Chinese Journal OF Rice Science ›› 2017, Vol. 31 ›› Issue (1): 13-22.DOI: 10.16819/j.1001.7216.2017.6101
• Orginal Article • Previous Articles Next Articles
Xiaoping HUANG1, Hongyu ZHANG2, Gang LEI1, Zhimei WANG1, Zhi ZHANG1, Chao HE1, Jianglin LIAO1,2,*(), Yingjin HUANG1,2,*(
)
Received:
2016-06-24
Revised:
2016-09-17
Online:
2017-01-20
Published:
2017-01-10
Contact:
Jianglin LIAO, Yingjin HUANG
黄小平1, 张宏玉2, 雷刚1, 王志美1, 章智1, 贺超1, 廖江林1,2,*(), 黄英金1,2,*(
)
通讯作者:
廖江林,黄英金
基金资助:
Xiaoping HUANG, Hongyu ZHANG, Gang LEI, Zhimei WANG, Zhi ZHANG, Chao HE, Jianglin LIAO, Yingjin HUANG. Analysis on Comparative Proteomics of Rice Grain Between Heat-tolerant and Heat-sensitive Lines Under High Night Temperature Stress at Filling Stage[J]. Chinese Journal OF Rice Science, 2017, 31(1): 13-22.
黄小平, 张宏玉, 雷刚, 王志美, 章智, 贺超, 廖江林, 黄英金. 灌浆期夜间高温胁迫下耐热和热敏感水稻籽粒的比较蛋白质组分析[J]. 中国水稻科学, 2017, 31(1): 13-22.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001.7216.2017.6101
蛋白质ID Protein ID | 基因ID Gene ID | HT | HS | HT/HS | 蛋白质的功能描述 Functional illustration of protein |
---|---|---|---|---|---|
能量代谢 Energy metabolism | |||||
Q9FU69 | LOC_Os01g08090 | -1.613 | -2.899 | 1.800 | 糖基转移酶 Glycosyltransferase |
Q7Y179 | LOC_Os03g46660 | 1.794 | 1.000 | 1.793 | 葡聚糖-1,3-β-葡萄糖苷内切酶7 Glucan endo-1,3-beta-glucosidase 7 |
Q0IPF8 | LOC_Os12g10570 | -1.495 | 1.012 | -1.513 | ATP合成酶亚基β ATP synthase subunit beta |
Q2R1N0 | LOC_Os11g38650 | -1.739 | -1.085 | -1.605 | 糖基转移酶 Glycosyltransferase |
Q84T00 | LOC_Os03g58800 | -1.805 | 1.044 | -1.887 | ATP酶家族蛋白质 ATPase, AAA family protein |
物质转运与代谢 Matter translocation and metabolism | |||||
Q8GTK2 | LOC_Os07g46350 | 1.832 | 1.097 | 1.669 | 羧肽酶 Carboxypeptidase |
Q7Y007 | LOC_Os03g47940 | 2.076 | 1.330 | 1.561 | 类似GDSL脂肪酶或酰基水解酶家族蛋白质 GDSL-like Lipase/Acylhydrolase family protein |
Q10BU2 | LOC_Os03g58980 | -1.672 | 1.267 | -2.119 | 类似(种子)萌发蛋白质3-7 Germin-like protein 3-7 |
光合作用 Photosynthesis | |||||
Q2R237 | LOC_Os11g37130 | 3.115 | 1.199 | 2.598 | 叶绿体独立转位酶蛋白质 TATB Sec-independent protein translocase protein TATB, chloroplastic |
Q658I1 | LOC_Os06g03790 | -1.667 | 1.674 | -2.793 | 核糖体蛋白质L29 Ribosomal protein L29 |
逆境应答 Stress response | |||||
Q67TK9 | B1012G11.2 | 2.852 | -1.041 | 2.967 | 锌指蛋白质 Zinc knuckle containing protein-like |
Q10N88 | LOC_Os03g17020 | 2.341 | 1.326 | 1.765 | ZIGA2锌指蛋白质 ARFGAP-like zinc finger-containing protein ZIGA2 |
Q84Q72 | LOC_Os03g16030 | 1.906 | 2.975 | -1.560 | 18.1 kD热激蛋白质类型Ⅰ 18.1 kD class Ⅰ heat shock protein |
Q5YLY5 | LOC_Os06g50840 | -4.167 | -1.560 | -2.667 | 锌指蛋白质 Zinc finger protein-like |
推测性功能注释蛋白质 Preliminary annotation of unknown-function protein | |||||
Q6ZJ47 | LOC_Os08g02550 | 3.150 | -1.522 | 4.796 | 可能的COP9复合亚基3 Putative COP9 complex subunit 3, FUS11 |
Q6ZCC9 | LOC_Os08g02030 | 1.842 | -1.764 | 3.251 | 可能的AER蛋白质 Putative AER |
Q6ZCP8 | LOC_Os08g07060 | 2.046 | -1.477 | 3.020 | 可能的泛素氧化还原酶亚基1 Putative ubiquinone oxidoreductase subunit 1 |
Q6I587 | LOC_Os05g5081 | 2.045 | 1.057 | 1.934 | 可能的钙依赖蛋白质激酶 Putative calcium-dependent protein kinase |
Q53M16 | LOC_Os11g13690 | 1.109 | -1.560 | 1.730 | 假定蛋白质 Hypothetical protein |
Q9LWS6 | LOC_Os06g02470 | 1.699 | -1.003 | 1.704 | 臭氧胁迫响应相关蛋白质 Ozone-responsive stress-related protein-like |
Q7XI37 | LOC_Os07g42890 | 1.918 | 1.150 | 1.668 | 可能的FH互作蛋白质FIP1 Putative FH protein interacting protein FIP1 |
Q69MT6 | LOC_Os09g34140 | 1.908 | 1.158 | 1.649 | 假定蛋白质 Hypothetical protein OSJNBb0034B12.21 |
Q338P8 | LOC_Os10g25010 | 1.570 | 1.013 | 1.550 | 可能的钙离子结合蛋白质 Probable calcium-binding protein CML8 |
Q8H8U1 | LOC_Os03g17510 | 1.038 | 1.574 | -1.517 | 可能的PPR重复蛋白质 Putative PPR repeat containing protein |
Q7XI22 | LOC_Os07g08880 | 1.215 | 1.877 | -1.546 | 可能的ES43蛋白质 Putative ES43 protein |
Q94GQ6 | LOC_Os03g53620 | 1.129 | 1.959 | -1.736 | 可能的脱落酸诱导蛋白质 Putative abscisic acid-inducible protein |
功能未知蛋白质 Unknown-function protein | |||||
C7JA46 | LOC_Os12g44380 | 1.792 | -1.144 | 2.051 | |
Q7XQ85 | LOC_Os04g48850 | -1.015 | -1.894 | 1.864 | |
Q0E0B4 | LOC_Os02g35630 | 1.075 | -1.548 | 1.664 | |
Q7XVN6 | LOC_Os04g32070 | 1.511 | -1.055 | 1.594 | |
Q0E3F2 | LOC_Os02g08130 | 2.037 | 1.282 | 1.589 | |
Q6YUH8 | LOC_Os02g46956 | 1.174 | 1.848 | -1.572 | |
Q0DTK3 | LOC_Os03g13850 | -1.575 | 1.043 | -1.642 | |
Q6ES31 | LOC_Os09g24710 | 1.018 | 1.757 | -1.727 | |
Q5N9C8 | LOC_Os01g51220 | -1.116 | 1.771 | -1.976 | |
Q0E225 | LOC_Os02g17760 | -2.793 | -1.285 | -2.179 |
Table 1 Expression model and functional illustration of the differentially expressed proteins between the heat-tolerant and the heat-sensitive lines.
蛋白质ID Protein ID | 基因ID Gene ID | HT | HS | HT/HS | 蛋白质的功能描述 Functional illustration of protein |
---|---|---|---|---|---|
能量代谢 Energy metabolism | |||||
Q9FU69 | LOC_Os01g08090 | -1.613 | -2.899 | 1.800 | 糖基转移酶 Glycosyltransferase |
Q7Y179 | LOC_Os03g46660 | 1.794 | 1.000 | 1.793 | 葡聚糖-1,3-β-葡萄糖苷内切酶7 Glucan endo-1,3-beta-glucosidase 7 |
Q0IPF8 | LOC_Os12g10570 | -1.495 | 1.012 | -1.513 | ATP合成酶亚基β ATP synthase subunit beta |
Q2R1N0 | LOC_Os11g38650 | -1.739 | -1.085 | -1.605 | 糖基转移酶 Glycosyltransferase |
Q84T00 | LOC_Os03g58800 | -1.805 | 1.044 | -1.887 | ATP酶家族蛋白质 ATPase, AAA family protein |
物质转运与代谢 Matter translocation and metabolism | |||||
Q8GTK2 | LOC_Os07g46350 | 1.832 | 1.097 | 1.669 | 羧肽酶 Carboxypeptidase |
Q7Y007 | LOC_Os03g47940 | 2.076 | 1.330 | 1.561 | 类似GDSL脂肪酶或酰基水解酶家族蛋白质 GDSL-like Lipase/Acylhydrolase family protein |
Q10BU2 | LOC_Os03g58980 | -1.672 | 1.267 | -2.119 | 类似(种子)萌发蛋白质3-7 Germin-like protein 3-7 |
光合作用 Photosynthesis | |||||
Q2R237 | LOC_Os11g37130 | 3.115 | 1.199 | 2.598 | 叶绿体独立转位酶蛋白质 TATB Sec-independent protein translocase protein TATB, chloroplastic |
Q658I1 | LOC_Os06g03790 | -1.667 | 1.674 | -2.793 | 核糖体蛋白质L29 Ribosomal protein L29 |
逆境应答 Stress response | |||||
Q67TK9 | B1012G11.2 | 2.852 | -1.041 | 2.967 | 锌指蛋白质 Zinc knuckle containing protein-like |
Q10N88 | LOC_Os03g17020 | 2.341 | 1.326 | 1.765 | ZIGA2锌指蛋白质 ARFGAP-like zinc finger-containing protein ZIGA2 |
Q84Q72 | LOC_Os03g16030 | 1.906 | 2.975 | -1.560 | 18.1 kD热激蛋白质类型Ⅰ 18.1 kD class Ⅰ heat shock protein |
Q5YLY5 | LOC_Os06g50840 | -4.167 | -1.560 | -2.667 | 锌指蛋白质 Zinc finger protein-like |
推测性功能注释蛋白质 Preliminary annotation of unknown-function protein | |||||
Q6ZJ47 | LOC_Os08g02550 | 3.150 | -1.522 | 4.796 | 可能的COP9复合亚基3 Putative COP9 complex subunit 3, FUS11 |
Q6ZCC9 | LOC_Os08g02030 | 1.842 | -1.764 | 3.251 | 可能的AER蛋白质 Putative AER |
Q6ZCP8 | LOC_Os08g07060 | 2.046 | -1.477 | 3.020 | 可能的泛素氧化还原酶亚基1 Putative ubiquinone oxidoreductase subunit 1 |
Q6I587 | LOC_Os05g5081 | 2.045 | 1.057 | 1.934 | 可能的钙依赖蛋白质激酶 Putative calcium-dependent protein kinase |
Q53M16 | LOC_Os11g13690 | 1.109 | -1.560 | 1.730 | 假定蛋白质 Hypothetical protein |
Q9LWS6 | LOC_Os06g02470 | 1.699 | -1.003 | 1.704 | 臭氧胁迫响应相关蛋白质 Ozone-responsive stress-related protein-like |
Q7XI37 | LOC_Os07g42890 | 1.918 | 1.150 | 1.668 | 可能的FH互作蛋白质FIP1 Putative FH protein interacting protein FIP1 |
Q69MT6 | LOC_Os09g34140 | 1.908 | 1.158 | 1.649 | 假定蛋白质 Hypothetical protein OSJNBb0034B12.21 |
Q338P8 | LOC_Os10g25010 | 1.570 | 1.013 | 1.550 | 可能的钙离子结合蛋白质 Probable calcium-binding protein CML8 |
Q8H8U1 | LOC_Os03g17510 | 1.038 | 1.574 | -1.517 | 可能的PPR重复蛋白质 Putative PPR repeat containing protein |
Q7XI22 | LOC_Os07g08880 | 1.215 | 1.877 | -1.546 | 可能的ES43蛋白质 Putative ES43 protein |
Q94GQ6 | LOC_Os03g53620 | 1.129 | 1.959 | -1.736 | 可能的脱落酸诱导蛋白质 Putative abscisic acid-inducible protein |
功能未知蛋白质 Unknown-function protein | |||||
C7JA46 | LOC_Os12g44380 | 1.792 | -1.144 | 2.051 | |
Q7XQ85 | LOC_Os04g48850 | -1.015 | -1.894 | 1.864 | |
Q0E0B4 | LOC_Os02g35630 | 1.075 | -1.548 | 1.664 | |
Q7XVN6 | LOC_Os04g32070 | 1.511 | -1.055 | 1.594 | |
Q0E3F2 | LOC_Os02g08130 | 2.037 | 1.282 | 1.589 | |
Q6YUH8 | LOC_Os02g46956 | 1.174 | 1.848 | -1.572 | |
Q0DTK3 | LOC_Os03g13850 | -1.575 | 1.043 | -1.642 | |
Q6ES31 | LOC_Os09g24710 | 1.018 | 1.757 | -1.727 | |
Q5N9C8 | LOC_Os01g51220 | -1.116 | 1.771 | -1.976 | |
Q0E225 | LOC_Os02g17760 | -2.793 | -1.285 | -2.179 |
[1] | Wheeler T, von Braun J. Climate change impacts on global food security.Science, 2013, 341(6145): 508-513. |
[2] | Ray D K, Gerber J S, Macdonald G K, West P C.Climate variation explains a third of global crop yield variability.Nat Commun, 2015, 6: 5989. |
[3] | Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X, Centeno G S, Khush G S, Cassman K G.Rice yields decline with higher night temperature from global warming.Proc Natl Acad Sci USA, 2004, 101(27): 9971-9975. |
[4] | Shi W J, Yin X Y, Struik P C, Xie F M, Schmidt R C, Jagadish K S V. Grain yield and quality responses of tropical hybrid rice to high night-time temperature.Field Crop Res, 2016, 190: 18-25. |
[5] | 谢晓金, 李秉柏, 王琳, 戴秦如, 申双和. 长江中下游地区高温时空分布及水稻花期的避害对策. 中国农业气象, 2010, 31(1): 144-150. |
Xie X J, Li B B, Wang L, Dai Q R, Shen S H.Spatial and temporal distribution of high temperature and strategies to rice florescence harm in the lower-middle reaches of Yangtze River.Chi J Agrometeorol, 2010, 31(1): 144-150.(in Chinese with English abstract) | |
[6] | 张校玮. 我国极端气候时空特征及风险分析. 上海:上海师范大学, 2012. |
Zhang J W.Spatial and temporal characteristics of extreme climate and risks analysis in China. Shanghai:Shanghai Normal University, 2012.(in Chinese with English abstract) | |
[7] | Morita S, Yonemaru J, Takanashi J.Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot, 2005, 95(4): 695-701. |
[8] | Lin C J, Li C Y, Lin S K, Yang F H, Huang J J, Liu Y H, Lur H S.Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem, 2010, 58(19): 10545-10552. |
[9] | Ahmed N, Tetlow I J, Nawaz S, Iqbal A, Mubin M, Nawaz U R M S, Butt A, Lightfoot D A, Maekawa M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.J Sci Food Agric, 2015, 95(11): 2237-2243. |
[10] | Jagadish S V K, Murty M V R, Quick W P. Rice responses to rising temperatures-challenges, perspectives and future directions.Plant, Cell Environ, 2015, 38: 1686-1698. |
[11] | Liu J, Feng L, Li J, He Z.Genetic and epigenetic control of plant heat responses.Front Plant Sci, 2015, 6: 267. |
[12] | Jiang H, Dian W, Wu P.Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme.Phytochemistry, 2003, 63(1): 53-59. |
[13] | 张桂莲, 廖斌, 武小金, 肖应辉, 肖浪涛, 陈立云. 高温对水稻胚乳淀粉合成关键酶活性及内源激素含量的影响. 植物生理学报, 2014, 50(12): 1840-1844. |
Zhang G L, Liao B, Wu X J,Xiao Y H, Xiao L T, Chen L Y.Effect of high temperature on activities of enzymes associated with starch synthesis and hormones contents in endosperm of rice.J Plant Physiol, 2014, 50(12): 1840-1844.(in Chinese with English abstract) | |
[14] | Yamakawa H, Hirose T, Kuroda M, Yamaguchi T.Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray.Plant Physiol, 2007, 144(1): 258-277. |
[15] | Mitsui T, Shiraya T, Kaneko K, Wada K.Proteomics of rice grain under high temperature stress.Front Plant Sci, 2013, 4: 36. |
[16] | Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H.Suppression of alpha-amylase genes improves quality of rice grain ripened under high temperature.Plant Biotechnol J, 2012, 10(9): 1110-1117. |
[17] | 廖江林, 宋宇, 钟平安, 周会汶, 张宏玉, 黄英金. 耐热和热敏感水稻应答灌浆初期高温胁迫过程中的差异表达蛋白质鉴定. 中国农业科学, 2014, 47(16): 3121-3131. |
Liao J L, Song Y, Zhong P A, Zhou H W, Zhang H Y, Huang Y J.Identification of the differentially expressed proteins between heat-tolerant and heat-sensitive rice responding to high-temperature stress at the early milky stage.Sci Agric Sin, 2014, 47(16): 3121-3131.(in Chinese with English abstract) | |
[18] | Liao J L, Zhou H W, Peng Q, Zhong P A, Zhang H Y, He C, Huang Y J.Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. BMC Genom, 2015, 16: 18. |
[19] | Yamakawa H, Hakata M.Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation.Plant Cell Physiol, 2010, 51(5): 795-809. |
[20] | Liao J L, Zhang H Y, Shao X L, Zhong P A, Huang Y J.Identification for heat tolerance in backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice.Rice Sci, 2011, 18(4): 279-286. |
[21] | Liao J L, Huang Y J.Evaluation of protocols used in 2-D electrophoresis for proteome analysis of young rice caryopsis.GPB, 2011, 9(6): 229-237. |
[22] | Liao J L, Zhang H Y, Liu J B, Zhong P A, Huang Y J.Identification of candidate genes related to rice grain weight under high-temperature stress.Plant Sci, 2012, 196: 32-43. |
[23] | Frost D C, Greer T, Xiang F, Liang Z, Li L.Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics.Rapid Commun Mass Spectrom, 2015, 29(12): 1115-1124. |
[24] | Klug A.The discovery of zinc fingers and their applications in gene regulation and genome manipulation.Annu Rev Biochem, 2010, 79: 213-231. |
[25] | Chen Y, Sun A, Wang M, Zhu Z, Ouwerkerk P B.Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice.Plant Mol Biol, 2014, 84(6): 621-634. |
[26] | Sekhar S, Gharat S A, Panda B B, Mohaptra T, Das K, Kariali E, Mohapatra P K, Shaw B P.Identification and characterization of differentially expressed genes in inferior and superior spikelets of rice cultivars with contrasting panicle-compactness and grain-filling properties.PLOS One, 2015, 10(12): e145749. |
[27] | Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X.A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control.Gene Dev, 2009, 23(15): 1805-1817. |
[28] | Tyagi H, Jha S, Sharma M, Giri J, Tyagi A K.Rice saps are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco.Plant Sci, 2014, 225: 68-76. |
[29] | Wang F, Tong W, Zhu H, Kong W, Peng R, Liu Q, Yao Q.A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenicArabidopsis. Planta, 2016, 243(3): 783-797. |
[30] | Yue X, Que Y, Xu L, Deng S, Peng Y, Talbot N J, Wang Z.ZNF1 encodes a putative C2H2 zinc-finger protein essential for appressorium differentiation by the rice blast fungusMagnaporthe oryzae. Mol Plant Microbe Interact, 2016, 29(1): 22-35. |
[31] | Zhang Y, Lan H, Shao Q, Wang R, Chen H, Tang H, Zhang H, Huang J .An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa L.). J Exp Bot, 2016, 67(1): 315-326. |
[32] | Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder J H, Lin F, Lu J.Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungusMagnaporthe oryzae. New Phytol, 2016, doi: 10.1111/nph.13948. |
[33] | Wei C X,Lan S Y, Xu Z X.Ultracytochemical localization and functional analysis of ATPase during the endosperm development in rice (Oryza sativa L. ) . Sci Agric Sin, 2003, 36(3): 259-262. |
[34] | Zhou Z Q,Lan S Y, Xu Z X, Yang Z M.Dynamic change of ATPase activity on amyloplasts and protein bodies during the endosperm development in rice (Oryza sativaL.). Acta Biol Exp Sin, 2005, 38(1): 7-15. |
[35] | Al-Whaibi M H. Plant heat-shock proteins: A mini review.J King Saud Univ-Sci, 2011, 23(2): 139-150. |
[36] | Gonzalez-Schain N, Dreni L, Lawas L M, Galbiati M, Colombo L, Heuer S, Jagadish K S, Kater M M.Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties.Plant Cell Physiol, 2016, 57(1): 57-68. |
[37] | Das S, Krishnan P, Mishra V, Kumar R, Ramakrishnan B, Sinqh N K.Proteomic changes in rice leaves grown under open field high temperature stress conditions.Mol Biol Rep, 2015, 42(11): 1545-1558. |
[38] | Xiang J H, Ran J, Zou J, Zhou X, Liu A, Zhang X, Peng Y, Tang N, Luo G, Chen X.Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice.Plant Cell Rep, 2013, 32(11): 1795-1806. |
[39] | Liu A L, Zou J, Liu C F, Zhou X Y, Zhang X W, Luo G Y, Chen X B.Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice.BMB Rep, 2013, 46(1): 31-36. |
[40] | Zou J, Liu C, Liu A, Zou D, Chen X.Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice.J Plant Physiol, 2012, 169(6): 628-635. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||