Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (1): 1-11.DOI: 10.16819/j.1001-7216.2018.8026
• Research Papers • Next Articles
Tianzi LIN1,2, Liting SUN2, Hongbin GONG2, Yihua WANG1, Linglong LIU1, Zhigang ZHAO1, Ling JIANG1, Jianmin WAN1,*()
Received:
2018-03-13
Revised:
2018-05-29
Online:
2019-01-10
Published:
2019-01-10
Contact:
Jianmin WAN
林添资1,2, 孙立亭2, 龚红兵2, 王益华1, 刘玲珑1, 赵志刚1, 江玲1, 万建民1,*()
通讯作者:
万建民
基金资助:
CLC Number:
Tianzi LIN, Liting SUN, Hongbin GONG, Yihua WANG, Linglong LIU, Zhigang ZHAO, Ling JIANG, Jianmin WAN. Identification and Gene Mapping of a white-stripe leaf after transplanting at low temperature Mutant in Rice[J]. Chinese Journal OF Rice Science, 2019, 33(1): 1-11.
林添资, 孙立亭, 龚红兵, 王益华, 刘玲珑, 赵志刚, 江玲, 万建民. 一个水稻低温移栽白条纹突变体wltt的鉴定和基因定位[J]. 中国水稻科学, 2019, 33(1): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.8026
引物名称 Primer name | 前引物 Forward sequence (5′-3′) | 后引物 Reverse sequence (5′-3′) | BAC克隆 BAC clone |
---|---|---|---|
L1 | ATTCAGTAAGACTACACGCAT | AATGACAGATTACTTGTTCCA | OJ1756_H07 |
L6 | CTAACATAATGGGTAAAGAGG | TTAGTTGGTTGCCGTGT | OJ1124_E11 |
L8 | ATAGTTTAGGGAGTTATGTGCT | CGTGTGCCTATTGACTTCTC | OSJNBa0030M21 |
L11 | ACAGAACGGAACGGGATA | CTCACAATCTTTTATCACCCA | OSJNBa0078K05 |
L14 | AACCAAGAATCGGAAAGAA | ATCCCATTTCCATTTCTCT | OSJNBa0008C07 |
L16 | TTTCCTGAGCGAATCCA | AAAAGGCACTTATGAGACACT | OSJNBb0080M22 |
L18 | TAGGTGGTTGAATGGTGC | TATGCTTCTTTTGGGTTG | P0543C11 |
L20 | TGAGATACGCAGAATGGG | GAGGAGGATGCAGGGAC | P0705A04 |
L22 | GTTCTTTTGTCTTCCCTCA | ATTATCCTTGGTCTTGGTAT | OJ1134_B09 |
L26 | TTGGAGAATGAAGTTGCTAA | TTACCAAGCAGGACTAAAGAT | OSJNBb0037J12 |
I2-7 | GAACCAGTCCGCTCTCTGAC | TACGCGTCGTGTATCGTAGC | OSJNBa0035A24 |
Table 1 Primers used for gene mapping.
引物名称 Primer name | 前引物 Forward sequence (5′-3′) | 后引物 Reverse sequence (5′-3′) | BAC克隆 BAC clone |
---|---|---|---|
L1 | ATTCAGTAAGACTACACGCAT | AATGACAGATTACTTGTTCCA | OJ1756_H07 |
L6 | CTAACATAATGGGTAAAGAGG | TTAGTTGGTTGCCGTGT | OJ1124_E11 |
L8 | ATAGTTTAGGGAGTTATGTGCT | CGTGTGCCTATTGACTTCTC | OSJNBa0030M21 |
L11 | ACAGAACGGAACGGGATA | CTCACAATCTTTTATCACCCA | OSJNBa0078K05 |
L14 | AACCAAGAATCGGAAAGAA | ATCCCATTTCCATTTCTCT | OSJNBa0008C07 |
L16 | TTTCCTGAGCGAATCCA | AAAAGGCACTTATGAGACACT | OSJNBb0080M22 |
L18 | TAGGTGGTTGAATGGTGC | TATGCTTCTTTTGGGTTG | P0543C11 |
L20 | TGAGATACGCAGAATGGG | GAGGAGGATGCAGGGAC | P0705A04 |
L22 | GTTCTTTTGTCTTCCCTCA | ATTATCCTTGGTCTTGGTAT | OJ1134_B09 |
L26 | TTGGAGAATGAAGTTGCTAA | TTACCAAGCAGGACTAAAGAT | OSJNBb0037J12 |
I2-7 | GAACCAGTCCGCTCTCTGAC | TACGCGTCGTGTATCGTAGC | OSJNBa0035A24 |
Fig. 1. Phenotypic characterization of the wltt mutant and its wild type(WT). A, Seedling stage; B, Fifteen days after transplanting, at the tillering stage; The insert represents the new fully-expanded leaf blades of the wild type (left) and the mutant (right); C, Fifteen days after transplanting at the heading stage. The inserts represents the leaves of regenerated tillers of the wild type (left) and the mutant (right); D, Plants at the mature stage (transplanting at the tillering stage). E, Wild-type and mutant plants at the tillering stage under direct seeding. F, Net photosynthetic rate of new fully expanded leaf blades of the wild type and wltt mutant at the tillering stage. WT, Wild type. ** P<0.01(Student’s t test).
材料 Material | 株高 Plant height /cm | 有效穗数 No. of effective panicles | 剑叶长 Flag leaf length /cm | 穗长 Panicle length /cm | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g | |
---|---|---|---|---|---|---|---|---|
WT | 86.7±0.2 | 9.2±0.4 | 22.28±0.53 | 20.44±0.46 | 173.6±5.7 | 95.8±0.4 | 29.18±0.26 | |
wltt | 75.8±0.5** | 8.2±0.4 | 18.10±0.37** | 18.40±0.41** | 136.2±6.9** | 95.6±1.7 | 28.46±0.32 |
Table 2 Comparison of major agronomic traits between the wltt mutant and its wild type(WT).
材料 Material | 株高 Plant height /cm | 有效穗数 No. of effective panicles | 剑叶长 Flag leaf length /cm | 穗长 Panicle length /cm | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g | |
---|---|---|---|---|---|---|---|---|
WT | 86.7±0.2 | 9.2±0.4 | 22.28±0.53 | 20.44±0.46 | 173.6±5.7 | 95.8±0.4 | 29.18±0.26 | |
wltt | 75.8±0.5** | 8.2±0.4 | 18.10±0.37** | 18.40±0.41** | 136.2±6.9** | 95.6±1.7 | 28.46±0.32 |
Fig. 2. Pigment contents in leaves of wltt mutant and its wild type(WT). Chla, Chlorophyll a; Chlb, Chlorophyll b; Car, Carotenoids; Total, Total pigment contents. Values are presented as mean±SD. **The difference between the wild type and wltt is significant at 0.01 level according to Student’s t test.
Fig. 3. Transmission electron microscopic (TEM) images of chloroplast ultrastructure in the wild type and the wltt mutant. A-C, Transmission electron microscopic (TEM) images of chloroplast ultrastructure in wild type; D-F, Two types of chloroplasts with (E, F) or without (D) a normal ultrastructure in the wltt mutant; Cp, Chloroplast; Thy, Thylakoid lamellae; OB, Osmiophilic body.
Fig. 4. Expression analysis of genes associated with chloroplast development and photosynthetic system in the wild type(WT) and wltt mutant. Mean±SD (n=3). **The difference between the wild type and wltt is significant at 0.01 level according to Student’s t test.
Fig. 5. Expression analysis of genes associated with chlorophyll biogenesis in the wild type(WT) and wltt mutant. Means ± SD (n=3). * and **The difference between the wild type and wltt is significant at 0.05 and 0.01 level, respectively according to Student’s t test.
Fig. 6. Effects of environmental conditions on leaf color variation. A, The seedlings of the wild type and wltt with non-injured roots; B, C, The seedlings of wild type and wltt 10 days after root cutting treatment at 20℃ at the light intensity of 25 000 lx(B) and 6250 lx(C), respectively. D, E, The seedlings of wild type and wltt 10 days after root cutting treatment at 30℃ at the light intensity of 25 000 lx(D) and 6250 lx(E), respectively.
Fig. 7. Effects of environmental conditions on pigment contents after root cutting treatment. Means±SD (n=3). **The difference between the wild type and wltt is significant at 0.01 level according to Student’s t test.
杂交组合 Cross | 正常株数 No. of normal plants | 白条纹株数 No. of white stripe plants | 实际分离比 Segregation ratio | χ2(3:1) |
---|---|---|---|---|
WT×wltt | 375 | 127 | 2.95:1 | 0.02 |
wltt×WT | 368 | 130 | 2.83:1 | 0.06 |
Table 3 Segregation of F2 population from wltt mutant and its wild type(WT).
杂交组合 Cross | 正常株数 No. of normal plants | 白条纹株数 No. of white stripe plants | 实际分离比 Segregation ratio | χ2(3:1) |
---|---|---|---|---|
WT×wltt | 375 | 127 | 2.95:1 | 0.02 |
wltt×WT | 368 | 130 | 2.83:1 | 0.06 |
Fig. 8. Location of WLTT on rice chromosome 2. A, The gene is mapped to the centromeric region of chromosome 2 between the InDel markers I2-5 and I2-8; B, Mapping of the gene locus between markers L22 and L26 within an 853 kb region. CEN, Centromere; n, Number of individuals with white stripe leaf after transplanting.
[1] | Leister D.Chloroplast research in the genomic age.Trends Genet, 2003, 19(1): 47-56. |
[2] | Kong W, Yu X, Chen H, Liu L, Xiao Y, Wang Y, Wang C, Lin Y, Yu Y, Wang C, Jiang L, Zhai H, Zhao Z, Wan J.The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice.Plant Mol Biol, 2016, 92(1-2): 177-191. |
[3] | Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J.WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice.Plant Mol Biol, 2016, 92(4/5): 581-595. |
[4] | Zhang Z, Tan J, Shi Z, Xie Q, Xing Y, Liu C, Chen Q, Zhu H, Wang J, Zhang J, Zhang G. Albino Leaf1 that encodes the sole octotricopeptide repeat protein is responsible for chloroplast development. Plant Physiol, 2016, 171(2): 1182-1191. |
[5] | Fambrini M, Castagna A, Vecchia F D, Degl Innocenti E, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C.Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PSII activity and low endogenous level of abscisic acid. Plant Breeding, 2004, 6: 645-650. |
[6] | Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H.Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol, 2001, 125(3): 1248-1257. |
[7] | Parks B M, Quail P H.Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991, 3(11): 1177-1186. |
[8] | Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H, Wan J M.Disruption of a rice pentatricopeptide repeat protein causes a seedling- specific albino phenotype and its utilization to enhance seed purity in hybrid rice production.Plant Physiol, 2012, 159(1): 227-238. |
[9] | 谭炎宁, 孙学武, 袁定阳, 孙志忠, 余东, 何强, 段美娟, 邓华凤, 袁隆平. 水稻单叶独立转绿型黄化突变体grc2 的鉴定与基因精细定位. 作物学报, 2015, 41(6): 831-837. |
Tan Y N, Sun X W, Yuan D Y, Sun Z Z, Yu D, He Q, Duan M J, Deng H F, Yuan L P.Identification and fine mapping of green-revertible chlorina gene grc2 in rice(Oryza sativa L.). Acta Agron Sin, 2015, 41(6): 831-837. (in Chinese with English abstract) | |
[10] | 钱前, 朱旭东, 曾大力, 张小惠, 严学强, 熊振民. 细胞质基因控制的新特异材料白绿苗的研究. 作物品种资源, 1996(4): 11-12. |
Qian Q, Zhu X D, Zeng D L, Zhang X H, Yan X Q, Xiong Z M.The study on a new special material, white-green rice which controlled by plasma gene.J Crop Resour, 1996(4): 11-12. (in Chinese). | |
[11] | 李贤勇, 王楚桃, 李顺武, 何永歆, 陈世全. 一个水稻高叶绿素含量基因的发现. 西南农业学报, 2002, 15(4): 122-123. |
Li X Y, Wang C T, Li S W, He Y X, Chen S Q.The discovery of a high chlorophyll content gene in rice.Southwest China J Agric Sci, 2002, 15(4): 122-123. (in Chinese with English abstract) | |
[12] | Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G.Differential regulation of chlorophyll a oxygenase genes in rice.Plant Mol Biol, 2005, 57(6): 805-818. |
[13] | Yang Y L, Xu J, Huang L C, Leng Y J, Dai L P, Rao Y C, Chen L, Wang Y Q, Tu Z J, Hu J, Ren D Y, Zhang G H, Zhu L, Guo L B, Qian Q, Zeng D L. PGL , encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. J Exp Bot, 2016, 67(5): 1297-1310. |
[14] | Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K.Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol, 2004, 45(9): 1194-1201. |
[15] | Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K.The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45(8): 985-996. |
[16] | Beale S I.Green genes gleaned.Trends Plant Sci, 2005, 10(7): 309-312. |
[17] | Nagata N, Tanaka R, Satoh S, Tanaka A.Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17(1): 233-240. |
[18] | Goh C H, Satoh K, Kikuchi S, Kim S C, Ko S M, Kang H G, Jeon J S, Kim C S, Park Y.Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice OsCHLH seedlings. Plant Biotechnol Rep, 2010, 4(4): 281-291. |
[19] | Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62(3): 325-337. |
[20] | Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J.Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a |
divinyl reductase in rice.Plant Physiol, 2010, 153(3): 994-1003. | |
[21] | Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J, 2013, 74(1): 122-133. |
[22] | Yang Q S, He H, Li H Y, Tian H, Zhang J J, Zhai L G, Chen J D, Wu H, Yi G J, He Z H, Peng X X.NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and rubisco formation in rice.PLoS ONE, 2011, 6(5): e20015. |
[23] | Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol, 2007, 145(1): 29-40. |
[24] | Yagi Y, Ishizaki Y, Nakahira Y, Tozawa Y, Shiina T.Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase.Proc Natl Acad Sci USA, 2012, 109(19): 7541-7546. |
[25] | Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S, Melzer M, Petersen K, Lein W, Bornke F Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: Evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell, 2010, 22: 1498-1515. |
[26] | Wang Y, Wang C, Zheng M, Lyu J, Xu Y, Li X, Niu M, Long W, Wang D, Wang H Y, William T, Wang Y, Wan J.WHITE PANICLE1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development.Plant Physiol, 2016, 170(4): 2110-2123. |
[27] | Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y.The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress. Rice, 2016, 9: 67. |
[28] | Tang J, Zhang W, Wen K, Chen G, Sun J, Tian Y, Tang W, Yu J, An H, Wu T, Kong F, Terzaghi W, Wang C, Wan J.OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice.Plant Mol Biol, 2017, 95(4/5): 345-357. |
[29] | Yue R, Wang X, Chen J, Ma X, Zhang H, Mao C, Wu P.A rice stromal processing peptidase regulates chloroplast and root development.Plant Cell Physiol, 2010, 51(3): 475-485. |
[30] | Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H, Wan J M.A rice Virescent-Yellow Leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162(4): 1867-1880. |
[31] | Zhou S, Sawicki A, Willows R D, Luo M.C-terminal residues of Oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis. FEBS Lett, 2012,586(3): 205-210. |
[32] | Yoshida S, Forno D A, Cock J A H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Los Banos,Philippines: The International Rice Research Institute, 1976: 61. |
[33] | McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosome.Theor Appl Genet, 1998, 76: 815-829. |
[34] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method.Methods, 2001, 25(4): 402-408. |
[35] | Shi X, Chen S, Peng Y, Wang Y, Chen J, Hu Z, Wang B, Li A, Chao D, Li Y, Teng S.TSC1 enables plastid development under dark conditions, contributing to rice adaptation to transplantation shock.J Integr Plant Biol, 2018, 60(2): 112-129. |
[36] | Kensuke K, Shoko H, Hiroshi S, Yoko C, Osanu M, Koh I.Contribution of chloroplast biogenesis to carbon- nitrogen balance during early leaf development in rice.J Plant Res, 2010, 123(4): 617-622. |
[37] | Hiroki S, Kensuke K, Ko N, Masahiro Y, Atsushi Y, Koh I.The rice nuclear gene, VIRESCENT 2 , is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52(3): 512-527. |
[38] | Gong X D, Su Q Q, Lin D Z, Jiang Q, Xu J L, Zhang J H, Teng S, Dong Y J.The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. J Integr Plant Biol, 2014, 56(4): 400-410 |
[39] | Jiang Q, Mei J, Gong X D, Xu J L, Zhang J H, Teng S, Lin D Z, Dong Y J. Importance of the rice TCD9 encoding subunit of chaperonin protein 60(Cpn60)for the chloroplast development during the early leaf stage. Plant Sci, 2014, 215/216: 172-179. |
[40] | Song J, Wei X J, Shao G N, Sheng Z H, Chen D B, Liu C L, Jiao G A, Xie L L, Tang S Q, Hu P S.The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol, 2014, 84(3): 301-314 |
[41] | Pakrasi H B.Genetic analysis of the form and function of photosystem Ⅰ and photosystem Ⅱ.Annu Rev Genet, 1995, 29: 755-776. |
[42] | Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix J D.The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J, 1997, 16(20): 6095-6104. |
[43] | Santis-Maciossek G D, Kofer W, Bock A, Schoch S, Maier R M, Wanner G, Rüdiger W, Hans-Ulrich K, Herrmann R G. Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: Molecular biology biochemistry and ultrastructure. Plant J, 1999, 18: 477-489. |
[44] | Rogalski M, Ruf S, Bock R.Tobacco plastid ribosomal protein S18 is essential for cell survival.Nucl Acids Res, 2006, 34: 4537-4545. |
[45] | Fleischmann T T, Scharff L B, Alkatib S, Hasdorf S, Schottler M A, Bock R.Nonessential plastid-encoded ribosomal proteins in tobacco: A developmental role for plastid translation and implications for reductive genome evolution.Plant Cell, 2011, 23(9): 3137-3155. |
[46] | 夏家平, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 小麦叶绿素缺失突变体Mt135的叶绿体基因差异表达分析. 中国水稻科学, 2012, 38(11):2122-2130. |
Xia J P, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Li J H, Liu L X.Differential expression of chloroplast genes in chlorophyll-deficient wheat mutantMt135 derived from space mutagenesis. Chin J Rice Sci, 2012(11): 2122-2130. | |
[47] | Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C.Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009, 36(2): 117-123. |
[48] | 李燕群, 钟萍, 高志艳, 朱柏羊, 陈丹, 孙昌辉, 王平荣, 邓晓建. 水稻斑马叶突变体zebra524的表型鉴定及候选基因分析. 中国农业科学, 2014, 47(15): 2907-2915. |
Li Y Q, Zhong P, Gao Z Y, Zhu B Y, Chen D, Sun C H, Wang P R, Deng X J.Morphological characterization and candidate gene analysis of zebra leaf mutant zebra524 in rice. Sci Agric Sin, 2014, 47(15): 2907-2915. | |
[49] | Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y.Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol (Stuttg), 2015, 17(3): 599-607. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||