Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (4): 436-448.DOI: 10.16819/j.1001-7216.2023.221018
• Review and Special Topic • Previous Articles
HAN Cong, HE Yuchang, WU Lijuan, JIA Lili, WANG Lei, E Zhiguo()
Received:
2022-11-17
Revised:
2023-02-02
Online:
2023-07-10
Published:
2023-07-17
Contact:
*email: ezhiguo@caas.cn
通讯作者:
*email: ezhiguo@caas.cn
基金资助:
HAN Cong, HE Yuchang, WU Lijuan, JIA Lili, WANG Lei, E Zhiguo. Research Progress in the Function of Basic Leucine Zipper (bZIP) Protein Family in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(4): 436-448.
韩聪, 何禹畅, 吴丽娟, 郏丽丽, 王磊, 鄂志国. 水稻碱性亮氨酸拉链(bZIP)蛋白家族功能研究进展[J]. 中国水稻科学, 2023, 37(4): 436-448.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.221018
Fig. 1. Structural aspects of bZIP transcription factors. model of a dimer of the bZIP domains. A, Schematic representation of the bZIP domain, consisting of a basic DNA-binding region (blue) and the adjacent ZIP domain(grey). B, Structural
基因符号 Gene No. | 别名 Gene alias | 基因位点 Locus ID | 功能 Function |
---|---|---|---|
OsbZIP01 | OsRE1, OUR1 | LOC_Os01g07880 | 开花(-)[ |
OsbZIP03 | OsHBP1b | LOC_Os01g17260 | 耐盐耐旱(+)、耐热(+)[ |
OsbZIP05 | OSBZ8 | LOC_Os01g46970 | 耐旱(+)[ |
OsbZIP09 | HBF2 | LOC_Os01g59760 | 开花(-)[ |
OsbZIP10 | OsABI5, OREB1 | LOC_Os01g64000 | 种子萌发(-) [ |
OsbZIP12 | OsABF1 | LOC_Os01g64730 | 开花(-)[ |
OsbZIP16 | LOC_Os02g09830 | 耐旱(+)[ | |
OsbZIP18 | OsHY5L1 | LOC_Os02g10860 | 支链氨基酸合成(+)[ |
OsbZIP20 | RITA-1 | LOC_Os02g16680 | 抗氧化(+)、NH4+同化(+)[ |
OsbZIP23 | LOC_Os02g52780 | 耐盐耐旱(+)[ | |
OsbZIP28 | OsbZIP1 | LOC_Os03g20310 | 稻瘟病菌侵染应答[ |
OsbZIP30 | RF2b | LOC_Os03g21800 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP33 | REB | LOC_Os03g58250 | 耐旱(+)[ |
OsbZIP37 | OsTGAP1 | LOC_Os04g54474 | 萜类植保素积累(+)[ |
OsbZIP38 | LIP19 | LOC_Os05g03860 | 耐寒(+)[ |
OsbZIP39 | LOC_Os05g34050 | 内质网胁迫应答(+)[ | |
OsbZIP40 | EDT1 | LOC_Os05g36160 | 耐旱(+)[ |
OsbZIP42 | HBF1 | LOC_Os05g41070 | 开花(-)[ |
OsbZIP44 | OsbZIP50 | LOC_Os05g41540 | 锌积累(+)[ |
OsbZIP45 | LOC_Os05g49420 | 耐旱(+)[ | |
OsbZIP46 | OsABF2 | LOC_Os06g10880 | 耐盐耐旱、抗氧化(+)[ |
OsbZIP47 | LOC_Os06g15480 | 粒宽(-)、粒重(-)[ | |
OsbZIP48 | OsHY5 | LOC_Os06g39960 | 光形态建成(-)[ |
OsbZIP50 | OsbZIP74 | LOC_Os06g41770 | 内质网胁迫应答(+)[ |
OsbZIP53 | APIP5 | LOC_Os06g50310 | 稻瘟病抗性(-)[ |
OsbZIP55 | OsFD2 | LOC_Os06g50600 | 种子发育(-)[ |
OsbZIP58 | RISBZ1 | LOC_Os07g08420 | 胚乳发育和种子萌发(-)[ |
OsbZIP60 | OPAQUE3 | LOC_Os07g44950 | 耐旱耐热(+)[ |
OsbZIP62 | OsFD7 | LOC_Os07g48660 | 开花(+)[ |
OsbZIP63 | rTGA2.1 | LOC_Os07g48820 | 白叶枯病抗性(-)[ |
OsbZIP65 | LOC_Os08g26880 | 开花(-)[ | |
OsbZIP66 | TRAB1 | LOC_Os08g36790 | 种子萌发(-)[ |
OsbZIP68 | LOC_Os08g43090 | 不依赖ABA的渗透胁迫应答(+)[ | |
OsbZIP69 | OsFD4 | LOC_Os08g43600 | 开花(+)[ |
OsbZIP71 | LOC_Os09g13570 | 开花(-)[ | |
OsbZIP72 | LOC_Os09g28310 | 正常条件下种子萌发(-)[ | |
OsbZIP73 | OsTFX1 | LOC_Os09g29820 | 白叶枯病抗性(-)[ |
OsbZIP75 | RF2a | LOC_Os09g34060 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP76 | LOC_Os09g34880 | 胚乳发育(-)[ | |
OsbZIP77 | OsFD1 | LOC_Os09g36910 | 开花(+)[ |
OsbZIP79 | LOC_Os11g05480 | 萜类植保素积累(-)[ | |
OsbZIP81 | LOC_Os11g06170 | 茉莉酸积累(+)[ | |
OsbZIP84 | LOC_Os12g06520 | 株高(+)[ | |
OsbZIP86 | LOC_Os12g13170 | 耐旱(+)[ | |
OsbZIP88 | LOC_Os12g40920 | 除草剂抗性(+)[ |
Table 1. Functional identified bZIP transcription factors in rice.
基因符号 Gene No. | 别名 Gene alias | 基因位点 Locus ID | 功能 Function |
---|---|---|---|
OsbZIP01 | OsRE1, OUR1 | LOC_Os01g07880 | 开花(-)[ |
OsbZIP03 | OsHBP1b | LOC_Os01g17260 | 耐盐耐旱(+)、耐热(+)[ |
OsbZIP05 | OSBZ8 | LOC_Os01g46970 | 耐旱(+)[ |
OsbZIP09 | HBF2 | LOC_Os01g59760 | 开花(-)[ |
OsbZIP10 | OsABI5, OREB1 | LOC_Os01g64000 | 种子萌发(-) [ |
OsbZIP12 | OsABF1 | LOC_Os01g64730 | 开花(-)[ |
OsbZIP16 | LOC_Os02g09830 | 耐旱(+)[ | |
OsbZIP18 | OsHY5L1 | LOC_Os02g10860 | 支链氨基酸合成(+)[ |
OsbZIP20 | RITA-1 | LOC_Os02g16680 | 抗氧化(+)、NH4+同化(+)[ |
OsbZIP23 | LOC_Os02g52780 | 耐盐耐旱(+)[ | |
OsbZIP28 | OsbZIP1 | LOC_Os03g20310 | 稻瘟病菌侵染应答[ |
OsbZIP30 | RF2b | LOC_Os03g21800 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP33 | REB | LOC_Os03g58250 | 耐旱(+)[ |
OsbZIP37 | OsTGAP1 | LOC_Os04g54474 | 萜类植保素积累(+)[ |
OsbZIP38 | LIP19 | LOC_Os05g03860 | 耐寒(+)[ |
OsbZIP39 | LOC_Os05g34050 | 内质网胁迫应答(+)[ | |
OsbZIP40 | EDT1 | LOC_Os05g36160 | 耐旱(+)[ |
OsbZIP42 | HBF1 | LOC_Os05g41070 | 开花(-)[ |
OsbZIP44 | OsbZIP50 | LOC_Os05g41540 | 锌积累(+)[ |
OsbZIP45 | LOC_Os05g49420 | 耐旱(+)[ | |
OsbZIP46 | OsABF2 | LOC_Os06g10880 | 耐盐耐旱、抗氧化(+)[ |
OsbZIP47 | LOC_Os06g15480 | 粒宽(-)、粒重(-)[ | |
OsbZIP48 | OsHY5 | LOC_Os06g39960 | 光形态建成(-)[ |
OsbZIP50 | OsbZIP74 | LOC_Os06g41770 | 内质网胁迫应答(+)[ |
OsbZIP53 | APIP5 | LOC_Os06g50310 | 稻瘟病抗性(-)[ |
OsbZIP55 | OsFD2 | LOC_Os06g50600 | 种子发育(-)[ |
OsbZIP58 | RISBZ1 | LOC_Os07g08420 | 胚乳发育和种子萌发(-)[ |
OsbZIP60 | OPAQUE3 | LOC_Os07g44950 | 耐旱耐热(+)[ |
OsbZIP62 | OsFD7 | LOC_Os07g48660 | 开花(+)[ |
OsbZIP63 | rTGA2.1 | LOC_Os07g48820 | 白叶枯病抗性(-)[ |
OsbZIP65 | LOC_Os08g26880 | 开花(-)[ | |
OsbZIP66 | TRAB1 | LOC_Os08g36790 | 种子萌发(-)[ |
OsbZIP68 | LOC_Os08g43090 | 不依赖ABA的渗透胁迫应答(+)[ | |
OsbZIP69 | OsFD4 | LOC_Os08g43600 | 开花(+)[ |
OsbZIP71 | LOC_Os09g13570 | 开花(-)[ | |
OsbZIP72 | LOC_Os09g28310 | 正常条件下种子萌发(-)[ | |
OsbZIP73 | OsTFX1 | LOC_Os09g29820 | 白叶枯病抗性(-)[ |
OsbZIP75 | RF2a | LOC_Os09g34060 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP76 | LOC_Os09g34880 | 胚乳发育(-)[ | |
OsbZIP77 | OsFD1 | LOC_Os09g36910 | 开花(+)[ |
OsbZIP79 | LOC_Os11g05480 | 萜类植保素积累(-)[ | |
OsbZIP81 | LOC_Os11g06170 | 茉莉酸积累(+)[ | |
OsbZIP84 | LOC_Os12g06520 | 株高(+)[ | |
OsbZIP86 | LOC_Os12g13170 | 耐旱(+)[ | |
OsbZIP88 | LOC_Os12g40920 | 除草剂抗性(+)[ |
[1] | 王金英, 丁峰, 潘介春, 张树伟, 杨亚涵, 黄幸, 范志毅, 李琳, 王颖. 植物bZIP转录因子家族的研究进展[J]. 热带农业科学, 2019, 39(6): 39-45. |
Wang J Y, Ding F, Pan J C, Zhang S W, Yang Y H, Huang X, Fan Z Y, Li L, Wang Y. Research progress of bZIP lineage transcription factors in plant[J]. Chinese Journal of Tropical Agriculture, 2019, 39(6): 39-45. | |
[2] | 国家统计局. 中国统计年鉴[G]. 北京: 中国统计出版社, 2022: 385-387, 428-430. |
National Bureau of Statistics of the People's Republic of China. Chinese Statistical Yearbook[G]. Beijing: China Statistics Press, 2022: 385-387,428-430. (in Chinese) | |
[3] | Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family: An update[J]. Current Opinion in Plant Biology, 2018, 45: 36-49. |
[4] | Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2): 333-350. |
[5] | Ji Q, Zhang L S, Wang Y F, Wang J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa[J]. Journal of Shanghai University, 2009, 13(2): 174-182. |
[6] | Corrêa L G G, Riaño-Pachón D M, Schrago C G, dos Santos R V, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes[J]. PLoS One, 2008, 3: e2944. |
[7] | Chai J T, Zhu S S, Li C N, Wang C M, Cai M H, Zheng X M, Zhou L, Zhang H, Sheng P K, Wu M M, Jin X, Cheng Z J, Zhang X, Lei C L, Ren Y L, Lin Q B, Zhou S R, Guo X P, Wang J, Zhao Z C, Wan J M. OsRE1 interacts with OsRIP1 to regulate rice heading date by finely modulating Ehd1 expression[J]. Plant Biotechnology Journal, 2021, 19(2): 300-310. |
[8] | Hasegawa T, Lucob-Agustin N, Yasufuku K, Kojima T, Nishiuchi S, Ogawa A, Takahashi-Nosaka M, Kano-Nakata M, Inari-Ikeda M, Sato M, Tsuji H, Wainaina C M, Yamauchi A, Inukai Y. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling[J]. Plant Science, 2021, 306: 110861. |
[9] | Lakra N, Nutan K K, Das P, Anwar K, Singla-Pareek S L, Pareek A. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery[J]. Journal of Plant Physiology, 2015, 176: 36-46. |
[10] | Das P, Lakra N, Nutan K K, Singla-Pareek S L, Pareek A. A unique bZIP transcription factor imparting multiple stress tolerance in rice[J]. Rice, 2019, 12: 58. |
[11] | 仝宇, 王聪, 赵利利, 连娟, 刘晓梅, 赵宝存. 转录因子OsbZIP5负调控水稻的耐旱性[J]. 中国生物化学与分子生物学报, 2021, 37(6): 798-810. |
Tong Y, Wang C, Zhao L L, Lian J, Liu X M, Zhao B C. Transcription factor OsbZIP5 negatively regulates drought-tolerance in rice[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(6): 798-810. (in Chinese with English abstract) | |
[12] | Brambilla V, Martignago D, Goretti D, Cerise M, Somssich M, de Rosa M, Galbiati F, Shrestha R, Lazzaro F, Simon R, Fornara F. Antagonistic transcription factor complexes modulate the floral transition in rice[J]. Plant Cell, 2017, 29(11): 2801-2816. |
[13] | Zhu C C, Wang C X, Lu C Y, Wang J D, Zhou Y, Xiong M, Zhang C Q, Liu Q Q, Li Q F. Genome-wide identification and expression analysis of OsbZIP09 target genes in rice reveal its mechanism of controlling seed germination[J]. International Journal of Molecular Sciences, 2021, 22(4): 1661. |
[14] | Wang C X, Zhu C C, Zhou Y, Xiong M, Wang J D, Bai H, Lu C Y, Zhang C Q, Liu Q Q, Li Q F. OsbZIP09, a unique OsbZIP transcription factor of rice, promotes rather than suppresses seed germination by attenuating abscisic acid pathway[J]. Rice Science, 2021, 28(4): 358-367. |
[15] | Bhatnagar N, Min M K, Choi E H, Kim N, Moon S J, Yoon I, Kwon T, Jung K H, Kim B G. The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10[J]. Plant Molecular Biology, 2017, 93(4): 389-401. |
[16] | Kim H, Hwang H, Hong J W, Lee Y N, Ahn I P, Yoon I S, Yoo S D, Lee S, Lee S C, Kim B G. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth[J]. Journal of Experimental Botany, 2012, 63(2): 1013-1024. |
[17] | Li Y X, Zhou J H, Li Z, Qiao J Z, Quan R D, Wang J, Huang R F, Qin H. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice[J]. Plant Physiology, 2022, 189(2): 1110-1127. |
[18] | Yoshida H, Hirano K, Yano K, Wang F, Mori M, Kawamura M, Koketsu E, Hattori M, Ordonio R L, Huang P, Yamamoto E, Matsuoka M. Genome-wide association study identifies a gene responsible for temperature-dependent rice germination[J]. Nature Communications, 2022, 13: 5665. |
[19] | Zou M J, Guan Y C, Ren H B, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66(6): 675-683. |
[20] | Li Q, Zhou L Y, Chen Y N, Xiao N, Zhang D P, Zhang M J, Wang W G, Zhang C Q, Zhang A N, Li H, Chen J M, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid[J]. Plant Cell, 2022, 34(11): 4293-4312. |
[21] | Zhang C Y, Liu J, Zhao T, Gomez A, Li C, Yu C S, Li H Y, Lin J Z, Yang Y Z, Liu B, Lin C T. A drought-inducible transcription factor delays reproductive timing in rice[J]. Plant Physiology, 2016, 171(1): 334-343. |
[22] | Joo J, Lee Y H, Song S I. Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA[J]. Plant Biotechnology Reports, 2014, 8(6): 431-441. |
[23] | Hossain M A, Lee Y, Cho J I, Ahn C H, S K, Jeon J S, Kang H, Lee C H, An G, Park P B. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice[J]. Plant Molecular Biology, 2010, 72(4-5): 557-566. |
[24] | Tang L Q, Xu H Y, Wang Y F, Wang H M, Li Z Y, Liu X X, Shu Y Z, Li G, Liu W N, Ying J Z, Tong X H, Yao J L, Xiao W F, Tang S Q, Ni S, Zhang J. OsABF 1 represses gibberellin biosynthesis to regulate plant height and seed germination in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2021, 22(22): 12220. |
[25] | Fukumoto T, Kano A, Ohtani K, Inoue M, Yoshihara A, Izumori K, Tajima S, Shigematsu Y, Tanaka K, Ohkouchi T, Ishida Y, Nishizawa Y, Tada Y, Ichimura K, Gomi K, Yoo S D, Sheen J, Akimitsu K. Phosphorylation of d-allose by hexokinase involved in regulation of OsABF1 expression for growth inhibition in Oryza sativa L.[J]. Planta, 2013, 237(5): 1379-1391. |
[26] | Chen H, Chen W, Zhou J L, He H, Chen L B, Chen H D, Deng X W. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice[J]. Plant Science, 2012, 193-194: 8-17. |
[27] | Sun Y Y, Shi Y H, Liu G G, Yao F, Zhang Y Y, Yang C K, Guo H, Liu X Q, Jin C, Luo J. Natural variation in the OsbZIP18 promoter contributes to branched-chain amino acid levels in rice[J]. New Phytologist, 2020, 228(5): 1548-1558. |
[28] | Sun Y Y, Wang B, Ren J X, Zhou Y T, Han Y, Niu S Y, Zhang Y Y, Shi Y H, Zhou J J, Yang C K, Ma X M, Liu X Q, Luo Y H, Jin C, Luo J. OsbZIP18, a positive regulator of serotonin biosynthesis, negatively controls the UV-B tolerance in rice[J]. International Journal of Molecular Sciences, 2022, 23(6): 3215. |
[29] | Bai B, Lu N N, Li Y P, Guo S L, Yin H B, He Y N, Sun W, Li W, Xie X Z. OsBBX14 promotes photomorphogenesis in rice by activating OsHY5L1 expression under blue light conditions[J]. Plant Science, 2019, 284: 192-202. |
[30] | Sun L, Di D W, Li G J, Kronzucker H J, Wu X Y, Shi W M. Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway[J]. Journal of Experimental Botany, 2020, 71(15): 4562-4577. |
[31] | Wang B X, Xu B, Liu Y, Li J F, Sun Z G, Chi M, Xing Y G, Yang B, Li J, Liu J B, Chen T M, Fang Z W, Lu B G, Xu D Y, Babatunde K B. A novel mechanisms of the signaling cascade associated with the SAPK10-bZIP20-NHX1 synergistic interaction to enhance tolerance of plant to abiotic stress in rice (Oryza sativa L.)[J]. Plant Science, 2022, 323: 111393. |
[32] | Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952. |
[33] | Park Su H, Jeong J S, Lee K H, Kim Y S, Choi Y D, Kim J K. OsbZIP23 and OsbZIP45, members of the rice basic leucine zipper transcription factor family, are involved in drought tolerance[J]. Plant Biotechnology Reports, 2015, 9(2): 89-96. |
[34] | Zong W, Yang J, Fu J, Xiong L. Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice[J]. Journal of Integrative Plant Biology, 2020, 62(6): 723-729. |
[35] | Srivastava A K, Zhang C J, Caine R S, Gray J, Sadanandom A. Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice[J]. Plant Journal, 2017, 92(6): 1031-1043. |
[36] | Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes[J]. Plant Physiology, 2016, 171(4): 2810-2825. |
[37] | Song S, Wang G, Wu H, Fan X, Liang L, Zhao H, Li S, Hu Y, Liu H, Ayaad M, Xing Y. OsMFT2 is involved in the regulation of ABA signaling mediated seed germination through interacting with OsbZIP23/66/72 in rice[J]. Plant Journal, 2020, 103(2): 532-546. |
[38] | Wang WQ, Xu DY, Sui YP, Ding XH, Song XJ. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(9): e2026355119. |
[39] | Meng X B, Zhao W S, Lin R M, Wang M, Peng Y L. Identification of a novel rice bZIP-type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea[J]. Plant Molecular Biology Reporter, 2005, 23(3): 301-302. |
[40] | Dai S H, Zhang Z H, Chen S Y, Beachy R N. RF2b, a rice bZIP transcription activator, interacts with RF2a and is involved in symptom development of rice tungro disease[J]. Proceedings of the National Academy of Sciences, 2004, 101(2): 687-692. |
[41] | Dai S H, Wei X P, Alfonso A A, Pei L P, Duque U G, Zhang Z H, Babb G M, Beachy R N. Transgenic rice plants that overexpress transcription factors RF2a and RF2b are tolerant to rice tungro virus replication and disease[J]. Proceedings of the National Academy of Sciences, 2008, 105(52): 21012-21016. |
[42] | Chen H, Dai X J, Gu Z Y. OsbZIP33 is an ABA-dependent enhancer of drought tolerance in rice[J]. Crop Science, 2015, 55(4): 1673-1685. |
[43] | Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice[J]. Journal of Biological Chemistry, 2009, 284(39): 26510-26518. |
[44] | Miyamoto K, Matsumoto T, Okada A, Komiyama K, Chujo T, Yoshikawa H, Nojiri H, Yamane H, Okada K. Identification of target genes of the bZIP transcription factor OsTGAP1, whose overexpression causes elicitor-induced hyperaccumulation of diterpenoid phytoalexins in rice cells[J]. PLoS ONE, 2014, 9(8): e105823. |
[45] | Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T. LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant and Cell Physiology, 2005, 46(10): 1623-1634. |
[46] | Takahashi H, Kawakatsu T, Wakasa Y, Hayashi S, Takaiwa F. A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response[J]. Plant and Cell Physiology, 2012, 53(1): 144-153. |
[47] | Wu T, Zhang M X, Zhang H J, Huang K, Chen M J, Chen C, Yang X, Li Z, Chen H Y, Ma Z M, Zhang X M, Jiang W Z, Du X L. Identification and characterization of EDT1 conferring drought tolerance in rice[J]. Journal of Plant Biology, 2019, 62: 39-47. |
[48] | Lilay G H, Castro P H, Guedes J G, Almeida D M, Campilho A, Azevedo H, Aarts M G M, Saibo N J M, Assunção A G L. Rice F-bZIP transcription factors regulate the zinc deficiency response[J]. Journal of Experimental Botany, 2020, 71(12): 3664-3677. |
[49] | Hossain M A, Cho J I, Han M, Ahn C H, Jeon J S, An G, Park P B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17): 1512-1520. |
[50] | Tang N, Zhang H, Li X H, Xiao J H, Xiong L Z. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1755-1768. |
[51] | Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice[J]. Plant Cell, 2016, 28(9): 2161-2177. |
[52] | Yang X, Yang Y N, Xue L J, Zou M J, Liu J Y, Chen F, Xue H W. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes[J]. Plant Physiology, 2011, 156(3): 1397-1409. |
[53] | Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 2021, 14(8): 1266-1280. |
[54] | Burman N, Bhatnagar A, Khurana J P. OsbZIP48, a HY5 transcription factor ortholog, exerts pleiotropic effects in light-regulated development[J]. Plant Physiology, 2018, 176(2): 1262-1285. |
[55] | Zhang F, Huang J C, Guo H, Yang C K, Li Y F, Shen S Q, Zhan C S, Qu L H, Liu X Q, Wang S C, Chen W, Luo J. OsRLCK160 contributes to flavonoid accumulation and UV-B tolerance by regulating OsbZIP48 in rice[J]. Science China Life Sciences, 2022, 65(7): 1380-1394. |
[56] | Kim D H, Park S, Lee J Y, Ha S H, Lee J G, Lim S H. A rice B-box protein, OsBBX14, finely regulates anthocyanin biosynthesis in rice[J]. International Journal of Molecular Sciences, 2018, 19(8): 2190. |
[57] | Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F. Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice[J]. Plant Journal, 2012, 69(6): 946-956. |
[58] | Lu S J, Yang Z T, Sun L, Sun L, Song Z T, Liu J X. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses[J]. Molecular Plant, 2012, 5(2): 504-514. |
[59] | Yang W, Xu P, Zhang J, Zhang S, Li Z, Yang K, Chang X, Li Y. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. |
[60] | Liu X H, Lü Y S, Yang W, Yang Z T, Lu S J, Liu J X. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnology Journal, 2020, 18(5): 1317-1329. |
[61] | Wang R T, Ning Y S, Shi X T, He F, Zhang C Y, Fan J B, Jiang N, Zhang Y, Zhang T, Hu Y J, Bellizzi M, Wang G L. Immunity to rice blast disease by suppression of effector-triggered necrosis[J]. Current Biology, 2016, 26(18): 2399-2411. |
[62] | Fang H, Shen S Q, Wang D, Zhang F, Zhang C Y, Wang Z X, Zhou Q Q, Wang R Y, Tao H, He F, Yang C K, Peng M, Jing X Y, Hao Z Y, Liu X L, Luo J, Wang G L, Ning Y S. A monocot-specific hydroxycinnamoyl- putrescine gene cluster contributes to immunity and cell death in rice[J]. Science Bulletin, 2021, 66(23): 2381-2393. |
[63] | Fang H, Zhang F, Zhang C Y, Wang D, Shen S Q, He F, Tao H, Wang R Y, Wang M, Wang D B, Liu X L, Luo J, Wang G L, Ning Y S. Function of hydroxycinnamoyl transferases for the biosynthesis of phenolamides in rice resistance to Magnaporthe oryzae[J]. Journal of Genetics and Genomics, 2022, 49(8): 776-786. |
[64] | Zhang F, Fang H, Wang M, He F, Tao H, Wang R Y, Long J W, Wang J Y, Wang G L, Ning Y S. APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice[J]. Nucleic Acids Research, 2022, 50(9): 5064-5079. |
[65] | He Y, Li L Y, Shi W B, Tan J H, Luo X X, Zheng S Y, Chen W T, Li J, Zhuang C X, Jiang D G. Florigen repression complexes involving rice CENTRORADIALIS2 regulate grain size[J]. Plant Physiology, 2022, 190(2): 1260-1274. |
[66] | Tsuji H, Nakamura H, Taoka K I, Shimamoto K. Functional diversification of FD transcription factors in rice, components of florigen activation complexes[J]. Plant and Cell Physiology, 2013, 54(3): 385-397. |
[67] | Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J]. Plant Journal, 2009, 59(6): 908-920 |
[68] | Kawakatsu T, and Takaiwa F. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain[J]. Plant and Cell Physiology, 2010, 51(12): 1964-1974 |
[69] | Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(11): 3453-3466. |
[70] | Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa[J]. Plant Journal, 2014, 80(6): 1118-1130. |
[71] | 喻旭, 牛向丽, 杨盛慧, 李欲翔, 刘亮亮, 唐维, 刘永胜. 过量表达转录因子OsbZIP60对水稻抗热和抗旱能力的研究[J]. 中国农业科学, 2011, 44(20): 4142-4149. |
Yu X, Niu X L, Yang S Hu, Li Y X, Liu L L, Tang W, Liu Y S. Research on heat and drought tolerance in rice (Oryza sativa L.) by overexpressing transcription factor OsbZIP60[J]. Scientia Agricultura Sinica, 2011, 44(20): 4142-4149.(in Chinese with English abstract) | |
[72] | Cao R J, Zhao S L, Jiao G A, Duan Y Q, Ma L Y, Dong N N, Lu F F, Zhu M D, Shao G N, Hu S K, Sheng Z H, Zhang J, Tang S Q, Wei X J, Hu P S. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice[J]. Plant Communications, 2022, 3(6): 100463. |
[73] | Kaur A, Nijhawan A, Yadav M, Khurana J P. OsbZIP62/OsFD7, a functional ortholog of FLOWERING LOCUS D, regulates floral transition and panicle development in rice[J]. Journal of Experimental Botany, 2021, 72(22): 7826-7845. |
[74] | Yang S Q, Xu K, Chen S J, Li T F, Xia H, Chen L, Liu H Y, Luo L J. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19: 260. |
[75] | Fitzgerald H A, Canlas P E, Chern M S, Ronald P C. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae[J]. Plant Journal, 2005, 43(3): 335-347. |
[76] | Pan T T, He M L, Liu H L, Tian X J, Wang Z Y, Yu X L, Miao X F, Li X F. Transcription factor bZIP65 delays flowering via suppressing Ehd1 expression in rice[J]. Molecular Breeding, 2022, 42(10): 63. |
[77] | Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(26): 15348-15353. |
[78] | Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors[J]. Plant Journal, 2005, 44(6): 939-949. |
[79] | Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353. |
[80] | Yoon S, Lee D K, Yu I J, Kim Y S, Choi Y D, Kim J K. Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants[J]. Plant Biotechnology Reports, 2017, 11(1): 53-62. |
[81] | Chen Y, Shen J, Zhang L, Qi H, Yang L, Wang H, Wang J, Wang Y, Du H, Tao Z, Zhao T, Deng P, Shu Q, Qian Q, Yu H, Song S. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice[J]. Molecular Plant, 2021, 14(8): 1297-1311. |
[82] | Zhou H, Zhang F, Zhai F C, Su Y, Zhou Y, Ge Z L, Tilak P, Eirich J, Finkemeier I, Fu L, Li Z M, Yang J, Shen W B, Yuan X X, Xie Y J. Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling[J]. Molecular Plant, 2022, 15(4): 651-670. |
[83] | Cerise M, Giaume F, Galli M, Khahani B, Lucas J, Podico F, Tavakol E, Parcy F, Gallavotti A, Brambilla V, Fornara F. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem[J]. New Phytologist, 2021, 229(1): 429-443. |
[84] | Li X, Tian X, He M, Liu X, Li Z, Tang J, Mei E, Xu M, Liu Y, Wang Z, Guan Q, Meng W, Fang J, Zhang J, Bu Q. bZIP71 delays flowering by suppressing Ehd1 expression in rice[J]. Journal of Integrative Plant Biology, 2022, 64(7): 1352-1363. |
[85] | Liu C T, Mao B G, Ou S J, Wang W, Liu L C, Wu Y B, Chu C C, Wang X P. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1-2): 19-36. |
[86] | Liu C, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi M R, Zhao B, Xiao G, Wang X, Chu C. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications, 2018, 9: 3302. |
[87] | Liu C, Schläppi M R, Mao B, Wang W, Wang A, Chu C. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal, 2019, 17(9): 1834-1849. |
[88] | Wang S, Liu W, He Y, Adegoke T V, Ying J, Tong X, Li Z, Tang L, Wang H, Zhang J, Tian Z, Wang Y. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1[J]. Plant Physiology and Biochemistry, 2021, 169: 112-118. |
[89] | Lu G, Gao C, Zheng X, Han B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009, 229(3): 605-615. |
[90] | Wang B, Liu Y, Wang Y, Li J, Sun Z, Chi M, Xing Y, Xu B, Yang B, Li J, Liu J, Chen T, Fang Z, Lu B, Xu D, Babatunde K B. OsbZIP72 is involved in transcriptional gene-regulation pathway of abscisic acid signal transduction by activating rice high-affinity potassium transporter OsHKT1;1[J]. Rice Science, 2021, 28(3): 257-267. |
[91] | Sugio A, Yang B, Zhu T, White F F. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10720-10725. |
[92] | Wang Q, Lin Q B, Wu T, Duan E C, Huang Y S, Yang C Y, Mou C L, Lan J, Zhou C L, Xie K, Liu X, Zhang X, Guo X P, Wang J, Jiang L, Wan J M. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice[J]. Plant Science, 2020, 298: 110570. |
[93] | Niu B, Deng H, Li T, Sharma S, Yun Q, Li Q, E Z, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2020, 62(12): 1983-1996. |
[94] | Taoka K I, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen[J]. Nature, 2011, 476(7360): 332-335. |
[95] | Peng Q, Zhu C, Liu T, Zhang S, Feng S, Wu C. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice[J]. Molecular Plant, 2021, 14(7): 1135-1148. |
[96] | Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells[J]. Journal of Plant Physiology, 2015, 173: 19-27. |
[97] | Liu D, Shi S, Hao Z, Xiong W, Luo M. OsbZIP81, a homologue of Arabidopsis VIP1, may positively regulate JA levels by directly targetting the genes in JA signaling and metabolism pathway in rice[J]. International Journal of Molecular Sciences, 2019, 20(9): 2360. |
[98] | 刘德芳. 水稻B-bZIP转录因子亚家族成员OsbZIP81和OsbZIP84的功能分析[D]. 武汉: 华中农业大学, 2019. |
Liu D F. Functional analysis of rice B-bZIP subfamily members OsbZIP81 and OsbZIP84[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[99] | Gao W W, Li M K, Yang S G, Gao C Z, Su Y, Zeng X, Jiao Z L, Xu W J, Zhang M Y, Xia K F. miR2105 and the kinase OsSAPK10 co-regulate OsbZIP86 to mediate drought-induced ABA biosynthesis in rice[J]. Plant Physiology, 2022, 189(2): 889-905. |
[100] | Zhang Y H, Gao H T, Fang J P, Wang H, Chen J Y, Li J, Dong L Y. Up-regulation of bZIP88 transcription factor is involved in resistance to three different herbicides in both Echinochloa crus-galli and E. glabrescens[J]. Journal of Experimental Botany, 2022, 73(19): 6916-6930. |
[101] | Kaneko-Suzuki M, Kurihara-Ishikawa R, Okushita-Terakawa C, Kojima C, Nagano-Fujiwara M, Ohki I, Tsuji H, Shimamoto K, Taoka K I. TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD[J]. Plant and Cell Physiology, 2018, 59(3): 458-468. |
[102] | Wang Y, Lu Y, Guo Z, Ding Y, Ding C. RICE CENTRORADIALIS 1, a TFL1-like gene, responses to drought stress and regulates rice flowering transition[J]. Rice, 2020, 13: 70. |
[103] | Cai M H, Zhu S S, Wu M M, Zheng X M, Wang J C, Zhou L, Zheng T H, Cui S, Zhou S R, Li C N, Zhang H, Chai J T, Zhang X Y, Jin X, Cheng Z J, Zhang X, Lei C L, Ren Y L, Wan J M. DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice[J]. Molecular Plant, 2021, 14(2): 330-343. |
[104] | Xiao B, Huang Y, Tang N, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions[J]. Theoretical and Applied Genetics, 2007, 115(1): 35-46. |
[105] | Li R Q, Zheng W Y, Yang R F, Hu Q W, Ma L Y, Zhang H L. OsSGT1 promotes melatonin-ameliorated seed tolerance to chromium stress by affecting the OsABI5-OsAPX1 transcriptional module in rice[J]. Plant Journal, 2022, 112(1): 151-171. |
[106] | Li R Q, Jiang M, Song Y, Zhang H L. Melatonin alleviates low-temperature stress via ABI5-mediated signals during seed germination in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2021, 12: 727596. |
[107] | Yang L J, Chen Y, Xu L, Wang J X, Qi H Y, Guo J Z, Zhang L, Shen J, Wang H Y, Zhang F, Xie L J, Zhu W J, Lü P T, Qian Q, Yu H, Song S Y. The OsFTIP6-OsHB22-OsMYBR57 module regulates drought response in rice[J]. Molecular Plant, 2022, 15(7): 1227-1242. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||