Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (5): 501-510.DOI: 10.3969/j.issn.1001G7216.2015.05.007
• Orginal Article • Previous Articles Next Articles
Ji-ping GAO, Yang-hui SUI, Wen-zhong ZHANG*(), Chen YAO, Ming-chao GAO, Ming-hui ZHAO, Zheng-jin XU
Received:
2015-01-10
Revised:
2015-03-30
Online:
2015-09-10
Published:
2015-09-10
Contact:
Wen-zhong ZHANG
About author:
*Corresponding author:E-mail:zwzhong@126.com
通讯作者:
张文忠
作者简介:
*通讯录作者:E-mail:zwzhong@126.com
基金资助:
CLC Number:
Ji-ping GAO, Yang-hui SUI, Wen-zhong ZHANG, Chen YAO, Ming-chao GAO, Ming-hui ZHAO, Zheng-jin XU. Effect of Canopy Temperature on Physiological Characteristic and Grain Quality at Filling Stage in Rice[J]. Chinese Journal OF Rice Science, 2015, 29(5): 501-510.
高继平, 隋阳辉, 张文忠, 姚晨, 高明超. 水稻灌浆期冠层温度对植株生理性状及稻米品质的影响[J]. 中国水稻科学, 2015, 29(5): 501-510.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001G7216.2015.05.007
Fig. 1. Diurnal variation of canopy temperature,air temperature,relative air humidity for Liaojing 294(A) and Kaijing 1(B) under different water stress conditions.
品种与处理 Variety and treatment | 时间 Time/(o’clock) | 平均 Average | 差值 Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | |||
辽粳294 Liaojing 294 | |||||||||||
对照CK | -5.0±1.6 | -5.1±1.4 | -5.1±1.5 | -4.4±1.8 | -5.0±2.4 | -6.1±2.9 | -2.9±1.2 | -2.7±1.3 | -1.0±0.7 | -4.1±1.5 | 0.0 |
S1 | -4.0±1.7 | -4.8±1.5 | -4.8±1.3 | -4.3±1.7 | -4.6±2.6 | -5.6±2.6 | -2.9±1.3 | -2.4±1.5 | -0.9±0.6 | -3.8±1.4 | 0.3 |
S2 | -3.5±1.4 | -3.9±1.5 | -4.3±1.6 | -3.7±1.6 | -4.1±2.3 | -4.2±2.8 | -2.2±1.1 | -2.3±1.1 | -0.9±0.6 | -3.2±1.1 | 0.9 |
S3 | -3.2±1.1 | -3.5±1.3 | -3.7±1.1 | -3.3±1.2 | -3.6±2.4 | -3.6±2.7 | -1.9±1.0 | -2.1±1.0 | -0.8±0.4 | -2.9±1.0 | 1.2 |
S4 | -2.7±0.9 | -3.3±1.1 | -3.1±1.4 | -2.5±1.0 | -2.8±2.6 | -3.0±2.5 | -1.8±0.8 | -1.6±0.7 | -0.5±0.3 | -2.4±0.9 | 1.7 |
开粳1号 Kaijing 1 | |||||||||||
对照CK | -6.3±1.2 | -6.3±1.5 | -4.9±1.4 | -3.9±1.9 | -6.6±2.3 | -8.2±2.7 | -5.5±1.7 | -6.4±2.2 | -5.0±1.5 | -5.9±1.2 | 0.0 |
S1 | -5.8±1.5 | -6.1±1.6 | -4.7±1.3 | -3.8±1.8 | -6.5±2.1 | -7.8±2.9 | -5.3±1.8 | -6.1±2.3 | -4.7±1.3 | -5.6±1.1 | 0.3 |
S2 | -5.3±1.5 | -5.8±1.4 | -4.2±1.3 | -3.4±1.8 | -6.1±2.3 | -6.9±2.5 | -5.0±1.5 | -5.5±2.1 | -4.1±1.5 | -5.1±1.1 | 0.8 |
S3 | -5.1±1.2 | -5.4±1.4 | -3.6±1.5 | -3.0±1.7 | -5.6±1.9 | -6.4±2.7 | -4.8±1.5 | -5.3±2.0 | -3.9±1.4 | -4.8±1.1 | 1.1 |
S4 | -4.6±1.3 | -5.1±1.5 | -3.0±1.6 | -2.6±1.8 | -5.3±2.1 | -5.7±3.2 | -4.3±1.7 | -5.2±1.9 | -3.7±1.4 | -4.4±1.0 | 1.5 |
Table 1 Effect of water stress on canopy-air temperature difference of varieties with different drought resistance.℃
品种与处理 Variety and treatment | 时间 Time/(o’clock) | 平均 Average | 差值 Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | |||
辽粳294 Liaojing 294 | |||||||||||
对照CK | -5.0±1.6 | -5.1±1.4 | -5.1±1.5 | -4.4±1.8 | -5.0±2.4 | -6.1±2.9 | -2.9±1.2 | -2.7±1.3 | -1.0±0.7 | -4.1±1.5 | 0.0 |
S1 | -4.0±1.7 | -4.8±1.5 | -4.8±1.3 | -4.3±1.7 | -4.6±2.6 | -5.6±2.6 | -2.9±1.3 | -2.4±1.5 | -0.9±0.6 | -3.8±1.4 | 0.3 |
S2 | -3.5±1.4 | -3.9±1.5 | -4.3±1.6 | -3.7±1.6 | -4.1±2.3 | -4.2±2.8 | -2.2±1.1 | -2.3±1.1 | -0.9±0.6 | -3.2±1.1 | 0.9 |
S3 | -3.2±1.1 | -3.5±1.3 | -3.7±1.1 | -3.3±1.2 | -3.6±2.4 | -3.6±2.7 | -1.9±1.0 | -2.1±1.0 | -0.8±0.4 | -2.9±1.0 | 1.2 |
S4 | -2.7±0.9 | -3.3±1.1 | -3.1±1.4 | -2.5±1.0 | -2.8±2.6 | -3.0±2.5 | -1.8±0.8 | -1.6±0.7 | -0.5±0.3 | -2.4±0.9 | 1.7 |
开粳1号 Kaijing 1 | |||||||||||
对照CK | -6.3±1.2 | -6.3±1.5 | -4.9±1.4 | -3.9±1.9 | -6.6±2.3 | -8.2±2.7 | -5.5±1.7 | -6.4±2.2 | -5.0±1.5 | -5.9±1.2 | 0.0 |
S1 | -5.8±1.5 | -6.1±1.6 | -4.7±1.3 | -3.8±1.8 | -6.5±2.1 | -7.8±2.9 | -5.3±1.8 | -6.1±2.3 | -4.7±1.3 | -5.6±1.1 | 0.3 |
S2 | -5.3±1.5 | -5.8±1.4 | -4.2±1.3 | -3.4±1.8 | -6.1±2.3 | -6.9±2.5 | -5.0±1.5 | -5.5±2.1 | -4.1±1.5 | -5.1±1.1 | 0.8 |
S3 | -5.1±1.2 | -5.4±1.4 | -3.6±1.5 | -3.0±1.7 | -5.6±1.9 | -6.4±2.7 | -4.8±1.5 | -5.3±2.0 | -3.9±1.4 | -4.8±1.1 | 1.1 |
S4 | -4.6±1.3 | -5.1±1.5 | -3.0±1.6 | -2.6±1.8 | -5.3±2.1 | -5.7±3.2 | -4.3±1.7 | -5.2±1.9 | -3.7±1.4 | -4.4±1.0 | 1.5 |
品种与处理 Variety and treatment | 每穗实粒数 FGP | 每穗秕粒数 UGP | 千粒重 TGW /g | 结实率 SSR /% | 理论产量 TY /(kg·667m-2) | 实测产量 AY /(kg·667m-2) | 实测增产率 AYGR /% |
---|---|---|---|---|---|---|---|
辽粳294 Liaojing 294 | |||||||
对照CK | 73.7±5.31 aA | 18.7±1.05 cC | 24.8±0.15 aA | 79.8±0.03 aA | 472.3±28.3 aA | 486.19 | - |
S1 | 73.4±1.99 aA | 17.6±0.58 cC | 23.7±0.22 bcB | 80.6±0.01 aA | 453.3±14.0 aA | 494.63 | +1.74 |
S2 | 76.1±4.53 aA | 18.8±1.36 cC | 23.9±0.21 bAB | 80.2±0.04 aA | 469.3±20.9 aAB | 494.19 | +1.65 |
S3 | 66.2±3.34 bAB | 28.6±3.14 bB | 23.1±0.19 cB | 69.9±0.03 bB | 394.1±27.1 bB | 442.28 | -9.03 |
S4 | 57.6±2.16 cB | 37.4±3.60 aA | 23.3±0.17 cB | 60.3±0.02 cC | 326.96±17.8 cC | 387.81 | -20.24 |
开粳1号 Kaijing 1 | |||||||
对照CK | 70.7±2.89 abA | 16.8±0.01 cC | 27.4±0.13 aA | 80.7±0.01 aA | 556.6±15.3 aA | 518.06 | - |
S1 | 76.2±0.63 aA | 18.3±0.0.1 cC | 26.8±0.13 bcAB | 80.5±0.01 aA | 559.3±28.8 aA | 536.75 | +3.61 |
S2 | 68.7±7.62 bA | 17.4±0.02 cC | 26.9±0.13 abAB | 79.9±0.02 aA | 528.6±32.3 aA | 528.77 | +2.07 |
S3 | 57.4±2.23 cB | 23.5±0.01 bB | 26.7±0.14 bcAB | 70.9±0.01 bB | 436.5±34.3 bB | 479.00 | -7.54 |
S4 | 51.1±5.29 cB | 36.5±0.03 aA | 26.3±0.14 cB | 58.1±0.03 cC | 376.3±15.8 cB | 418.56 | -19.21 |
Table 2 Effect of water stress on yield components of different drought resistance varieties.
品种与处理 Variety and treatment | 每穗实粒数 FGP | 每穗秕粒数 UGP | 千粒重 TGW /g | 结实率 SSR /% | 理论产量 TY /(kg·667m-2) | 实测产量 AY /(kg·667m-2) | 实测增产率 AYGR /% |
---|---|---|---|---|---|---|---|
辽粳294 Liaojing 294 | |||||||
对照CK | 73.7±5.31 aA | 18.7±1.05 cC | 24.8±0.15 aA | 79.8±0.03 aA | 472.3±28.3 aA | 486.19 | - |
S1 | 73.4±1.99 aA | 17.6±0.58 cC | 23.7±0.22 bcB | 80.6±0.01 aA | 453.3±14.0 aA | 494.63 | +1.74 |
S2 | 76.1±4.53 aA | 18.8±1.36 cC | 23.9±0.21 bAB | 80.2±0.04 aA | 469.3±20.9 aAB | 494.19 | +1.65 |
S3 | 66.2±3.34 bAB | 28.6±3.14 bB | 23.1±0.19 cB | 69.9±0.03 bB | 394.1±27.1 bB | 442.28 | -9.03 |
S4 | 57.6±2.16 cB | 37.4±3.60 aA | 23.3±0.17 cB | 60.3±0.02 cC | 326.96±17.8 cC | 387.81 | -20.24 |
开粳1号 Kaijing 1 | |||||||
对照CK | 70.7±2.89 abA | 16.8±0.01 cC | 27.4±0.13 aA | 80.7±0.01 aA | 556.6±15.3 aA | 518.06 | - |
S1 | 76.2±0.63 aA | 18.3±0.0.1 cC | 26.8±0.13 bcAB | 80.5±0.01 aA | 559.3±28.8 aA | 536.75 | +3.61 |
S2 | 68.7±7.62 bA | 17.4±0.02 cC | 26.9±0.13 abAB | 79.9±0.02 aA | 528.6±32.3 aA | 528.77 | +2.07 |
S3 | 57.4±2.23 cB | 23.5±0.01 bB | 26.7±0.14 bcAB | 70.9±0.01 bB | 436.5±34.3 bB | 479.00 | -7.54 |
S4 | 51.1±5.29 cB | 36.5±0.03 aA | 26.3±0.14 cB | 58.1±0.03 cC | 376.3±15.8 cB | 418.56 | -19.21 |
相关因子 Correlation factor | 辽粳294 Liaojing 294 | 开粳1号Kaijing 1 | |||
---|---|---|---|---|---|
回归方程 Regression equation | r2 | 回归方程 Regression equation | r2 | ||
产量 TY | y= -78.196x +166.54 | 0.7801* | y = -124.23x - 150.2 | 0.8998* | |
实粒数FGP | y = -8.8358x+40.355 | 0.6833* | y = -15.108x - 13.214 | 0.8371* | |
秕粒数UGP | y = 10.958x +60.191 | 0.8041* | y = 11.389x +81.319 | 0.7331* | |
千粒重TGW | y = -0.7716x +21.207 | 0.6689* | y = -0.5363x +24.047 | 0.7710* | |
结实率SSR | y = -11.24x +37.29 | 0.7830* | y = -14.02x +1.59 | 0.7935* | |
糙米率BR | y = -0.5213x+79.043 | 0.9873** | y = -0.408x +78.847 | 0.5235 | |
精米率MR | y = -0.723x +71.657 | 0.8426* | y = -0.3668x+71.835 | 0.5113 | |
整精米率HR | y = -7.7346x +35.767 | 0.8297* | y = -3.1471x +54.985 | 0.7960* | |
碎米率BRR | y = 1.0368x+14.29 | 0.6265 | y = 1.5927x +14.74 | 0.9640** | |
长宽比LWR | y = 0.0063x+1.5951 | 0.0477 | y = 0.0127x +1.5762 | 0.5485 | |
垩白度C | y = 1.1694x+5.8116 | 0.9204** | y = 0.8064x +8.7585 | 0.9457** | |
垩白粒率CR | y = 2.2246x+10.902 | 0.8607* | y = 0.9724x +13.216 | 0.7139* | |
蛋白质含量PC | y = -0.3563x+7.264 | 0.7126* | y = 0.2855x+10.008 | 0.9452** | |
直链淀粉含量AC | y = -0.6927x +17.326 | 0.9848** | y = -0.5704x +16.607 | 0.9370** | |
脂肪酸含量 FA | y = -3.1777x +1.9234 | 0.8865** | y = -3.3232x - 4.6111 | 0.9281** | |
食味值Score | y = -1.7435x +66.644 | 0.9155** | y = -2.5037x +56.242 | 0.8692** |
Table 3 Relationship between canopy-air temperature difference and yield components,appearance ,eating quality of rice under different water stresses.
相关因子 Correlation factor | 辽粳294 Liaojing 294 | 开粳1号Kaijing 1 | |||
---|---|---|---|---|---|
回归方程 Regression equation | r2 | 回归方程 Regression equation | r2 | ||
产量 TY | y= -78.196x +166.54 | 0.7801* | y = -124.23x - 150.2 | 0.8998* | |
实粒数FGP | y = -8.8358x+40.355 | 0.6833* | y = -15.108x - 13.214 | 0.8371* | |
秕粒数UGP | y = 10.958x +60.191 | 0.8041* | y = 11.389x +81.319 | 0.7331* | |
千粒重TGW | y = -0.7716x +21.207 | 0.6689* | y = -0.5363x +24.047 | 0.7710* | |
结实率SSR | y = -11.24x +37.29 | 0.7830* | y = -14.02x +1.59 | 0.7935* | |
糙米率BR | y = -0.5213x+79.043 | 0.9873** | y = -0.408x +78.847 | 0.5235 | |
精米率MR | y = -0.723x +71.657 | 0.8426* | y = -0.3668x+71.835 | 0.5113 | |
整精米率HR | y = -7.7346x +35.767 | 0.8297* | y = -3.1471x +54.985 | 0.7960* | |
碎米率BRR | y = 1.0368x+14.29 | 0.6265 | y = 1.5927x +14.74 | 0.9640** | |
长宽比LWR | y = 0.0063x+1.5951 | 0.0477 | y = 0.0127x +1.5762 | 0.5485 | |
垩白度C | y = 1.1694x+5.8116 | 0.9204** | y = 0.8064x +8.7585 | 0.9457** | |
垩白粒率CR | y = 2.2246x+10.902 | 0.8607* | y = 0.9724x +13.216 | 0.7139* | |
蛋白质含量PC | y = -0.3563x+7.264 | 0.7126* | y = 0.2855x+10.008 | 0.9452** | |
直链淀粉含量AC | y = -0.6927x +17.326 | 0.9848** | y = -0.5704x +16.607 | 0.9370** | |
脂肪酸含量 FA | y = -3.1777x +1.9234 | 0.8865** | y = -3.3232x - 4.6111 | 0.9281** | |
食味值Score | y = -1.7435x +66.644 | 0.9155** | y = -2.5037x +56.242 | 0.8692** |
品种与处理 Variety and treatment | 糙米率 BR/% | 精米率 MR/% | 整精米率 HR/% | 碎米率 BRR/% | 长宽比 LWR | 垩白度 C/% | 垩白粒率 CR/% |
---|---|---|---|---|---|---|---|
辽粳294 Liaojing 294 | |||||||
对照CK | 81.23±0.27 aA | 74.86±0.17 aA | 67.03±4.36 aA | 10.07±0.29 bA | 1.57±0.03 aA | 1.10±0.20 cB | 1.63±0.25 cB |
S1 | 81.01±0.50 abAB | 74.15±0.90 abA | 63.67±5.45 aAB | 10.87±1.21 abA | 1.57±0.03 aA | 1.37±0.25 cAB | 2.90±0.61 bB |
S2 | 80.67±0.60 bcAB | 74.12±1.07 abA | 62.90±2.27 aAB | 10.03±0.61 bA | 1.60±0.02 aA | 1.63±0.42 bcAB | 2.73±0.85 bB |
S3 | 80.55±0.34 bcAB | 73.52±0.50 bA | 60.97±1.63 aAB | 11.20±0.50 abA | 1.55±0.07 aA | 2.73±0.43 abAB | 5.20±0.44 aA |
S4 | 80.31±0.32 cB | 73.51±0.19 bA | 51.20±5.74 bB | 12.27±0.65 aA | 1.59±0.01 aA | 3.03±0.51 aA | 5.53±0.15 aA |
开粳1号 Kaijing 1 | |||||||
对照CK | 81.08±0.34 abA | 73.89±0.36 aA | 73.13±1.66 aA | 5.27±0.32 cC | 1.49±0.02 aA | 3.90±0.35 cB | 7.53±0.40 cB |
S1 | 81.48±0.15 aA | 74.13±0.49 aA | 72.17±4.15 aA | 5.77±0.23 cBC | 1.52±0.03 aA | 4.37±0.12 bcAB | 8.03±0.06 bB |
S2 | 80.67±0.26 bA | 73.44±0.17 aA | 72.60±0.80 aA | 6.53±0.25 bB | 1.51±0.01 aA | 4.63±0.71 abAB | 7.83±0.25 bcB |
S3 | 80.92±0.31 abA | 73.81±0.42 aA | 70.60±1.25 abA | 7.43±0.31 aA | 1.52±0.03 aA | 4.77±0.15 abAB | 8.17±0.12 bB |
S4 | 80.61±0.52 bA | 73.37±0.82 aA | 67.70±1.47 bA | 7.57±0.35 aA | 1.52±0.03 aA | 5.30±0.10 aB | 9.40±0.10 aA |
Table 4 Effect of water stress on rice milling and appearance quality of different drought resistance varieties.
品种与处理 Variety and treatment | 糙米率 BR/% | 精米率 MR/% | 整精米率 HR/% | 碎米率 BRR/% | 长宽比 LWR | 垩白度 C/% | 垩白粒率 CR/% |
---|---|---|---|---|---|---|---|
辽粳294 Liaojing 294 | |||||||
对照CK | 81.23±0.27 aA | 74.86±0.17 aA | 67.03±4.36 aA | 10.07±0.29 bA | 1.57±0.03 aA | 1.10±0.20 cB | 1.63±0.25 cB |
S1 | 81.01±0.50 abAB | 74.15±0.90 abA | 63.67±5.45 aAB | 10.87±1.21 abA | 1.57±0.03 aA | 1.37±0.25 cAB | 2.90±0.61 bB |
S2 | 80.67±0.60 bcAB | 74.12±1.07 abA | 62.90±2.27 aAB | 10.03±0.61 bA | 1.60±0.02 aA | 1.63±0.42 bcAB | 2.73±0.85 bB |
S3 | 80.55±0.34 bcAB | 73.52±0.50 bA | 60.97±1.63 aAB | 11.20±0.50 abA | 1.55±0.07 aA | 2.73±0.43 abAB | 5.20±0.44 aA |
S4 | 80.31±0.32 cB | 73.51±0.19 bA | 51.20±5.74 bB | 12.27±0.65 aA | 1.59±0.01 aA | 3.03±0.51 aA | 5.53±0.15 aA |
开粳1号 Kaijing 1 | |||||||
对照CK | 81.08±0.34 abA | 73.89±0.36 aA | 73.13±1.66 aA | 5.27±0.32 cC | 1.49±0.02 aA | 3.90±0.35 cB | 7.53±0.40 cB |
S1 | 81.48±0.15 aA | 74.13±0.49 aA | 72.17±4.15 aA | 5.77±0.23 cBC | 1.52±0.03 aA | 4.37±0.12 bcAB | 8.03±0.06 bB |
S2 | 80.67±0.26 bA | 73.44±0.17 aA | 72.60±0.80 aA | 6.53±0.25 bB | 1.51±0.01 aA | 4.63±0.71 abAB | 7.83±0.25 bcB |
S3 | 80.92±0.31 abA | 73.81±0.42 aA | 70.60±1.25 abA | 7.43±0.31 aA | 1.52±0.03 aA | 4.77±0.15 abAB | 8.17±0.12 bB |
S4 | 80.61±0.52 bA | 73.37±0.82 aA | 67.70±1.47 bA | 7.57±0.35 aA | 1.52±0.03 aA | 5.30±0.10 aB | 9.40±0.10 aA |
品种 Variety | 处理 Treatment | 蛋白质含量 PC/% | 直链淀粉含量 AC/% | 脂肪酸含量 FFA/% | 食味值 Score |
---|---|---|---|---|---|
辽粳294 Liaojing 294 | 对照CK | 8.63±0.12 aAB | 20.20±0.26 aA | 14.43±0.61 aA | 73.47±1.14 aA |
S1 | 8.60±0.30 aAB | 19.90±0.70 abA | 14.13±1.53 aA | 73.37±1.27 aA | |
S2 | 8.70±0.00 aA | 19.67±0.21 abcA | 13.57±0.55 aA | 72.80±0.60 aAB | |
S3 | 8.20±0.10 bBC | 19.27±0.21 bcA | 10.43±1.00 bB | 71.80±0.26 abAB | |
S4 | 8.03±0.06 bC | 18.97±0.49 cA | 9.20±0.36 bB | 70.40±0.69 bB | |
开粳1号 Kaijing 1 | 对照CK | 8.30±0.00 cA | 20.03±0.40 aA | 14.43±0.86 aA | 71.80±1.85 aA |
S1 | 8.43±0.12 bcA | 19.70±0.46 aAB | 14.27±1.86 aA | 69.67±0.06 bAB | |
S2 | 8.50±0.20 abcA | 19.57±0.45 abAB | 13.13±0.23 abAB | 68.60±0.10 bcB | |
S3 | 8.70±0.20 abA | 19.43±0.06 abAB | 11.67±0.82 bB | 68.37±0.47 bcB | |
S4 | 8.73±0.06 aA | 19.03±0.06 bB | 9.27±0.23 cC | 67.43±0.55cB |
Table 5 Effect of water stress on eating quality of different drought resistance varieties.
品种 Variety | 处理 Treatment | 蛋白质含量 PC/% | 直链淀粉含量 AC/% | 脂肪酸含量 FFA/% | 食味值 Score |
---|---|---|---|---|---|
辽粳294 Liaojing 294 | 对照CK | 8.63±0.12 aAB | 20.20±0.26 aA | 14.43±0.61 aA | 73.47±1.14 aA |
S1 | 8.60±0.30 aAB | 19.90±0.70 abA | 14.13±1.53 aA | 73.37±1.27 aA | |
S2 | 8.70±0.00 aA | 19.67±0.21 abcA | 13.57±0.55 aA | 72.80±0.60 aAB | |
S3 | 8.20±0.10 bBC | 19.27±0.21 bcA | 10.43±1.00 bB | 71.80±0.26 abAB | |
S4 | 8.03±0.06 bC | 18.97±0.49 cA | 9.20±0.36 bB | 70.40±0.69 bB | |
开粳1号 Kaijing 1 | 对照CK | 8.30±0.00 cA | 20.03±0.40 aA | 14.43±0.86 aA | 71.80±1.85 aA |
S1 | 8.43±0.12 bcA | 19.70±0.46 aAB | 14.27±1.86 aA | 69.67±0.06 bAB | |
S2 | 8.50±0.20 abcA | 19.57±0.45 abAB | 13.13±0.23 abAB | 68.60±0.10 bcB | |
S3 | 8.70±0.20 abA | 19.43±0.06 abAB | 11.67±0.82 bB | 68.37±0.47 bcB | |
S4 | 8.73±0.06 aA | 19.03±0.06 bB | 9.27±0.23 cC | 67.43±0.55cB |
品种 Variety | 气孔长度 Stomatal length/μm | 气孔宽度 Stomatal width/μm | 气孔密度 Stomatal density/mm2 |
---|---|---|---|
辽粳294 Liaojing 294 | 28.4±1.87 aA | 14.9±1.43 aA | 322.6±6.69 bA |
开粳1号Kaijing 1 | 23.9±2.86 bB | 11.1±1.38 bB | 375.5±4.32 aA |
Table 6 The flag leaf stomatal characteristics of rice with various drought tolerance.
品种 Variety | 气孔长度 Stomatal length/μm | 气孔宽度 Stomatal width/μm | 气孔密度 Stomatal density/mm2 |
---|---|---|---|
辽粳294 Liaojing 294 | 28.4±1.87 aA | 14.9±1.43 aA | 322.6±6.69 bA |
开粳1号Kaijing 1 | 23.9±2.86 bB | 11.1±1.38 bB | 375.5±4.32 aA |
品种 Variety | 相关因子 Correlation factor | 回归方程 Regression equation | r2 |
---|---|---|---|
辽粳294 Liaojing 294 | 光合速率 Pn | y = -4.7236x +6.146 | 0.9114** |
气孔导度 Gs | y = -0.1155x - 0.1198 | 0.8177* | |
胞间二氧化碳浓度 Ci | y = -60.399x+22.581 | 0.6929* | |
蒸腾速率 Tr | y = -1.4349x+0.4392 | 0.7947* | |
开粳1号 Kaijing 1 | 光合速率 Pn | y = -5.4643x - 4.8945 | 0.9523** |
气孔导度 Gs | y = -0.1734x - 0.551 | 0.8396* | |
胞间二氧化碳浓度 Ci | y = -58.873x - 39.633 | 0.7408* | |
蒸腾速率 Tr | y = -1.6623x - 3.0062 | 0.9106** |
Table 7 Relationship between anopy-air temperature difference and photosynthetic indexes of rice under water stress.
品种 Variety | 相关因子 Correlation factor | 回归方程 Regression equation | r2 |
---|---|---|---|
辽粳294 Liaojing 294 | 光合速率 Pn | y = -4.7236x +6.146 | 0.9114** |
气孔导度 Gs | y = -0.1155x - 0.1198 | 0.8177* | |
胞间二氧化碳浓度 Ci | y = -60.399x+22.581 | 0.6929* | |
蒸腾速率 Tr | y = -1.4349x+0.4392 | 0.7947* | |
开粳1号 Kaijing 1 | 光合速率 Pn | y = -5.4643x - 4.8945 | 0.9523** |
气孔导度 Gs | y = -0.1734x - 0.551 | 0.8396* | |
胞间二氧化碳浓度 Ci | y = -58.873x - 39.633 | 0.7408* | |
蒸腾速率 Tr | y = -1.6623x - 3.0062 | 0.9106** |
[1] | González-Dugo M P, Moran M S, Mateos L, et al. Canopy temperature variability as an indicator of crop water stress severity.Irrig Sci, 2006, 24: 233-240. |
[2] | Mahn J R, Young A W, Payton P.Deficit irrigation in a production setting: Canopy temperature as an adjunct to ET estimates.Irrig Sci, 2012, 30: 127-137. |
[3] | Tumer N C, O'Toole J C, Cruz R T, et al. Response of seven diverse rice cultivars to water deficits: Ⅰ.Stress development, canopy temperature, leaf rolling and growth.Fileld Crops Res, 1986, 13: 257-271. |
[4] | Balota M, Payne W A, Evett S R, et al.Canopy temperature depression sampling to assess grain yield variation and genotypicdifferentiation in winter wheat.Crop Sci,2007, 47: 1518-1529. |
[5] | Feng B L, Yu H, Hu Y G, et al.The physiological characteristics of the low canopy temperature wheat genotypes under simulated drought condition.Acta Physiol Plant, 2009, 31: 1229-1235. |
[6] | 张嵩午, 王长发. 小麦低温基因型的研究现状和未来发展. 中国农业科学, 2008, 41(9): 2573-2580. |
[7] | Jackson R D, Idso S B, Reginato R J.Canopy temperature as a crop water stress indicator.Water Resce Res, 1981, 17: 1133-1138. |
[8] | Idso S B, Jackson R D, Pinter P J J, et al. Normalizing the stress degree day for environmental variability.Agric Meteorol, 1981, 24: 45-55. |
[9] | 杨建昌, 王维, 王志琴, 等.水稻旱秧大田期需水特性与节水灌溉指标研究. 中国农业科学, 2000, 33(2): 34-42. |
[10] | 陶龙兴, 王熹, 黄效林, 等. 水稻灌浆期间土壤含水量对根系生理活性的影响. 中国农业科学, 2004, 37(11): 1616-1620. |
[11] | 蔡焕杰, 康绍忠. 棉花冠层温度的变化规律及其用于缺水诊断研究. 灌溉排水, 1997, 16(1): 1-5. |
[12] | 程旺大, 姚海根, 赵国平, 等. 冠层温度在作物水分状况探测中的应用. 中国农学通报, 2000, 16(5): 42-44. |
[13] | 梁银丽, 张成娥. 冠层温度-气温差与作物水分亏缺关系的研究. 生态农业研究, 2000, 8(1): 24-26. |
[14] | 袁国富, 罗毅, 孙晓敏, 等. 作物冠层表面温度诊断冬小麦水分胁迫的试验研究. 农业工程学报, 2002, 18(6): 13-17. |
[15] | 王纯枝, 宇振荣, 孙丹峰, 等. 夏玉米冠气温差及其影响因素探析. 土壤通报, 2006, 37(4): 651-657. |
[16] | Patel N R, Mehta A N, Shekh A M.Canopy temperature and water stress quantification in rainfed pigeonpea.Agric Forest Meteorol, 2001, 109(3): 223-232. |
[17] | 张文忠, 韩亚东, 杜宏娟, 等. 水稻开花期冠层温度与土壤水分及产量结构的关系. 中国水稻科学, 2007, 21(1): 99-102. |
[18] | 韩亚东, 张文忠, 杨梅, 等. 孕穗期水稻叶温与水分状况关系的研究. 中国农学通报, 2006, 22(2): 214-216. |
[19] | 高继平, 韩亚东, 王晓通, 等. 水稻齐穗期冠层温度分异及其相关特性的研究. 沈阳农业大学学报, 2011, 42(4): 399-405. |
[20] | 陈佳, 张文忠, 赵晓彤, 等. 水稻灌浆期冠气温差与土壤水分及气象因子关系初探. 江苏农业科学, 2009(2): 284-285. |
[21] | 赵晓彤, 韩亚东, 高继平, 等. 水稻穗分化期不同土壤水势叶温及生理性状变化. 湖北农业科学, 2011, 50(1): 33-36. |
[22] | 高明超. 水稻冠层温度特性及基于冠层温度的水分胁迫指数研究. 沈阳: 沈阳农业大学, 2013. |
[23] | 刘云鹏, 申思, 潘余强, 等. 干旱胁迫下玉米叶-气温差与叶温差日变化特征及其品种差异. 中国农业大学学报, 2014, 19(5): 13-21. |
[24] | 刘婵, 范兴科. 基于冠层叶-气温差的温室土壤水分诊断. 干旱地区农业研究, 2012, 30(1): 90-93. |
[25] | 樊廷录, 宋尚有, 徐银萍, 等. 旱地冬小麦灌浆期冠层温度与产量和水分利用效率的关系. 生态学报, 2007, 27(11): 4491-4497. |
[26] | 彭致功, 杨培岭, 段爱旺, 等. 日光温室茄子冠气温差与环境因子之间的关系研究. 华中农学报, 2003, 18(4): 111-113. |
[27] | 冯佰利, 王长发, 苗芳, 等. 抗旱小麦的冷温特性研究. 西北农林科技大学学报: 自然科学版, 2002, 30(2): 6-10. |
[28] | 周春菊, 张嵩午, 王林权, 等. 施肥对小麦冠层温度的影响及其与生物学性状的关联. 生态学报, 2005, 25(1): 18-22. |
[29] | 刘亚, 丁俊强, 苏巴钱德, 等. 基于远红外热成像的叶温变化与玉米苗期耐旱性的研究. 中国农业科学, 2009, 42(6): 2192-2201. |
[30] | 胡单, 王长发. 大麦冠层温度及其与光合性能的关联. 西北农业学报, 2011, 20(2): 62-67. |
[31] | 赵刚, 樊廷录, 李尚中, 等. 不同品种冬小麦冠层温度与抗旱性和水分利用效率的关系研究. 农业现代化研究, 2010, 31(3): 334-337. |
[32] | Liu Y, Subhash C, Yan J, et al.Maize leaf temperature responses to dought: Thermal imaging and quantitative traitloci(QTL)mapping.Environ Exp Bot, 2011, 71(2): 158-165. |
[33] | 李向阳, 朱云集, 郭天财. 不同小麦基因型灌浆期冠层和叶面温度与产量和品质关系的初步分析. 麦类作物学报, 2004, 24(2): 88-91. |
[34] | 董朋飞, 张绍芬, 刘天学, 等. 玉米灌浆期间气冠温差与产量的关系. 河南农业大学学报, 2007, 41(5): 487-491. |
[35] | 彭世彰, 徐俊增, 丁加丽, 等. 节水灌溉条件下水稻叶气温差变化规律与水分亏缺诊断试验研究. 水利学报, 2006, 37(12): 1503-1508. |
[36] | 张喜英, 裴冬, 陈素英. 用冠气温差指导冬小麦灌溉的指标研究. 中国生态农业学报, 2002, 10(2): 102-105. |
[37] | 刘凯, 张耗, 张慎凤, 等. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008, 34(2): 268-276. |
[38] | 董明辉, 谢裕林, 刘晓斌, 等. 结实期土壤水势对水稻籽粒品质及其粒间差异的影响. 中国生态农业学报, 2011, 19(2): 305-311. |
[39] | 郑桂萍, 李金峰, 钱永德, 等. 土壤水分对水稻产量与品质的影响. 作物学报, 2006, 32(8): 1261-1264. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||