Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (2): 150-158.DOI: 10.3969/j.issn.1001-7216.2015.02.006
• Orginal Article • Previous Articles Next Articles
Zhi-jun WANG1, Zong-ming XIE1,*(), You-sheng TIAN1, Lin CHEN2, Yong-mei DONG1, You-zhong LI1, Zhao-zhi LV1,3
Received:
2014-04-10
Revised:
2014-12-23
Online:
2015-03-10
Published:
2015-03-10
Contact:
Zong-ming XIE
王志军1, 谢宗铭1,*(), 田又升1, 陈林2, 董永梅1, 李有忠1, 吕昭智1,3
通讯作者:
谢宗铭
基金资助:
CLC Number:
Zhi-jun WANG, Zong-ming XIE, You-sheng TIAN, Lin CHEN, Yong-mei DONG, You-zhong LI, Zhao-zhi LV. Photosynthetic Characteristics of Rice Under Drip Irrigation with Plastic Film Mulching and Continuous Flooding[J]. Chinese Journal OF Rice Science, 2015, 29(2): 150-158.
王志军, 谢宗铭, 田又升, 陈林, 董永梅, 李有忠, 吕昭智. 膜下滴灌和淹灌两种栽培模式下水稻光合生理特性的研究[J]. 中国水稻科学, 2015, 29(2): 150-158.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2015.02.006
材料 Material | 栽培方式 Cultivation | 叶绿素a含量 Chlorophyll a content /(mg·g-1) | 叶绿素b含量 Chlorophyll b content /(mg·g-1) | 总叶绿素含量 Total Chlorophyll contents /(mg·g-1) | 类胡萝卜素含量 Carotenoids contents /(mg·g-1) | 叶绿素a/b Chlorophyll a/b | 类胡萝卜素/ 叶绿素 Carotenoids/ chlorophyll |
---|---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 1.09±0.08 a | 0.37±0.03 a | 1.46±0.11 a | 0.21±0.014 a | 2.96±0.24 a | 0.15±0.001 a |
膜下滴灌DIPFM | 0.85±0.04 b | 0.31±0.02 b | 1.15±0.05 b | 0.11±0.004 b | 2.77±0.39 c | 0.13±0.003 b | |
T-43 | 传统淹灌TCF | 1.14±0.00 a | 0.40±0.01 a | 1.54±0.03 a | 0.21±0.006 a | 2.89±0.16 b | 0.14±0.002 b |
膜下滴灌DIPFM | 1.11±0.04 a | 0.40±0.01 a | 1.51±0.04 a | 0.21±0.006 a | 2.77±0.41 c | 0.14±0.001 b |
Table 1 Contents and partial ratio of photosynthetic pigments in flag leaf at milky stage in rice under two cultivation patterns.
材料 Material | 栽培方式 Cultivation | 叶绿素a含量 Chlorophyll a content /(mg·g-1) | 叶绿素b含量 Chlorophyll b content /(mg·g-1) | 总叶绿素含量 Total Chlorophyll contents /(mg·g-1) | 类胡萝卜素含量 Carotenoids contents /(mg·g-1) | 叶绿素a/b Chlorophyll a/b | 类胡萝卜素/ 叶绿素 Carotenoids/ chlorophyll |
---|---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 1.09±0.08 a | 0.37±0.03 a | 1.46±0.11 a | 0.21±0.014 a | 2.96±0.24 a | 0.15±0.001 a |
膜下滴灌DIPFM | 0.85±0.04 b | 0.31±0.02 b | 1.15±0.05 b | 0.11±0.004 b | 2.77±0.39 c | 0.13±0.003 b | |
T-43 | 传统淹灌TCF | 1.14±0.00 a | 0.40±0.01 a | 1.54±0.03 a | 0.21±0.006 a | 2.89±0.16 b | 0.14±0.002 b |
膜下滴灌DIPFM | 1.11±0.04 a | 0.40±0.01 a | 1.51±0.04 a | 0.21±0.006 a | 2.77±0.41 c | 0.14±0.001 b |
材料 Material | 栽培方式 Cultivation | 蒸腾速率 Transpiration rate(Tr) /(mmol·m-2s-1) | 气孔导度 Stomatal conductance(Gs) /(μmol·m-2s-1) | 光合速率 Photosynthetic rate(Pn) /(μmol·m-2s-1) | 胞间CO2浓度 Intercellular CO2 concentration(Ci) /(μmol·mol-1) | 水分利用效率 Water use efficiency(WUE) μmol/mmol |
---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 17.79±2.26 a | 451.96±63.38 a | 21.18±2.86 a | 258.92±13.56 a | 1.19±0.05 b |
膜下滴灌DIPFM | 8.72±1.28 b | 211.70±42.95 b | 14.48±2.92 c | 241.19±18.08 b | 1.66±0.06 a | |
T-43 | 传统淹灌TCF | 17.31±1.77 a | 387.92±58.31 a | 20.95±4.40 ab | 248.34±7.79 ab | 1.21±0.03 b |
膜下滴灌DIPFM | 10.50±1.41 b | 244.51±41.04 b | 16.51±3.27 bc | 232.85±5.98 b | 1.57±0.08 a |
Table 2 Photosynthetic characteristics in flag leaf at milky stage in rice under two cultivation patterns.
材料 Material | 栽培方式 Cultivation | 蒸腾速率 Transpiration rate(Tr) /(mmol·m-2s-1) | 气孔导度 Stomatal conductance(Gs) /(μmol·m-2s-1) | 光合速率 Photosynthetic rate(Pn) /(μmol·m-2s-1) | 胞间CO2浓度 Intercellular CO2 concentration(Ci) /(μmol·mol-1) | 水分利用效率 Water use efficiency(WUE) μmol/mmol |
---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 17.79±2.26 a | 451.96±63.38 a | 21.18±2.86 a | 258.92±13.56 a | 1.19±0.05 b |
膜下滴灌DIPFM | 8.72±1.28 b | 211.70±42.95 b | 14.48±2.92 c | 241.19±18.08 b | 1.66±0.06 a | |
T-43 | 传统淹灌TCF | 17.31±1.77 a | 387.92±58.31 a | 20.95±4.40 ab | 248.34±7.79 ab | 1.21±0.03 b |
膜下滴灌DIPFM | 10.50±1.41 b | 244.51±41.04 b | 16.51±3.27 bc | 232.85±5.98 b | 1.57±0.08 a |
材料 Material | 栽培方式 Cultivation | 最大净光合速率 Maximum net photosynthetic rate /(μmol·m-2s-1) | 暗呼吸速率 Respiration rate /(μmol·m-2s-1) | 光补偿点 Light compensation point /(μmol·m-2s-1) | 光饱和点 Light saturation point /(μmol·m-2s-1) | 表观量子效 Apparent quantum efficiency | 决定系数 Determination coefficient |
---|---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 18.92 b | -0.132 b | 4.00 b | 733 b | 0.044 b | 0.939 |
膜下滴灌DIPFM | 13.81 d | -1.402 a | 6.75 a | 644 d | 0.041 c | 0.914 | |
T-43 | 传统淹灌TCF | 21.23 a | -0.075 b | 2.40 c | 690 c | 0.048 a | 0.929 |
膜下滴灌DIPFM | 17.40 c | -0.033 b | 1.43 d | 757 a | 0.016 d | 0.896 |
Table 3 Simulated parameters of light-response curve in flag leaf at milky stage in rice under two cultivation patterns.
材料 Material | 栽培方式 Cultivation | 最大净光合速率 Maximum net photosynthetic rate /(μmol·m-2s-1) | 暗呼吸速率 Respiration rate /(μmol·m-2s-1) | 光补偿点 Light compensation point /(μmol·m-2s-1) | 光饱和点 Light saturation point /(μmol·m-2s-1) | 表观量子效 Apparent quantum efficiency | 决定系数 Determination coefficient |
---|---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 18.92 b | -0.132 b | 4.00 b | 733 b | 0.044 b | 0.939 |
膜下滴灌DIPFM | 13.81 d | -1.402 a | 6.75 a | 644 d | 0.041 c | 0.914 | |
T-43 | 传统淹灌TCF | 21.23 a | -0.075 b | 2.40 c | 690 c | 0.048 a | 0.929 |
膜下滴灌DIPFM | 17.40 c | -0.033 b | 1.43 d | 757 a | 0.016 d | 0.896 |
材料 Material | 栽培方式 Cultivation | 最大净光合速率 Maximum net photosynthetic rate /(μmol·m-2s-1) | 羧化效率 Carboxylation efficiency | 光呼吸速率 Photorespiratory rate /(μmol·m-2s-1) | CO2补偿点 CO2 compensation point /(μmol·mol-1) | CO2饱和点 CO2 saturation point /(μmol·mol-1) | 决定系数 Determination coefficient |
---|---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 41.10 b | 0.048 b | -1.885 b | 39.27 a | 895 b | 0.955 |
膜下滴灌DIPFM | 35.05 c | 0.045 c | -1.712 c | 37.78 b | 816 c | 0.955 | |
T-43 | 传统淹灌TCF | 50.16 a | 0.055 a | -1.940 a | 35.27 c | 947 a | 0.967 |
膜下滴灌DIPFM | 33.34 d | 0.049 b | -1.703 c | 34.76 d | 646 d | 0.905 |
Table 4 Simulated parameters of CO2-response curve in flag leaf at milky stage in rice under two cultivation patterns.
材料 Material | 栽培方式 Cultivation | 最大净光合速率 Maximum net photosynthetic rate /(μmol·m-2s-1) | 羧化效率 Carboxylation efficiency | 光呼吸速率 Photorespiratory rate /(μmol·m-2s-1) | CO2补偿点 CO2 compensation point /(μmol·mol-1) | CO2饱和点 CO2 saturation point /(μmol·mol-1) | 决定系数 Determination coefficient |
---|---|---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 41.10 b | 0.048 b | -1.885 b | 39.27 a | 895 b | 0.955 |
膜下滴灌DIPFM | 35.05 c | 0.045 c | -1.712 c | 37.78 b | 816 c | 0.955 | |
T-43 | 传统淹灌TCF | 50.16 a | 0.055 a | -1.940 a | 35.27 c | 947 a | 0.967 |
膜下滴灌DIPFM | 33.34 d | 0.049 b | -1.703 c | 34.76 d | 646 d | 0.905 |
参数 Parameter | T-04 | T-43 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
传统淹灌TCF | 膜下滴灌DIPFM | 传统淹灌TCF | 膜下滴灌DIPFM | |||||||||
光系统Ⅱ有效量子产量 | 0.74 | ± | 0.04 a | 0.73 | ± | 0.03 a | 0.64 | ± | 0.06 b | 0.66 | ± | 0.05 ab |
Effective quantum yield of photosystemⅡ | ||||||||||||
相对电子传递 | 117.63 | ± | 15.06 ab | 85.3 | ± | 13.29 bc | 144.53 | ± | 29.94 a | 72.5 | ± | 23.76 c |
Electron transport rate/(μmol·m-2s-1) | ||||||||||||
光化学猝灭 | 0.91 | ± | 0.06 ab | 0.95 | ± | 0.10 ab | 0.81 | ± | 0.10 b | 0.99 | ± | 0.10 a |
Photochemical quenching | ||||||||||||
非光化学猝灭 | 0.044 | ± | 0.05 ab | 0.100 | ± | 0.09 a | 0.035 | ± | 0.01 ab | 0.017 | ± | 0.03 b |
Non-photochemical quenching | ||||||||||||
暗适应样品最小荧光 | 339 | ± | 18 c | 379 | ± | 17 b | 372 | ± | 33 b | 544 | ± | 50 a |
Minimal fluorescence | ||||||||||||
暗适应样品最大荧 | 1868 | ± | 59 a | 1823 | ± | 365 a | 1903 | ± | 252 a | 1696 | ± | 23 a |
Maximal fluorescence | ||||||||||||
暗适应PSⅡ最大量子Fv/ | 0.82 | ± | 0.00 a | 0.79 | ± | 0.05 a | 0.80 | ± | 0.03 a | 0.67 | ± | 0.07 b |
Optimal/maximal photochemical | ||||||||||||
efficiency of PSⅡ in the dark |
Table 5 Chlorophyll fluorescence kinetic parameters in flag leaf at milky stage in rice under two cultivation patterns.
参数 Parameter | T-04 | T-43 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
传统淹灌TCF | 膜下滴灌DIPFM | 传统淹灌TCF | 膜下滴灌DIPFM | |||||||||
光系统Ⅱ有效量子产量 | 0.74 | ± | 0.04 a | 0.73 | ± | 0.03 a | 0.64 | ± | 0.06 b | 0.66 | ± | 0.05 ab |
Effective quantum yield of photosystemⅡ | ||||||||||||
相对电子传递 | 117.63 | ± | 15.06 ab | 85.3 | ± | 13.29 bc | 144.53 | ± | 29.94 a | 72.5 | ± | 23.76 c |
Electron transport rate/(μmol·m-2s-1) | ||||||||||||
光化学猝灭 | 0.91 | ± | 0.06 ab | 0.95 | ± | 0.10 ab | 0.81 | ± | 0.10 b | 0.99 | ± | 0.10 a |
Photochemical quenching | ||||||||||||
非光化学猝灭 | 0.044 | ± | 0.05 ab | 0.100 | ± | 0.09 a | 0.035 | ± | 0.01 ab | 0.017 | ± | 0.03 b |
Non-photochemical quenching | ||||||||||||
暗适应样品最小荧光 | 339 | ± | 18 c | 379 | ± | 17 b | 372 | ± | 33 b | 544 | ± | 50 a |
Minimal fluorescence | ||||||||||||
暗适应样品最大荧 | 1868 | ± | 59 a | 1823 | ± | 365 a | 1903 | ± | 252 a | 1696 | ± | 23 a |
Maximal fluorescence | ||||||||||||
暗适应PSⅡ最大量子Fv/ | 0.82 | ± | 0.00 a | 0.79 | ± | 0.05 a | 0.80 | ± | 0.03 a | 0.67 | ± | 0.07 b |
Optimal/maximal photochemical | ||||||||||||
efficiency of PSⅡ in the dark |
材料 Material | 栽培方式 Cultivation | 丙二醛含量 Malondialdehyde content /(mmol·g -1) | 脯氨酸含量 Proline content /(μg·g -1) | 可溶性蛋白含量 Soluble protein content /(μg·g-1) | 可溶性糖含量 Soluble sugar content /(mg·g -1) |
---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 8.24±0.90 d | 247.25±10.08 d | 14.11±0.58 b | 13.10±0.03 b |
膜下滴灌DIPFM | 9.71±1.05 c | 638.45±11.01a | 12.74±0.76 d | 10.02±1.46 c | |
T-43 | 传统淹灌TCF | 10.73±1.26 b | 514.25±7.45 c | 15.80±0.04 a | 14.41±1.02 a |
膜下滴灌DIPFM | 11.59±1.26 a | 601.03±10.46 b | 13.19±0.70 c | 9.01±0.01 d |
Table 6 Contents of osmolyts in flag leaf at milky stage in rice under two cultivation patterns.
材料 Material | 栽培方式 Cultivation | 丙二醛含量 Malondialdehyde content /(mmol·g -1) | 脯氨酸含量 Proline content /(μg·g -1) | 可溶性蛋白含量 Soluble protein content /(μg·g-1) | 可溶性糖含量 Soluble sugar content /(mg·g -1) |
---|---|---|---|---|---|
T-04 | 传统淹灌TCF | 8.24±0.90 d | 247.25±10.08 d | 14.11±0.58 b | 13.10±0.03 b |
膜下滴灌DIPFM | 9.71±1.05 c | 638.45±11.01a | 12.74±0.76 d | 10.02±1.46 c | |
T-43 | 传统淹灌TCF | 10.73±1.26 b | 514.25±7.45 c | 15.80±0.04 a | 14.41±1.02 a |
膜下滴灌DIPFM | 11.59±1.26 a | 601.03±10.46 b | 13.19±0.70 c | 9.01±0.01 d |
耗水量及农艺性状 Water consumption and agronomic traits | T-04 | T-43 | ||
---|---|---|---|---|
传统淹灌 TCF | 膜下滴灌 DIPFM | 传统淹灌 TCF | 膜下滴灌 DIPFM | |
耗水量water consumption/(m3·667m-2) | 1834 | 697 | 1834 | 697 |
有效穗数Effective panicle number/(×104·hm-2) | 319.6±7.8 b | 230.8±10.1 c | 456.6±8.7 a | 333.5±9.5 b |
株高 Plant height | 94.8±5.3 a | 76.9±9.6 b | 92.7±6.2 a | 73.8±12.5 b |
主穗长Main panicle length | 17.2±2.0 ab | 18.6±1.4 a | 14.9±1.6 c | 15.9±3.0 bc |
每穗实粒数Filled grain number per panicle | 128.1±10.6 a | 110.1±11.5 a | 77.2±7.4 b | 69.7±10.8 b |
结实率Seed setting rate/% | 91.4±5.1 a | 81.6±6.5 b | 91.0±3.9 a | 80.0±6.1 b |
千粒重1000-grain weight/g | 28.4±1.9 a | 24.6±1.6 b | 28.5±1.6 a | 27.2±1.8 ab |
产量Yield/(kg·hm-2) | 11609.8±57.4 a | 6241.5±43.1 b | 10041.9±37.8 a | 6331.2±26.1 b |
Table 7 Comparison of water consumption and agronomic traits of rice under two cultivation patterns.
耗水量及农艺性状 Water consumption and agronomic traits | T-04 | T-43 | ||
---|---|---|---|---|
传统淹灌 TCF | 膜下滴灌 DIPFM | 传统淹灌 TCF | 膜下滴灌 DIPFM | |
耗水量water consumption/(m3·667m-2) | 1834 | 697 | 1834 | 697 |
有效穗数Effective panicle number/(×104·hm-2) | 319.6±7.8 b | 230.8±10.1 c | 456.6±8.7 a | 333.5±9.5 b |
株高 Plant height | 94.8±5.3 a | 76.9±9.6 b | 92.7±6.2 a | 73.8±12.5 b |
主穗长Main panicle length | 17.2±2.0 ab | 18.6±1.4 a | 14.9±1.6 c | 15.9±3.0 bc |
每穗实粒数Filled grain number per panicle | 128.1±10.6 a | 110.1±11.5 a | 77.2±7.4 b | 69.7±10.8 b |
结实率Seed setting rate/% | 91.4±5.1 a | 81.6±6.5 b | 91.0±3.9 a | 80.0±6.1 b |
千粒重1000-grain weight/g | 28.4±1.9 a | 24.6±1.6 b | 28.5±1.6 a | 27.2±1.8 ab |
产量Yield/(kg·hm-2) | 11609.8±57.4 a | 6241.5±43.1 b | 10041.9±37.8 a | 6331.2±26.1 b |
[1] | Belder P, Bouman B A M, Cabangon R, et al. Effect of water-saving irrigation on rice yield and water use in typical lowand conditions in Asia.Agric Water Manag, 2004, 65: 193-210. |
[2] | 徐俊增, 彭世彰, 魏征, 等. 不同供氮水平及水分调控条件下水稻光合作用光响应特征.农业工程学报, 2012, 28(2): 71-77. |
[3] | 程旺大, 张国平, 赵国平, 等. 嘉早935水稻覆膜旱栽的物质积累及运转研究.作物学报, 2003, 29(3): 413-418. |
[4] | 邓环, 曹凑贵, 程建平, 等. 不同灌溉方式对水稻生物学特性的影响. 中国生态农业学报, 2008, 16(3): 602-606. |
[5] | 邹桂花, 梅捍卫, 余新桥, 等. 不同灌水量对水、旱稻营养生长和光合特性及其产量的影响.作物学报, 2006, 32(8): 1179-1183. |
[6] | 郭庆人, 陈林. 水稻膜下滴灌栽培技术在我国发展的优势及前景分析. 中国稻米, 2012, 18(4): 36-39. |
[7] | He H B, Ma F Y, Yang R, et al.Rice performance and water use efficiency under plastic mulching with drip irrigation.Plos One, 2013, 8: 1-15. |
[8] | 朱齐超,危常州,李美宁,等. 氮肥运筹对膜下滴灌水稻生长和产量的影响,中国水稻科学,2013,27(4):440-446. |
[9] | 陈学庚,康建明. 水稻膜下滴灌种植与播种机的研究开发. 农机化研究, 2013(3): 74-79. |
[10] | 陈林,程莲,李丽,等. 水稻膜下滴灌技术的增产效果与经济效益分析.中国稻米,2013,19(1):41-4. |
[11] | 陈林,郭庆人.膜下滴灌水稻栽培技术的形成与发展. 2012,26(5):587-588. |
[12] | 陈林,王芬. 水稻光合特性研究综述.高原山地气象研究,2010,30(4):89-92. |
[13] | 周可金,肖文娜,官春云. 不同油菜品种角果光合特性及叶绿素荧光参数的差异.中国油料作物学报,2009,31(3):316-321. |
[14] | 凌启鸿. 作物群体质量. 上海:上海科学技术出版社,2000. |
[15] | 高俊风. 植物生理实验指导. 北京:高等教育出版社.2006. |
[16] | Thomley J H M.Mathematical models in plannt physiology.London:Academic Press,1976. |
[17] | Baly E C C. The kinetics of photosynthesis. London:Proceedings of the Royal Society of London Series B(Biological Sciences),1935. |
[18] | Krause G H,Weis E.Chlorophyll fluorescence and photosynthesis:The basis.Annu Rev Plant physiol Plant Mol Biol,1991,42:313-349. |
[19] | Van K, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology.Photo-synth Res,1990,25:147-150. |
[20] | 张明生,谢波,谈锋,等. 甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国农业科学,2003,36(1):13-16. |
[21] | 孙小玲,许岳飞,马鲁沂,等. 植株叶片的光合色素构成对遮阴的响应.植物生态学报,2010,34(8):989-999. |
[22] | 董志新,韩清芳,贾志宽,等. 不同苜蓿品种光合速率对光和CO2浓度的响应特征.生态学报,2007,27(6):2272-2277. |
[23] | 杜伟莉,高杰,胡富亮,等. 玉米叶片光合作用和渗透调节对干旱胁迫的响应.作物学报,2013,39(3):530-536. |
[24] | Pieters A J,Souki S E.Effects drought during grain filling on PS II activity in rice.J Plant Physiol,2005,162:903-911. |
[25] | 赵丽英,邓西平,山仑. 不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报,2007,15(1):63-66. |
[26] | Morgan J M,Osmoregulation and water stress in higher plants.Ann Rev plant pgysiol,1984,35:299-319. |
[27] | Cabuslay G S,Ito O,Alejar A A.Physiological evaluation of responses of rice to water deficit.Plant Sci,2002,163:815-827. |
[28] | Martino C D,Delfine S,Pizzuto R,et al.Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress.New Phytol,2003,158: 455-463. |
[29] | Chaves M M,Oliveira M M.Mechanisms underlying plant resilience to water deficits:Prospects for water-saving agriculture.J Exper Bot,2004,55:2365-2384. |
[30] | 蔡昆争,吴学祝,骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响.植物生态学报,2008,32(2):491-500. |
[31] | 张荣萍,马均,王贺正,等. 不同灌水方式对水稻生育特性及水分利用率的影响.中国农学通报,2005,21(9):144-150. |
[32] | 蔡永萍,杨其光,黄义德. 水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14(4):219-224. |
[33] | 倪同坤,戴柏元,王卫军,等. 水稻控制灌溉技术在苏北沿海垦区的应用.江苏农业科学,2008,3:52-54. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||