Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (2): 135-142.DOI: 10.16819/j.1001-7216.2020.9086
• Research Papers • Previous Articles Next Articles
Zhibin CAO1, Yao LI2, Bohong ZENG1, Linghua MAO1, Yaohui CAI1, Xiaofeng WU1,*, Linfeng YUAN1,*
Received:
2019-07-26
Revised:
2019-10-17
Online:
2020-03-10
Published:
2020-03-10
Contact:
Xiaofeng WU, Linfeng YUAN
About author:
#These authors contributed equally to this work
曹志斌1, 李瑶2, 曾博虹1, 毛凌华1, 蔡耀辉1, 吴晓峰1,*, 袁林峰1,*
通讯作者:
吴晓峰,袁林峰
作者简介:
#共同第一作者
基金资助:
CLC Number:
Zhibin CAO, Yao LI, Bohong ZENG, Linghua MAO, Yaohui CAI, Xiaofeng WU, Linfeng YUAN. QTL Mapping for Heat Tolerance of Chalky Grain Rate of Oryza glaberrima Steud.[J]. Chinese Journal OF Rice Science, 2020, 34(2): 135-142.
曹志斌, 李瑶, 曾博虹, 毛凌华, 蔡耀辉, 吴晓峰, 袁林峰. 非洲栽培稻垩白粒率耐热性QTL的定位[J]. 中国水稻科学, 2020, 34(2): 135-142.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9086
Fig. 1. Comparison of heat tolerance of chalky grain rate of CSIL05-23 and R9311 in field and artificial climatic chambers. **Significant differences at 0.01 level, t-test.
世代 Generation | 供体亲本 Donor parent (IRGC102309) | 受体亲本 Recipient parent (R9311) | 群体Population | ||||
---|---|---|---|---|---|---|---|
平均 Mean | 范围 Range | 标准差 SD | 峰度 Kurtosis | 偏度 Skewness | |||
BC6F2(n=200) | 1.074 | 2.36 | 2.18 | 1.52-2.62 | 0.23 | 0.17 | 0.12 |
BC6F3(n=368) | 1.054 | 2.23 | 2.11 | 1.48-2.68 | 0.31 | 0.23 | 0.32 |
BC6F4(n=430) | 1.082 | 2.06 | 2.03 | 1.42-2.56 | 0.27 | 0.17 | 0.12 |
Table 1 Phenotypic variation of insensitive value of heat tolerance of chalky grain rate in BC6F2, BC6F3 and BC6F4 population and their parents.
世代 Generation | 供体亲本 Donor parent (IRGC102309) | 受体亲本 Recipient parent (R9311) | 群体Population | ||||
---|---|---|---|---|---|---|---|
平均 Mean | 范围 Range | 标准差 SD | 峰度 Kurtosis | 偏度 Skewness | |||
BC6F2(n=200) | 1.074 | 2.36 | 2.18 | 1.52-2.62 | 0.23 | 0.17 | 0.12 |
BC6F3(n=368) | 1.054 | 2.23 | 2.11 | 1.48-2.68 | 0.31 | 0.23 | 0.32 |
BC6F4(n=430) | 1.082 | 2.06 | 2.03 | 1.42-2.56 | 0.27 | 0.17 | 0.12 |
Fig. 2. Genetic linkage map and likelihood intervals for QTL associated with heat tolerance of chalky grain rate. The left and right bars and whiskers indicate 1 logarithm of the odds (LOD) and 2 LOD likelihood intervals from BC6F3 and BC6F4 populations, respectively.
性状 Character | 群体 Population | 区间 Interval | LOD | 表型方差 Phenotypic variance/% | 加性效应 Additive effect/% |
---|---|---|---|---|---|
垩白粒率高温钝感值IV | BC6F3 | RM1200-RM5796 | 6.3 | 11.3 | -5.9 |
BC6F4 | RM1200-RM5796 | 7.4 | 17.5 | -11.8 | |
高温胁迫下的垩白粒率X1 | BC6F3 | RM1200-RM5796 | 5.9 | 9.5 | -5.6 |
BC6F4 | RM1200-RM5796 | 6.9 | 16.7 | -12.5 | |
正常温度条件下的垩白粒率X2 | BC6F3 | RM1200-RM5796 | 6.2 | 12.6 | -5.7 |
BC6F4 | RM1200-RM5796 | 7.1 | 16.5 | -11.2 |
Table 2 QTL analysis of heat tolerance of chalky grain rate in BC6F3 and BC6F4 populations.
性状 Character | 群体 Population | 区间 Interval | LOD | 表型方差 Phenotypic variance/% | 加性效应 Additive effect/% |
---|---|---|---|---|---|
垩白粒率高温钝感值IV | BC6F3 | RM1200-RM5796 | 6.3 | 11.3 | -5.9 |
BC6F4 | RM1200-RM5796 | 7.4 | 17.5 | -11.8 | |
高温胁迫下的垩白粒率X1 | BC6F3 | RM1200-RM5796 | 5.9 | 9.5 | -5.6 |
BC6F4 | RM1200-RM5796 | 6.9 | 16.7 | -12.5 | |
正常温度条件下的垩白粒率X2 | BC6F3 | RM1200-RM5796 | 6.2 | 12.6 | -5.7 |
BC6F4 | RM1200-RM5796 | 7.1 | 16.5 | -11.2 |
Fig. 3. Mapping of qHTCGR5 by a substitution mapping strategy. Linkage map of the QTLs region produced with 380 BC6F3 plants. The number of recombinants between adjacent markers is indicated under the linkage map. Progeny testing of BC6F4 homozygous recombinants delimited the qHTCGR5 locus to the region between markers RM1200 and RM5796. The 90 recombinants were grouped into 14 groups based on genotypes. The numbers of recombinants in each group and phenotypic difference of each group from the controls CSIL05-23 and R9311 for mean insensitive value of heat tolerance of chalky grain rate are shown on the right. An “a” following the phenotypic value indicates that the mean phenotypic value of recombinant was not significantly different from that of R9311 at P < 0.05;a “b”indicates that the mean phenotypic value of recombinant was not significantly different from that of CSIL05-23 at P < 0.05.
[1] | Carriger S, Vallée D.More crop per drop[J]. Rice Today, 2007, 6(2): 10-13. |
[2] | Hockley N, Gibbons J M, Edwards-Jones G.Risks of extreme heat and unpredictability[J]. Science, 2009, 324(5924): 177-179. |
[3] | Battisti D S, Naylor R L.Historical warnings of future food insecurity with unprecedented seasonal heat[J]. Science, 2009, 323(5911): 240-244. |
[4] | Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the quest for quality[J]. Trends Plant Science, 2009, 14(3): 133-139. |
[5] | 森谷国男,. 徐正进, 译. 水稻高温胁迫抗性遗传育种研究概况[M]. 杂交水稻, 1992(1): 47-48. |
Sengu G N,.Translated by Xu Z J. General Research on Genetic Breeding of Resistance to High Temperature Stress in Rice[M]. Hybrid Rice, 1992(1): 47-48. (in Chinese with English abstract) | |
[6] | 李木英, 熊伟, 石庆华, 胡志红, 潘晓华, 谭雪明. 高温胁迫对早稻不同品种灌浆结实和稻米品质的影响[J]. 江西农业学学报, 2006, 28(4): 483-487. |
Li M Y, Xiong W, Shi Q H, Hu Z H, Pan X H, Pan X M.Effect of high temperature stress on endosperm filling and grain quality of early rice varieties[J]. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(4): 483-487. (in Chinese with English abstract) | |
[7] | 赵海燕, 姚凤梅, 张勇, 徐宾, 袁静, 胡亚南, 许吟隆. 长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析[J]. 中国农业科学, 2006, 39(9): 1765-1771. |
Zhao H Y, Yao F M, Zhang Y, Xu B, Yuan J, Hu Y N, Xu Y L.Correlation analysis of rice seed setting rate and weight of 1000-grain and agro-meteorology over the middle and lower reaches of the Yangtze River[J]. Scientia Agricultura Sinica, 2006, 39(9): 1765-1771. (in Chinese with English abstract) | |
[8] | 李林, 沙国栋, 陆景淮. 水稻灌浆期温光因子对稻米品质的影响[J]. 中国农业气象, 1989, 10(3): 33-38. |
Li L, Sha G D, Lu J H.Effect of temperature and light on rice quality[J]. Chinese Journal of Agromemorology, 1989, 10(3): 33-38. (in Chinese with English abstract) | |
[9] | 程方明, 张蒿午, 吴永常. 灌浆结实期温度对稻米垩白形成的影响[J]. 西北农业学报, 1996, 5(2): 31-34. |
Cheng F M, Zhang H W, Wu Y C.Effect of high temperature stress on chalkiness at filling stage[J]. Acta Agriculturae Boreali-occidentalis Sinica, 1996, 5(2): 31-34. | |
[10] | Zhong L, Cheng F, Wen X, Sun Z X, Zhang G P.The deterioration of eating and cooking quality caused by high temperature during grain filling in early-season indica rice cultivars[J]. Journal of Agronomy and Crop Science-Zeitschrift Fur Acker Und Pflanzenbau, 2005, 191(3): 218-225. |
[11] | Mei D Y, Zhu Y J, Yu Y H, Fan Y Y, Huang D R, Zhuang J Y.Quantitative trait loci for grain chalkiness and endosperm transparency detected in three recombinant inbred line populations of indica rice[J]. Journal of Integrative Agriculture, 2013, 12(1): 1-11. |
[12] | 周立军, 刘喜, 江玲, 郑蕾娜, 陈亮明, 刘世家, 翟虎渠, 万建民. 利用CSSL和BIL群体分析稻米垩白粒率QTL 及互作效应. 中国农业科学, 2009, 42(4): 1129-1135. |
Zhou L J, Liu X, Jiang L, Zheng L N, Chen L M, Liu S J, Zhai H Q, Wan J M.Analysis of QTL and GE effects on PGWC in rice (Oryza sativa L.) using CSSL and BIL populations. Scientia Agricultura Sinica, 2009, 42(4): 1129-1135. (in Chinese with English abstract) | |
[13] | Liu X, Wang Y, Wang S W.QTL analysis of percentage of grains with chalkiness in japonica rice (Oryza sativa)[J]. Genetics and Molecular Research, 2012, 11(1): 717-724. |
[14] | 晁园, 冯付春, 高冠军, 朱雪萍, 何予卿. 利用重组自交系群体定位水稻品质相关性状的QTL[J]. 华中农业大学学报, 2012, 31(4): 397-403. |
Chao Y, Feng F C, Gao G J, Zhu X P, He Y Q.Mapping quantitative trait loci for qualities of rice grains using a Recombinant inbred(RIL) population[J]. Journal of Huazhong Agricultural University, 2012, 31(4): 397-403. (in Chinese with English abstract) | |
[15] | 杨亚春, 倪大虎, 宋丰顺, 李泽福, 易成新, 杨剑波. 不同生态地点下稻米外观品质性状的QTL定位分析[J]. 中国水稻科学, 2011, 25(1): 43-51. |
Yang Y C, Ni D H, Song F S, Li Z F, Yi C X, Chen J B.Identification of QTLs of rice appearance quality traits across different ecological sites[J]. Chinese Journal of Rice Science, 2011, 25(1): 43-51. (in Chinese with English abstract) | |
[16] | 王林森, 陈亮明, 王沛然, 王卓然, 郑海, 马宏阳, 江玲, 赵志刚, 万建民. 利用高世代回交群体检测水稻垩白相关性状 QTL[J]. 南京农业大学学报, 2016, 39(2): 183-190. |
Wang L S, Chen L M, Wang P R, Wang Z R, Zheng L, Ma H Y, Jiang L, Zhao Z G, Wan J M.Detecting the QTL of rice chalkiness traits using advanced backcrossing population[J]. Journal of Nanjing Agricultural University, 2016, 39(2): 183-190. (in Chinese with English abstract) | |
[17] | 朱昌兰. 稻低直链淀粉含量的遗传及品质形成对高温耐性的QTL分析. 南京: 南京农业大学, 2004. |
Zhu C L.Identifying QTLs for thermo-tolerance of quality formation and inheritance of low amylose content in rice. Nanjing: Nanjing Agriculture University, 2004. (in Chinese with English abstract) | |
[18] | 朱昌兰, 肖应辉, 王春明, 江玲, 翟虎渠, 万建民. 水稻灌浆期耐热害的数量性状基因位点分析[J]. 中国水稻科学, 2005, 19(2): 117-121. |
Zhu C L, Xiao Y H, Wang C M, Jiang L, Zhai H Q, Wan J M.Mapping QTLs for heat tolerance during grain filling in rice[J]. Chinese Journal of Rice Science, 2005, 19(2): 117-121. (in Chinese with English abstract) | |
[19] | Kobayashi A, Bao G, Ye S, Tomita K.Detection of quantitative trait loci for white-back and basal white kernels under high temperature stress in japonica rice varieties[J]. Breeding Science, 200, 57(2): 107-116. |
[20] | Shirasawa K.QTL analysis of high-temperature-stress tolerance in filling period based on rice grain quality[J]. Breeding Research, 2006, 8(1): 155. |
[21] | Tabata M, Hirabayashi H, Takeuchi Y, Ando I.Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice(Oryza sativa L)[J]. Breeding Science, 2007, 57(1): 47-52. |
[22] | 张桂莲, 廖斌, 唐文帮, 陈立云, 肖应辉. 稻米垩白性状对高温耐性的QTL分析. 中国水稻科学, 2017, 31(3): 257-264. |
Zhang GL, Liao B, Tang W B, Chen L Y, Xiao Y H.Identifying QTLs for thermo-tolerance of grain chalkiness trait in rice[J]. Chinese Journal of Rice Science, 2017, 31(3): 257-264. (in Chinese with English abstract) | |
[23] | 钟秉强, 杨正林, 冉启良, 何光华. 美国水稻品种农艺性状和品质性状的温度钝感特性研究[J]. 中国农学通报, 2005, 21(2): 118-121. |
Zhong B Q, Yang Z L, Ran Q L, He g H. Study on temperature insensitivity of characters of agronomy and quality in the American rice variety[J]. Chinese Agricultural Science Bulletin, 2005, 21(2): 118-121. (in Chinese with English abstract) | |
[24] | Rogers S O, Bendich A J.Extraction of DNA from plant tissues[M]. Plant molecular Biology Manual. Springer, Dordrecht, 1989: 73-83. |
[25] | Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A.MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987, 1(2): 174-181. |
[26] | Kosambi D D.The estimation of map distances from recombination values[J]. Annals of Eugenics, 1943, 12(YRS 1943/5): 172-175. |
[27] | Wang S C, Basten C J, Zeng Z B.Windows QTL Cartographer 2.5. Statistical Genetics, Raleigh, NC: North Carolina State, 2012. |
[28] | Zeng Z B.Precision mapping of quantitative trait loci.Genetics, 1994, 136: 1457-1468. |
[29] | 王慧, 喻德跃, 吴巧娟, 盖钧镒. 大豆对斜纹夜蛾抗生性基因的微卫星标记(SSR)的研究[J]. 大豆科学, 2004, 23(2): 91-95. |
Wang H, Yu D Y, Wu Q J, Gai J Y.Characterization of resistance genes to cotton worm with SSR markers in soybean[J]. Soybean Science, 2004, 23(2): 91-95. (in Chinese with English abstract) | |
[30] | 徐吉臣, 邹亮星. 利用相关性分析鉴定与水稻根部性状表达相关的分子标记[J]. 遗传学报, 2002, 29(3): 245-249. |
Xu J C, Zou L X.Identification of molecular markers associated with rice root traits by correlation coefficient analysis[J]. Acta Genetica Sinica, 2002, 29(3): 245-249. (in Chinese with English abstract) | |
[31] | McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature[J]. Rice Genetic Newsletter, 1997, 14: 11-13. |
[32] | Li X M, Chao D Y, Wu Y, Huang X H, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C, Dong N Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X.Natural alleles of a proteasome α2 subunit gene contribute to thermos-tolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827. |
[33] | Liu X, Wang Y, Wang S W.QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa)[J]. Genetics and Molecular Research, 2012, 11(1): 717-724. |
[34] | 高方远, 邱玲, 陆贤军, 任鄄胜, 吴贤婷, 任光俊, 曾礼华. 杂交籼稻骨干保持系岗46B稻谷粒形及垩白的QTL分析[J]. 中国水稻科学, 2014, 28(3): 235-242. |
Gao F Y, Qiu L, Lu X J, Ren J S, Wu X T, Ren G J, Zeng L H.QTL analysis on grain shape and chalkiness of an elite maintainer line Gang 46B in hybrid rice(Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2014, 28(3): 235-242. | |
[35] | Paterson A H, Deverna J W, Lanini B, Tanksley S D.Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato[J]. Genetics, 1990, 124(3): 735-742. |
[36] | Tanksley S D, Ganal M W, Martin G B.Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes[J]. Trends in Genetics, 1995, 11(2): 63-68. |
[37] | Alpert K B, Tanksley S D.High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(26): 15503-15507. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||