-1-carboxylate deaminase |
29639 | LOC_Os01g50080 | MDR类ABC运输蛋白 MDR-like ABC transporter |
29641 | LOC_Os01g50100 | ABC运输蛋白,ATP结合蛋白 ABC transporter, ATP-binding protein |
2459 | LOC_Os01g50820 | 高亲和性硝酸盐转运蛋白 High affinity nitrate transporters |
蛋白家族 Family protein | ||
29590 | LOC_Os01g50700 | 脱水蛋白家族 Dehydrin family protein |
28943 | LOC_Os01g51400 | 富亮氨酸重复蛋白家族 Leucine rich repeat family protein |
锌指蛋白 Zinc finger protein | ||
28911 | LOC_Os01g51710 | 锌指结构域蛋白 Zinc knuckle domain containing protein |
29595 | LOC_Os01g50750 | C3HC4型锌指结构域蛋白质 Zinc finger, C3HC4 type domain containing protein |
49623 | LOC_Os01g52030 | 锌指蛋白A20和AN1域包含胁迫相关蛋白Zinc finger A20 and AN1 domain-containing stress-associated protein |
49639 | LOC_Os01g52110 | 环锌指蛋白 Ring zinc finger protein |
酶 Enzyme | ||
16778 | LOC_Os01g52450 | 己糖激酶 Hexokinase |
49650 | LOC_Os01g51860 | 紫黄质脱环氧化酶 Violaxanthin de-epoxidase |
通道蛋白 Channel protein | ||
49625 | LOC_Os01g52070 | 钾通道AKT1 potassium channel AKT1 |
[1] | Zhang H,Zhang J,Yan J,Gou F,Mao Y,Tang G,Botella J R,Zhu J K.Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits.Proc Natl Acad Sci USA,2017,114(20):5277-5282. |
[2] | Zeng D,Tian Z,Rao Y,Dong G,Yang Y,Huang L,Leng Y,Xu J,Sun C,Zhang G,Hu J,Zhu L,Gao Z,Hu X,Guo L,Xiong G,Wang Y,Li J,Qian Q.Rational design of high-yield and superior-quality rice. Nat Plants,2017,3: 17031. |
[3] | 张赓.还原性铁、锰对水稻生长影响及其在冷浸田中毒害的消减措施研究.武汉: 华中农业大学,2013. |
Zhang G.Effects of Fe2+ and Mn2+ on rice growth and the abatement measures in logging water soil. Wuhan: Huazhong Agricultural University,2013. () | |
[4] | 陈慧茹.土壤重金属暴露对水稻和玉米体内重金属分布的影响.合肥: 安徽大学,2015. |
Chen H R.The Influence on distribution of heavy meatals in rice and maize with exposure of soil heavy meatals. Hefei: Anhui University,2015. () | |
[5] | 王恒.吉林省土壤—水稻系统环境质量分析评估及重金属复合污染研究.北京:中国科学院研究生院,2014. |
Wang H.Soil quality and heavy metals contamination in soil-rice system in Jilin Province. Beijing: Graduate School of Chinese Academy of Sciences,2014. () | |
[6] | 吴迪,杨秀珍,李存雄,周超,秦樊鑫.贵州典型铅锌矿区水稻土壤和水稻中重金属含量及健康风险评价.农业环境科学学报,2013,32(10):1992-1998. |
Wu D,Yang X Z,Li C X,Zhou C,Qin F X.Concentrations and health risk assessments of heavy metals in soil and rice in Zinc-lead mining area in Guizhou Province, China.J Agro-Environ Sci,2013,32(10):1992-1998. (in Chinese with English abstract) | |
[7] | 袁玲花,徐加宽,严士敏,韩妍,赵江宁,王余龙,董桂春,杨连新.土壤铜胁迫对不同籼型水稻品种产量和品质的影响.农业环境科学学报,2008,27(2):435-441. |
Yuan L H,Xu J K,Yan S M,Han Y,Zhao J N,Wang Y L,Dong G C,Yang L X.Effects of soil Cu stress on grain yield and quality of Indica rice cultivars.J Agro-Environ Sci,2008,27(2):435-441. (in Chinese with English abstract) | |
[8] | 曹方彬.水稻重金属积累的品种与环境效应及调控技术研究.杭州: 浙江大学,2014. |
Cao F B.Cultivar and environmental effects and regulation of heavy metal accumulation in rice. Hangzhou: Zhejiang University,2014. () | |
[9] | 卢志红,朱美英,石庆华,潘晓华,徐丰华,邱俊.硫硅配施对铜胁迫下水稻幼苗生长及其吸收累积铜的影响.江西农业大学学报,2013,35(6):1134-1139. |
Lu Z H,Zhu M Y,Shi Q H,Pan X H,Xu F H,Qiu J.Effect of sulfur and silicon fertilizer on growth and absorption of copper in rice seedling under copper stress.Acta Agric Univ Jiangxi,2013,35(6):1134-1139. (in Chinese with English abstract) | |
[10] | 饶玉春,郑婷婷,马伯军,钱前,曾大力.微量元素铁、锰、铜对水稻生长的影响及缺素防治.中国稻米,2012,18(4):31-35. |
Rao Y C,Zheng T T,Ma B J,Qian Q,Zeng D L.Effects of trace elements iron, manganese and copper on rice growth and prevention and control of nutrient deficiency.China Rice,2012,18(4):31-35. (in Chinese with English abstract) | |
[11] | Wu L B,Mohamad Y S,Gregorio G,Mathias M,Becker M.Genetic and physiological analysis of tolerance to acute iron toxicity in rice.Rice,2014,7: 8. |
[12] | 骆旭添.水稻苗期耐镉胁迫的QTL定位及其与环境互作效应分析.福州: 福建农林大学,2007. |
Luo X T.QTL mapping for seeding Cd tolerance in rice(Oryza sativa L.) and analysis of QTL×environment interaction. Fuzhou: Fujian Agricultural and forestry University,2005. () | |
[13] | Ueno D,Koyama E,Kono I,Jian M.Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol,2009,50(12):2223-2233. |
[14] | Ueno D,Yamaji N,Kono I,Huang C F,Ando T,Yano M,Ma J F.Gene limiting cadmium accumulation in rice.Proc Natl Acad Sci USA,2010,107(38):16500-16505. |
[15] | 井文,章文华.水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展.中国水稻科学,2017,31(2):111-123. |
Jing W,Zhang W.Research progress on gene mapping and cloning for salt tolerance and variety improvement for salt tolerance by molecular marker-assisted selection in rice.Chin J Rice Sci,2017,31(2):111-123. (in Chinese with English abstract) | |
[16] | Ren Z,Gao J,Li L,Cai X,Huang W,Chao D,Zhu M,Wang Z,Luan S,Lin H.A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat Genet,2005,37(10):1141-1146. |
[17] | Thomson M J,de Ocampo M,Egdane J,Rahman M A,Sajise A G,Adorada D L,Tumimbang-Raiz E,Blumwald E,Seraj Z I,Singh R K,Gregorio G B,Ismail A M. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice.Rice,2010,3(2):148-160. |
[18] | Huang C F,Yamaji N,Mitani N,Yano A M,Nagamura B Y.A bacterial-type ABC transporter is involved in aluminum tolerance in rice.Plant Cell,2009,21(2):655-667. |
[19] | Yamaji N,Huang C F,Nagao S,Yano S,Sato Y,Nagamura Y.A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.Plant Cell,2009,21(10):3339-3349. |
[20] | Yokosho K,Yamaji N,Fujii-Kashino M,Ma J F.Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporterOsFRDL4. Plant Physiol,2016,172(4):2327-2336. |
[21] | Li J Y,Liu J,Dong D,Jia X, McCouch S R, Kochian L V. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance.Proc Natl Acad Sci USA,2014,111(17):6503-6508. |
[22] | Huang C F,Yamaji N,Chen Z C,Ma J F.A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice.Plant J,2012,69(5):857-867. |
[23] | 饶玉春,杨窑龙,李晓静,马伯军,曾大力.水稻萌发期耐Cu2+胁迫的QTL定位.浙江师范大学学报: 自然科学版,2013,36(2):198-204. |
Rao Y C,Yang Y L,Li X J,Ma B J,Zeng D L.QTL analysis on copper-resistant at germination stage in rice (Oryza sativa L.). Zhejiang Normal University: Nat Sci,2013,36(2):198-204. (in Chinese with English abstract) | |
[24] | Zeng F,Wu X,Qiu B,Wu F,Jiang L,Zhang G.Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta,2014,240(2):291-308. |
[25] | Li C H,Wang G,Zhao J L,Zhang L Q,Ai L F,Han Y F,Sun D Y,Zhang S W,Sun Y.The receptor-like kinaseSIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell,2014,26(6):2538-2553. |
[26] | Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method.Methods,2001,25: 402-408. |
[27] | Holmgren G G S,Meyer M W,Cahney R L,Daniels R B. Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America.J Environ Qual,1993,22: 335-348. |
[28] | Xu J K,Yang L X,Wang Z Q,Wang Y L.Toxicity of copper rice growth and accumulation of copper in rice grain in copper contaminated soil.Chemosphere,2006,62(4):602-607. |
[29] | Dufey I,Hiel M P,Hakizimana P,Draye X,Lutts S,Koné B,Dramé K N,Konaté K A,Sie M,Bertin P.Multienvironment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice.Crop Sci,2012,52(2):539-550. |
[30] | 叶红霞,李梅,庄杰云,沈圣泉.水稻幼苗对多浓度Fe2+胁迫的QTL联合检测.分子植物育种,2007,5(1):105-109. |
Ye H X,Li M,Zhuang J Y,Shen S Q.Analysis of gene effects of tolerance to high Fe2+ stress at seedling stage in rice.Mol Plant Breed,2007,5(1):105-109. (in Chinese with English abstract) | |
[31] | 陈志德.水稻不同品种耐镉性鉴定及耐镉胁迫相关性状的QTL定位.南京: 南京农业大学,2010. |
Chen Z D.Mapping of cadmium tolerance and resistance to cadmium stress related traits in different rice varieties. Nanjing: Nanjing Agricultural University,2010. () | |
[32] | 孙勇,臧金萍,王韵,朱苓华.利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL.作物学报,2007,33(10):1611-1617. |
Sun Y,Zang J P,Wang Y,Zhu L H.Mining favorable salt-tolerant QTL from rice germplasm using a backcrossig introgression line population.Acta Agrono Sin,2007,33(10):1611-1617. (in Chinese with English abstract) | |
[33] | 汪斌,兰涛,吴为人.盐胁迫下水稻苗期Na+含量的QTL定位.中国水稻科学,2007,21(6):585-590. |
Wang B,Lan T,Wu W R.Mapping of QTLs for content in rice seedlings under salt stress.Chin J Rice Sci,2007,21(6):585-590. (in Chinese with English abstract) | |
[34] | 褚绍尉,王林,刘桂富,刘向东,卢永根,傅雪琳.广东高州普通野生稻耐铝性及其QTL定位.华北农学报,2013,28(3):12-18. |
Chu S W,Wang L,Liu G F,Liu X D,Lu Y G,Fu X L.Aluminum tolerance identification and QTL mapping inOryza rufipogon indigenous to Gaozhou. Acta Agric Boreali-Sin,2013,28(3):12-18. (in Chinese with English abstract) | |
[35] | 沈圣泉,庄杰云,舒小丽,包劲松,夏英武.水稻幼苗耐Al3+胁迫的QTL定位分析.作物学报,2006,32(4):479-483. |
Shen S Q,Zhuang J Y,Shu X L,Bao J S,Xia Y W.Analysis of QTLs mapping of tolerance to high Al3+ stress at seedling stage in rice.Acta Agron Sin,2006,32(4):479-483. (in Chinese with English abstract) | |
[36] | Ma J F,Shen R,Zhao Z,Wissuwa M,Takeuchi Y,Ebitani T,Yano M.Response of rice to Al stress and identification of quantitative trait loci for Al tolerance.Plant Cell Physiol,2002,43(6):652-659. |
[37] | Suzuki A,Suzuki T,Tanabe F,Toki S,Washida H,Wu C Y,Takaiwa F.Cloning and expression of five myb- related genes from rice seed.Gene,1997,198(1-2):393-398. |
[38] | Ogawa S,Miyamoto K,Nemoto K,Sawasaki T,Yamane H,Nojiri H,Okada K.OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci Rep,2017,7: 40175. |
[39] | Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L.MYB transcription factors in Arabidopsis.Trends Plant Sci,2010,15(10):573-581. |
[40] | Wang R,Jing W,Xiao L,Jin Y,Shen L,Zhang W.The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor.Plant Physiol,2015,168(3):1076-1090. |
[41] | Nozoye T,Inoue H,Takahashi M,Ishimaru Y,Nakanishi H,Mori S,Nishizawa N K.The expression of iron homeostasis- related genes during rice germination.Plant Mol Biol,2007,64(1-2):35-47. |
[42] | Wu L B,Ueda Y,Lai S K,Frei M.Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell Environ,2017,40(4):570-584. |
[43] | Quinet M,Vromman D,Clippe A,Bertin P,Lequeux H,Dufey I,Lutts S,Lefèvre I.Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ,2012,35(10):1837-1859 |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||