Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (4): 331-337.DOI: 10.16819/j.1001-7216.2019.9025
• Research Papers • Previous Articles Next Articles
Xin WANG1,2,3, Ying MA1, Zhongli HU3, Chenwu XU1,*()
Received:
2019-02-28
Revised:
2019-04-23
Online:
2019-07-10
Published:
2019-07-10
Contact:
Chenwu XU
通讯作者:
徐辰武
基金资助:
CLC Number:
Xin WANG, Ying MA, Zhongli HU, Chenwu XU. Genomic Prediction of Combining Ability for Agronomic Traits in Rice Based on NCII Design[J]. Chinese Journal OF Rice Science, 2019, 33(4): 331-337.
王欣, 马莹, 胡中立, 徐辰武. 基于不完全双列杂交设计的水稻农艺性状配合力基因组预测[J]. 中国水稻科学, 2019, 33(4): 331-337.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.9025
性状 Trait | 遗传率 Heritability | 5倍交叉验证 5-fold cross-validation | 留一法 Leave-one method |
---|---|---|---|
单株产量Grain yield per plant (GY) | 0.3876 | 0.3888 | 0.3583 |
千粒重Thousand-grain weight (TGW) | 0.8321 | 0.7367 | 0.7549 |
有效穗数Productive panicle number per plant (PN) | 0.4182 | 0.2310 | 0.1732 |
株高Plant height (PH) | 0.8930 | 0.6112 | 0.6522 |
一次枝梗数Primary rachis branch number (PB) | 0.7435 | 0.5120 | 0.4945 |
二次枝梗数Secondary rachis branch number (SB) | 0.7602 | 0.5655 | 0.5840 |
主穗实粒数Grain number per panicle (GN) | 0.6926 | 0.5183 | 0.5115 |
穗长Panicle length (PL) | 0.6975 | 0.4697 | 0.4636 |
Table 1 Heritability of traits and average predictive ability of GCA for parental inbred lines.
性状 Trait | 遗传率 Heritability | 5倍交叉验证 5-fold cross-validation | 留一法 Leave-one method |
---|---|---|---|
单株产量Grain yield per plant (GY) | 0.3876 | 0.3888 | 0.3583 |
千粒重Thousand-grain weight (TGW) | 0.8321 | 0.7367 | 0.7549 |
有效穗数Productive panicle number per plant (PN) | 0.4182 | 0.2310 | 0.1732 |
株高Plant height (PH) | 0.8930 | 0.6112 | 0.6522 |
一次枝梗数Primary rachis branch number (PB) | 0.7435 | 0.5120 | 0.4945 |
二次枝梗数Secondary rachis branch number (SB) | 0.7602 | 0.5655 | 0.5840 |
主穗实粒数Grain number per panicle (GN) | 0.6926 | 0.5183 | 0.5115 |
穗长Panicle length (PL) | 0.6975 | 0.4697 | 0.4636 |
性状 Trait | SCA方法1 Method 1 for SCA | SCA方法2 Method 2 for SCA |
---|---|---|
单株产量Grain yield per plant (GY) | 0.0655 | 0.2875 |
千粒重Thousand-grain weight (TGW) | 0.1541 | 0.2198 |
有效穗数Productive panicle number per plant (PN) | 0.0000 | 0.2528 |
株高Plant height (PH) | 0.1505 | 0.1983 |
一次枝梗数Primary rachis branch number (PB) | 0.1566 | 0.2495 |
二次枝梗数Secondary rachis branch number (SB) | 0.1791 | 0.2747 |
主穗实粒数Grain number per panicle (GN) | 0.1244 | 0.2520 |
穗长Panicle length (PL) | 0.1042 | 0.2383 |
Table 2 Average predictive ability of SCA for hybrids.
性状 Trait | SCA方法1 Method 1 for SCA | SCA方法2 Method 2 for SCA |
---|---|---|
单株产量Grain yield per plant (GY) | 0.0655 | 0.2875 |
千粒重Thousand-grain weight (TGW) | 0.1541 | 0.2198 |
有效穗数Productive panicle number per plant (PN) | 0.0000 | 0.2528 |
株高Plant height (PH) | 0.1505 | 0.1983 |
一次枝梗数Primary rachis branch number (PB) | 0.1566 | 0.2495 |
二次枝梗数Secondary rachis branch number (SB) | 0.1791 | 0.2747 |
主穗实粒数Grain number per panicle (GN) | 0.1244 | 0.2520 |
穗长Panicle length (PL) | 0.1042 | 0.2383 |
性状 Trait | 完全随机分组 Random cross-validation | 均匀随机分组 Uniform random cross-validation | 横向随机分组 Horizontal random cross-validation | 纵向随机分组 Vertical random cross-validation |
---|---|---|---|---|
单株产量Grain yield per plant (GY) | 0.3947 | 0.4205 | 0.2615 | 0.4022 |
千粒重Thousand-grain weight (TGW) | 0.8800 | 0.8863 | 0.7303 | 0.8704 |
有效穗数Productive panicle number per plant (PN) | 0.4087 | 0.4299 | 0.2280 | 0.4184 |
株高Plant height (PH) | 0.8637 | 0.8745 | 0.5738 | 0.8662 |
一次枝梗数Primary rachis branch number (PB) | 0.6827 | 0.7015 | 0.4810 | 0.6398 |
二次枝梗数Secondary rachis branch number (SB) | 0.7197 | 0.7349 | 0.4986 | 0.7070 |
主穗实粒数Grain number per panicle (GN) | 0.6444 | 0.6636 | 0.4170 | 0.6529 |
穗长Panicle length (PL) | 0.7939 | 0.7967 | 0.6976 | 0.6110 |
Table 3 Average predictive ability for the hybrids in different grouping scenarios.
性状 Trait | 完全随机分组 Random cross-validation | 均匀随机分组 Uniform random cross-validation | 横向随机分组 Horizontal random cross-validation | 纵向随机分组 Vertical random cross-validation |
---|---|---|---|---|
单株产量Grain yield per plant (GY) | 0.3947 | 0.4205 | 0.2615 | 0.4022 |
千粒重Thousand-grain weight (TGW) | 0.8800 | 0.8863 | 0.7303 | 0.8704 |
有效穗数Productive panicle number per plant (PN) | 0.4087 | 0.4299 | 0.2280 | 0.4184 |
株高Plant height (PH) | 0.8637 | 0.8745 | 0.5738 | 0.8662 |
一次枝梗数Primary rachis branch number (PB) | 0.6827 | 0.7015 | 0.4810 | 0.6398 |
二次枝梗数Secondary rachis branch number (SB) | 0.7197 | 0.7349 | 0.4986 | 0.7070 |
主穗实粒数Grain number per panicle (GN) | 0.6444 | 0.6636 | 0.4170 | 0.6529 |
穗长Panicle length (PL) | 0.7939 | 0.7967 | 0.6976 | 0.6110 |
性状 Trait | 5倍交叉验证 5-fold cross-validation | 留一法 Leave-one method |
---|---|---|
单株产量Grain yield per plant (GY) | 0.3052 | 0.2824 |
千粒重Thousand-grain weight (TGW) | 0.7303 | 0.7529 |
有效穗数Productive panicle number per plant (PN) | 0.4539 | 0.4252 |
株高Plant height (PH) | 0.4799 | 0.5141 |
一次枝梗数Primary rachis branch number (PB) | 0.6459 | 0.7521 |
二次枝梗数Secondary rachis branch number (SB) | 0.5921 | 0.6235 |
主穗实粒数Grain number per panicle (GN) | 0.5370 | 0.5557 |
穗长Panicle length (PL) | 0.3701 | 0.4022 |
Table 4 Average predictive ability of the phenotype for parental inbred lines.
性状 Trait | 5倍交叉验证 5-fold cross-validation | 留一法 Leave-one method |
---|---|---|
单株产量Grain yield per plant (GY) | 0.3052 | 0.2824 |
千粒重Thousand-grain weight (TGW) | 0.7303 | 0.7529 |
有效穗数Productive panicle number per plant (PN) | 0.4539 | 0.4252 |
株高Plant height (PH) | 0.4799 | 0.5141 |
一次枝梗数Primary rachis branch number (PB) | 0.6459 | 0.7521 |
二次枝梗数Secondary rachis branch number (SB) | 0.5921 | 0.6235 |
主穗实粒数Grain number per panicle (GN) | 0.5370 | 0.5557 |
穗长Panicle length (PL) | 0.3701 | 0.4022 |
性状 Trait | 实际值相关系数 Correlation coefficient of actual value | 预测值相关系数 Correlation coefficient of predicted value |
---|---|---|
单株产量Grain yield per plant (GY) | 0.2687 | 0.3272 |
千粒重Thousand-grain weight (TGW) | 0.8771 | 0.9395 |
有效穗数Productive panicle number per plant (PN) | 0.4206 | 0.6298 |
株高Plant height (PH) | 0.7851 | 0.7227 |
一次枝梗数Primary rachis branch number (PB) | 0.6829 | 0.5154 |
二次枝梗数Secondary rachis branch number (SB) | 0.7232 | 0.6756 |
主穗实粒数Grain number per panicle (GN) | 0.6620 | 0.6535 |
穗长Panicle length (PL) | 0.6758 | 0.6708 |
Table 5 Correlation coefficients between true phenotype and GCA, predicted phenotype and GCA for parental inbred lines.
性状 Trait | 实际值相关系数 Correlation coefficient of actual value | 预测值相关系数 Correlation coefficient of predicted value |
---|---|---|
单株产量Grain yield per plant (GY) | 0.2687 | 0.3272 |
千粒重Thousand-grain weight (TGW) | 0.8771 | 0.9395 |
有效穗数Productive panicle number per plant (PN) | 0.4206 | 0.6298 |
株高Plant height (PH) | 0.7851 | 0.7227 |
一次枝梗数Primary rachis branch number (PB) | 0.6829 | 0.5154 |
二次枝梗数Secondary rachis branch number (SB) | 0.7232 | 0.6756 |
主穗实粒数Grain number per panicle (GN) | 0.6620 | 0.6535 |
穗长Panicle length (PL) | 0.6758 | 0.6708 |
[1] | Meuwissen T H, Hayes B J, Goddard M E.Prediction of total genetic value using genome-wide dense marker maps.Genetics, 2001, 157(4): 1819-1829. |
[2] | Lande R, Thompson R.Efficiency of marker-assisted selection in the improvement of quantitative traits.Genetics, 1990, 124(3): 743-756. |
[3] | 王欣, 孙辉, 胡中立, 徐辰武. 基因组选择方法研究进展. 扬州大学学报: 农业与生命科学版, 2018, 39(1): 64-70. |
Wang X, Sun H, Hu Z L, Xu C W.The research progress of genomic selection methods.J Yangzhou Univ: Agric& Life Sci Ed, 2018, 39(1): 64-70. | |
[4] | Heslot N, Yang H-P, Sorrells M E, Jannink J-L.Genomic selection in plant breeding: A comparison of models.Crop Sci, 2012, 52(1): 146-160. |
[5] | Lee Y-S, Kim H-J, Cho S, Kim H.The usage of an SNP-SNP relationship matrix for best linear unbiased prediction (BLUP) analysis using a community-based cohort study.Genom & Inform, 2014, 12(4): 254-260. |
[6] | Wang X, Xu Y, Hu Z, Xu C.Genomic selection methods for crop improvement: Current status and prospects.Crop J, 2018, 6(4): 330-340. |
[7] | Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger A E.Genomic and metabolic prediction of complex heterotic traits in hybrid maize.Nat Genet, 2012, 44(2): 217-220. |
[8] | Crossa J, Perez-Rodriguez P, Cuevas J, Montesinos- Lopez O, Jarquin D, de los Campos G, Burgueno J, Gonzalez-Camacho J M, Perez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X C, Gowda M, Roorkiwal M, Rutkoski J, Varshney R K. Genomic selection in plant breeding: Methods, models, and perspectives.Trends Plant Sci, 2017, 22(11): 961-975. |
[9] | Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J.Genetic basis of grain yield heterosis in an "immortalized F-2" maize population. Theor Appl Genet, 2014, 127(10): 2149-2158. |
[10] | Da Y, Wang C, Wang S, Hu G.Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.PLoS One, 2014, 9(1): e87666. |
[11] | Finley AO, Banerjee S, Waldmann P, Ericsson T.Hierarchical spatial modeling of additive and dominance genetic variance for large spatial trial datasets. Biometrics, 2009, 65(2): 441-451. |
[12] | Gianola D, de los Campos G, Hill W G, Manfredi E, Fernando R. Additive genetic variability and the Bayesian alphabet.Genetics, 2009, 183(1): 347-363. |
[13] | Ibanez-Escriche N, Fernando RL, Toosi A, Dekkers J C M. Genomic selection of purebreds for crossbred performance.Genet Select Evol, 2009, 41(1): 1-10. |
[14] | Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z.Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II.Heredity, 2017, 118(3): 302-310. |
[15] | Wang X, Yang Z, Xu C.A comparison of genomic selection methods for breeding value prediction.Sci Bull, 2015, 60(10): 925-935. |
[16] | Zhang Z, Erbe M, He J, Ober U, Gao N, Zhang H, Simianer H, Li J.Accuracy of whole-genome prediction using a genetic architecture-enhanced variance- covariance matrix.Genes Genomes Genetics, 2015, 5(4): 615-627. |
[17] | van Raden P M. Efficient methods to compute genomic predictions.J Dairy Sci, 2008, 91(11): 4414-4423. |
[18] | Nishio M, Satoh M.Including dominance effects in the genomic BLUP method for genomic evaluation. PLoS One, 2014, 9(1): e85792. |
[19] | Forni S, Aguilar I, Misztal I.Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Select Evol, 2011, 43(1): 43-53. |
[20] | Gilmour A R, Thompson R, Cullis B R.Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models.Biometrics, 1995, 51(4): 1440-1450. |
[21] | Ashida I, Iwaisaki H.An expression for average information matrix for a mixed linear multi-component of variance model and REML iteration equations.Animal Sci J, 1999, 70(5): 282-289. |
[22] | Xu S, Zhu D, Zhang Q.Predicting hybrid performance in rice using genomic best linear unbiased prediction.Proc Natl Acad Sci, 2014, 111(34): 12456-12461. |
[23] | Dan Z, Chen Y, Xu Y, Huang J, Huang J, Hu J, Yao G, Zhu Y, Huang W. A metabolome-based core hybridization strategy for the prediction of rice grain weight across environments. Plant Biotechnol J, 2018, . |
[24] | Goddard M.Genomic selection: prediction of accuracy and maximisation of long term response.Genetica, 2009, 136(2): 245-257. |
[25] | Goddard M E, Hayes B J.Mapping genes for complex traits in domestic animals and their use in breeding programmes.Nat Rev Genet, 2009, 10(6): 381-391. |
[26] | van Raden P, van Tassell C, Wiggans G, Sonstegard T, Schnabel R, Taylor J, Schenkel F. Invited review: Reliability of genomic predictions for North American Holstein bulls.J Dairy Sci, 2009, 92(1): 16-24. |
[27] | Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G.The impact of genetic relationship information on genomic breeding values in German Holstein cattle.Genet Select Evol, 2010, 42(1): 5. |
[28] | Riedelsheimer C, Endelman J B, Stange M, Sorrells M E, Jannink J L, Melchinger A E.Genomic predictability of interconnected biparental maize populations.Genetics, 2013, 194(2): 493-503. |
[29] | Velez-Torres M, Garcia-Zavala J J, Hernandez-Rodriguez M, Lobato-Ortiz R, Lopez-Reynoso J J, Benitez- Riquelme I, Mejia-Contreras J A, Esquivel-Esquivel G, Molina-Galan J D, Perez-Rodriguez P, Zhang X C. Genomic prediction of the general combining ability of maize lines (Zea mays L.) and the performance of their single crosses. Plant Breeding, 2018, 137(3): 379-387. |
[30] | Mao D, Liu T, Xu C, Li X, Xing Y.Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice.Euphytica, 2011, 180(2): 261-271. |
[31] | 钏兴宽. 配合力理论及其在水稻育种中的应用. 种子, 2014, 33(6): 39-41. |
Chuan X K, Combining ability theory and its application in rice breeding. Seed, 2014, 33(6): 39-41. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||