中国水稻科学 ›› 2021, Vol. 35 ›› Issue (3): 291-302.DOI: 10.16819/j.1001-7216.2021.0402
柳开楼1,2, 韩天富2, 李文军1,3, 余喜初1,*(), 胡志华1, 叶会财1, 胡丹丹1, 宋惠洁1, 李大明1, 黄庆海1
收稿日期:
2020-04-20
修回日期:
2020-12-06
出版日期:
2021-05-10
发布日期:
2021-05-10
通讯作者:
余喜初
基金资助:
Kailou LIU1,2, Tianfu HAN2, Wenjun LI1,3, Xichu YU1,*(), Zhihua HU1, Huicai YE1, Dandan HU1, Huijie SONG1, Daming LI1, Qinghai HUANG1
Received:
2020-04-20
Revised:
2020-12-06
Online:
2021-05-10
Published:
2021-05-10
Contact:
Xichu YU
摘要:
【目的】紫云英(Astragalus sinicus L.)是双季稻冬闲期重要的绿肥作物,长期进行紫云英翻压还田可以实现土壤培肥和水稻增产的双重目标。但是,在众多的土壤理化指标中,有关紫云英不同翻压年限下驱动水稻产量变化的关键因子还不明确。【方法】本研究在紫云英传统种植区(江西省余江区),选择紫云英翻压时间为0、3、5、10和15年(G0、G3、G5、G10和G15)的稻田,分析了土壤团聚体、有机质、氮磷钾养分含量和土壤酸化特征,并进一步探讨了土壤理化指标与早稻产量的相关关系。【结果】G5、G10和G15处理下,>2 mm团聚体组分的比例显著高于G0和G3处理。紫云英翻压年限越长,土壤有机质、全氮磷和速效氮磷钾及缓效钾含量越高。与G0处理相比,G10和G15处理下土壤pH提高了0.83和0.65个单位,且G15处理下土壤交换性酸/氢铝含量均显著低于G0处理。比较相关系数,在所有指标中,>2 mm团聚体组分的比例、土壤有机质、速效氮含量与籽粒产量的相关性较高(R2均大于0.8,P<0.01)。通径分析结果表明,紫云英翻压年限显著影响团聚体和有机质及养分指标,进而影响水稻产量。【结论】在双季稻区,长期紫云英翻压还田是实现土壤培肥和早稻增产的关键途径。紫云英翻压达到10年以上时,稻田土壤酸化得到明显改善。翻压年限对土壤大团聚体组分的影响程度较高,而土壤有机质和速效氮含量则是调控水稻产量变化的关键因素。
柳开楼, 韩天富, 李文军, 余喜初, 胡志华, 叶会财, 胡丹丹, 宋惠洁, 李大明, 黄庆海. 紫云英不同翻压年限下驱动水稻产量变化的土壤理化因子 分析[J]. 中国水稻科学, 2021, 35(3): 291-302.
Kailou LIU, Tianfu HAN, Wenjun LI, Xichu YU, Zhihua HU, Huicai YE, Dandan HU, Huijie SONG, Daming LI, Qinghai HUANG. Analysis on the Key Factors of Soil Physicochemical Properties Responsible for Changes in Rice Yield with Chinese Milk Vetch Turned over for Different Years[J]. Chinese Journal OF Rice Science, 2021, 35(3): 291-302.
图1 紫云英不同翻压年限下土壤团聚体组分变化 G3、G5、G10和G15分别表示紫云英翻压3、5、10和15年限。数值均用平均值±标准差(n=3)表示。不同小写字母表示同一组分不同处理存在显著差异(P<0.05)。下同。
Fig. 1. Changes in soil aggregate fractions with turnover of Chinese milk vetch for different years. G3, G5, G10 and G15 indicate 3, 5, 10 and 15 turnover years of Chinese milk vetch. The values represent means ± SD (n=3). Different lowercase letters indicate significant differences between different treatments in the same fraction at P<5% level. The same as below.
处理 Treatment | 有机质 Organic matter | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium |
---|---|---|---|---|
G15 | 63.43±1.62 a | 3.25±0.35 a | 0.80±0.05 a | 13.77±0.29 a |
G10 | 45.97±3.33 b | 2.61±0.18 b | 0.68±0.06 b | 14.13±1.48 a |
G5 | 31.57±2.43 c | 1.65±0.20 c | 0.68±0.03 b | 12.73±0.65 a |
G3 | 21.00±2.67 d | 1.57±0.22 c | 0.58±0.06 c | 13.37±1.25 a |
G0 | 12.45±3.10 e | 1.62±0.66 c | 0.52±0.07 c | 13.81±1.62 a |
表1 紫云英不同翻压年限下土壤有机质和全量氮磷钾含量变化
Table 1 Changes of soil organic matter, total nitrogen, phosphorus and potassium contents in turnover of Chinese milk vetch for different years. g/kg
处理 Treatment | 有机质 Organic matter | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium |
---|---|---|---|---|
G15 | 63.43±1.62 a | 3.25±0.35 a | 0.80±0.05 a | 13.77±0.29 a |
G10 | 45.97±3.33 b | 2.61±0.18 b | 0.68±0.06 b | 14.13±1.48 a |
G5 | 31.57±2.43 c | 1.65±0.20 c | 0.68±0.03 b | 12.73±0.65 a |
G3 | 21.00±2.67 d | 1.57±0.22 c | 0.58±0.06 c | 13.37±1.25 a |
G0 | 12.45±3.10 e | 1.62±0.66 c | 0.52±0.07 c | 13.81±1.62 a |
处理 Treatment | 速效氮 Available nitrogen | 有效磷 Available phosphorus | 速效钾 Available potassium | 缓效钾 Readily available potassium |
---|---|---|---|---|
G15 | 249.90±12.73 a | 82.15±13.50 a | 283.33±19.09 a | 599.17±36.26 a |
G10 | 203.35±11.81 b | 36.34±5.89 b | 266.67±14.43 a | 593.33±63.75 a |
G5 | 149.45±5.61 c | 31.18±8.22 bc | 213.33±56.20 b | 381.67±60.84 b |
G3 | 118.83±11.81 d | 22.07±1.09 bc | 125.83±16.65 c | 391.67±19.09 b |
G0 | 89.43±12.90 e | 17.21±2.10 c | 80.83±1.44 c | 295.83±13.77 c |
表2 紫云英不同翻压年限下土壤速效氮磷钾和缓效钾含量变化
Table 2 Changes of soil available nitrogen, phosphorus, potassium and slow-release potassium contents in turnover of Chinese milk vetch for different years. mg/kg
处理 Treatment | 速效氮 Available nitrogen | 有效磷 Available phosphorus | 速效钾 Available potassium | 缓效钾 Readily available potassium |
---|---|---|---|---|
G15 | 249.90±12.73 a | 82.15±13.50 a | 283.33±19.09 a | 599.17±36.26 a |
G10 | 203.35±11.81 b | 36.34±5.89 b | 266.67±14.43 a | 593.33±63.75 a |
G5 | 149.45±5.61 c | 31.18±8.22 bc | 213.33±56.20 b | 381.67±60.84 b |
G3 | 118.83±11.81 d | 22.07±1.09 bc | 125.83±16.65 c | 391.67±19.09 b |
G0 | 89.43±12.90 e | 17.21±2.10 c | 80.83±1.44 c | 295.83±13.77 c |
处理 Treatment | pH值 pH value | 交换性酸 Exchangeable acid | 交换性氢 Exchangeable hydrogen | 交换性铝 Exchangeable aluminum |
---|---|---|---|---|
G15 | 5.54±0.14 a | 0.22±0.12 b | 0.10±0.01 b | 0.12±0.12 b |
G10 | 5.35±0.30 a | 1.50±0.15 a | 0.19±0.03 ab | 1.31±0.18 a |
G5 | 4.98±0.24 b | 1.62±0.13 a | 0.20±0.09 ab | 1.41±0.13 a |
G3 | 4.82±0.07 b | 1.82±0.61 a | 0.20±0.09 ab | 1.62±0.57 a |
G0 | 4.70±0.07 b | 2.34±0.69 a | 0.29±0.03 a | 2.05±0.67 a |
表3 紫云英不同翻压年限下土壤酸化特征变化
Table 3 Changes of soil acidification in turnover of Chinese milk vetch for different years. cmol/kg
处理 Treatment | pH值 pH value | 交换性酸 Exchangeable acid | 交换性氢 Exchangeable hydrogen | 交换性铝 Exchangeable aluminum |
---|---|---|---|---|
G15 | 5.54±0.14 a | 0.22±0.12 b | 0.10±0.01 b | 0.12±0.12 b |
G10 | 5.35±0.30 a | 1.50±0.15 a | 0.19±0.03 ab | 1.31±0.18 a |
G5 | 4.98±0.24 b | 1.62±0.13 a | 0.20±0.09 ab | 1.41±0.13 a |
G3 | 4.82±0.07 b | 1.82±0.61 a | 0.20±0.09 ab | 1.62±0.57 a |
G0 | 4.70±0.07 b | 2.34±0.69 a | 0.29±0.03 a | 2.05±0.67 a |
处理 Treatment | 株高 Plant height /cm | 每1 m2穗数 Panicle number per m2 | 穗长 Panicle length /cm | 每穗总粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
G15 | 106.23±1.07 a | 314±5 a | 17.57±2.34 a | 136±4 a | 89.40±2.91 a | 21.63±0.45 a |
G10 | 113.00±4.68 a | 310±6 a | 18.13±0.45 a | 138±7 a | 89.64±1.21 a | 22.23±0.15 a |
G5 | 115.53±1.10 a | 308±5 a | 17.43±1.27 a | 142±2 a | 81.06±0.40 b | 22.69±0.67 a |
G3 | 113.43±1.37 a | 287±6 b | 18.20±0.89 a | 134±2 a | 79.45±0.19 b | 22.39±0.43 a |
G0 | 115.80±3.53 a | 252±6 c | 17.40±1.35 a | 128±6 a | 70.69±0.74 c | 22.31±1.01 a |
表4 紫云英不同翻压年限下早稻产量构成因子变化
Table 4 Changes of grain yield components in early rice in turnover of Chinese milk vetch for different years.
处理 Treatment | 株高 Plant height /cm | 每1 m2穗数 Panicle number per m2 | 穗长 Panicle length /cm | 每穗总粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
G15 | 106.23±1.07 a | 314±5 a | 17.57±2.34 a | 136±4 a | 89.40±2.91 a | 21.63±0.45 a |
G10 | 113.00±4.68 a | 310±6 a | 18.13±0.45 a | 138±7 a | 89.64±1.21 a | 22.23±0.15 a |
G5 | 115.53±1.10 a | 308±5 a | 17.43±1.27 a | 142±2 a | 81.06±0.40 b | 22.69±0.67 a |
G3 | 113.43±1.37 a | 287±6 b | 18.20±0.89 a | 134±2 a | 79.45±0.19 b | 22.39±0.43 a |
G0 | 115.80±3.53 a | 252±6 c | 17.40±1.35 a | 128±6 a | 70.69±0.74 c | 22.31±1.01 a |
指标 Index | 拟合方程 Fitted equation | R2 | P |
---|---|---|---|
>2 mm | y=69.602x+6264.8 | 0.8222 | 3.14×10-6 |
0.5-1 mm | y=-93.096x+9148 | 0.5048 | 2.99×10-3 |
0.25-0.5 mm | y=-76.42x+8920.5 | 0.2910 | 3.80×10-2 |
有机质 Organic matter | y=32.998x+6112.7 | 0.8383 | 1.68×10-6 |
全氮 Total nitrogen | y=650.17x+5924.7 | 0.6530 | 2.68×10-4 |
全磷 Total phosphorus | y=5305x+3809.4 | 0.7280 | 5.25×10-5 |
速效氮 Available nitrogen | y=10.128x+5621.1 | 0.8115 | 4.62×10-6 |
速效磷 Available phosphorus | y=21.389x+6455.5 | 0.6072 | 6.16×10-4 |
速效钾 Available potassium | y=7.0339x+5899.2 | 0.7705 | 1.70×10-5 |
缓效钾 Slow-release potassium | y=4.2472x+5342.6 | 0.6742 | 1.75×10-4 |
pH值 pH value | y=1582x-769.43 | 0.7178 | 6.71×10-5 |
交换性酸 Exchangeable acid | y=-626.54x+8202.4 | 0.5543 | 1.45×10-3 |
交换性氢 Exchangeable hydrogen | y=-4998.1x+8239.7 | 0.3304 | 2.50×10-2 |
交换性铝 Exchangeable aluminum | y=-672.09x+8139.4 | 0.5502 | 1.55×10-3 |
表5 紫云英不同翻压年限下籽粒产量与土壤理化指标的拟合方程
Table 5 Fitted equations between soil physical, chemical indexes and grain yield in turnover of Chinese milk vetch for different years.
指标 Index | 拟合方程 Fitted equation | R2 | P |
---|---|---|---|
>2 mm | y=69.602x+6264.8 | 0.8222 | 3.14×10-6 |
0.5-1 mm | y=-93.096x+9148 | 0.5048 | 2.99×10-3 |
0.25-0.5 mm | y=-76.42x+8920.5 | 0.2910 | 3.80×10-2 |
有机质 Organic matter | y=32.998x+6112.7 | 0.8383 | 1.68×10-6 |
全氮 Total nitrogen | y=650.17x+5924.7 | 0.6530 | 2.68×10-4 |
全磷 Total phosphorus | y=5305x+3809.4 | 0.7280 | 5.25×10-5 |
速效氮 Available nitrogen | y=10.128x+5621.1 | 0.8115 | 4.62×10-6 |
速效磷 Available phosphorus | y=21.389x+6455.5 | 0.6072 | 6.16×10-4 |
速效钾 Available potassium | y=7.0339x+5899.2 | 0.7705 | 1.70×10-5 |
缓效钾 Slow-release potassium | y=4.2472x+5342.6 | 0.6742 | 1.75×10-4 |
pH值 pH value | y=1582x-769.43 | 0.7178 | 6.71×10-5 |
交换性酸 Exchangeable acid | y=-626.54x+8202.4 | 0.5543 | 1.45×10-3 |
交换性氢 Exchangeable hydrogen | y=-4998.1x+8239.7 | 0.3304 | 2.50×10-2 |
交换性铝 Exchangeable aluminum | y=-672.09x+8139.4 | 0.5502 | 1.55×10-3 |
表6 紫云英不同翻压 年限下土壤性质与产量等指标之间的相关分析
Table 6 Correlation analysis between soil properties and yield indicators among different turnover years of Chinese milk vetch.
图3 紫云英翻压年限、土壤理化指标和籽粒产量的相关关系线的粗细程度表示各指标之间影响程度的大小。线旁边的数值为通径系数。
Fig. 3. Complex interrelationships between turnover years of Chinese milk vetch, soil physical, chemical indexes and grain yield. The line thickness indicates the strength of the effects of variables on each other. The attached values of different indexes were mean path coefficients.
[1] | 辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示[J]. 自然资源学报, 2009, 24(1): 58-65. |
Xin L J, Li X B.Changes of multiple cropping in double cropping rice area of southern China and its policy implications[J]. Journal of Natural Resources, 2009, 24(1): 58-65. (in Chinese with English abstract) | |
[2] | 曹卫东, 包兴国, 徐昌旭, 聂军, 高亚军, 耿明建. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450-1461. |
Cao W D, Bao X G, Xu C X, Nie J, Gao Y J, Geng M J.Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1450-1461. (in Chinese with English abstract) | |
[3] | 袁嫚嫚, 刘勤, 张少磊, 陈武荣, 禹洪双. 太湖地区稻田绿肥固氮量及绿肥还田对水稻产量和稻田土壤氮素特征的影响[J]. 土壤学报, 2011, 48(4): 797-803. |
Yuan M M, Liu Q, Zhang S L, Chen WR, Yu H S.Effect of biological nitrogen fixation and plow-down of green manure crop on rice yield and soil nitrogen in paddy field[J]. Acta Pedologica Sinica, 2011, 48(4): 797-803. (in Chinese with English abstract) | |
[4] | Bi L, Zhang B, Liu G, Li Z, Liu Y, Ye C, Yu X, Lai T, Zhang J, Yin J, Liang Y.Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China[J]. Agriculture, Ecosystems & Environment, 2009, 129: 534-541. |
[5] | 李继明, 黄庆海, 袁天佑, 曹金华, 余喜初. 长期施用绿肥对红壤稻田水稻产量和土壤养分的影响[J]. 植物营养与肥料学报, 2011, 17(3): 563-570. |
Li J M, Huang Q H, Yuan T Y, Cao J H, Yu X C.Effects of long-term green manure application on rice yield and soil nutrients in paddy soils[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(3): 563-570. (in Chinese with English abstract) | |
[6] | 黄晶, 刘淑军, 张会民, 王晓辉, 高菊生. 水稻产量对双季稻-不同冬绿肥轮作及环境的响应[J]. 生态环境学报, 2016, 25(8): 1271-1276. |
Huang J, Liu S J, Zhang H M, Wang X H, Gao J S.The response of rice yields on long-term double cropping rice with different winter green manure rotation and environment[J]. Ecology and Environmental Sciences, 2016, 25(8): 1271-1276. (in Chinese with English abstract) | |
[7] | Gao S J, Gao J S, Cao W D, Zou C Q, Dou F G.Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. Journal of Integrative Agriculture, 2018, 17(8): 1852-1860. |
[8] | 杨曾平, 徐明岗, 聂军, 郑圣先, 高菊生, 谢坚, 廖育林. 长期冬种绿肥对双季稻种植下红壤性水稻土质量的影响及其评价[J]. 水土保持学报, 2011, 25(3): 92-97, 102. |
Yang Z P, Xu M G, Nie J, Zheng S X, Gao J S, Xie J, Liao Y L.Effect of long-term winter planting-green manure on reddish paddy soil quality and its comprehensive evaluation under double-rice cropping system[J]. Journal of Soil and Water Conservation, 2011, 25(3): 92-97, 102. (in Chinese with English abstract) | |
[9] | 周国朋, 曹卫东, 白金顺, 聂军, 徐昌旭, 曾闹华, 高嵩涓, 王艳秋, 志水胜好. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学, 2016, 49(21): 4096-4106. |
Zhou G P, Cao W D, Bai J S, Nie J, Xu C X, Zeng N H, Gao S J, Wang Y Q, Shimizu K.Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106. (in Chinese with English abstract) | |
[10] | 周国朋, 谢志坚, 曹卫东, 徐昌旭, 白金顺, 曾闹华, 高嵩涓, 杨璐. 稻草高茬-紫云英联合还田改善土壤肥力提高作物产量[J]. 农业工程学报, 2017, 33(23): 157-163. |
Zhou G P, Xie Z J, Cao W D, Xu C X, Bai J S, Zeng N H, Gao S J, Yang L.Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 157-163. (in Chinese with English abstract) | |
[11] | 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(4): 525-534. |
Li Z Q, Zhang X, Wang J H, Cao K, Xu C X, Cao W D.Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525-534. (in Chinese with English abstract) | |
[12] | 王建红, 曹凯, 张贤. 紫云英翻压量对单季晚稻养分吸收和产量的影响[J]. 植物营养与肥料学报, 2014, 20(1): 156-163. |
Wang J H, Cao K, Zhang X.Effects of incoporation amounts of Chinese milk vetch on nutrient uptake and yield of single cropping late rice[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(1): 156-163. (in Chinese with English abstract) | |
[13] | 王飞, 林诚, 林新坚, 何春梅, 李清华, 李昱, 黄功标, 钟少杰. 连续翻压紫云英对福建单季稻产量与化肥氮素吸收、分配及残留的影响[J]. 植物营养与肥料学报, 2014, 20(4): 896-904. |
Wang F, Lin C, Lin X J, He C M, Li Q H, Li Y, Huang G B, Zhong S J.Effects of continuous turnover of Astragalus sinicus on rice yield and N absorption, distribution and residue in single-cropping rice regions of Fujian Province[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 896-904. (in Chinese with English abstract) | |
[14] | 黄山, 汤军, 廖萍, 曾勇军, 石庆华, 潘晓华. 冬种紫云英与稻草还田对双季水稻产量和土壤性状的互作效应[J]. 江西农业大学学报, 2016, 38(2): 215-222. |
Huang S, Tang J, Liao P, Zeng Y J, Shi Q H, Pan X H, Interaction of winter legume manure covering (Astragalus sinicus L.) and straw retention on yield and soil properties in a double rice cropping system[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(2): 215-222. (in Chinese with English abstract) | |
[15] | 周兴, 廖育林, 鲁艳红, 谢坚, 杨曾平, 聂军, 曹卫东. 肥料减施条件下水稻土壤有机碳组分对紫云英-稻草协同利用的响应[J]. 水土保持学报, 2017, 31(3): 283-290. |
Zhou X, Liao Y L, Lu Y H, Xie J, Yang Z P, Nie J, Cao W D.Responses of contents of soil organic carbon fractions to Chinese milkvetch-rice straw synergistic dispatching under the condition of reducing fertilizer application[J]. Journal of Soil and Water Conservation, 2017, 31(3): 283-290. (in Chinese with English abstract) | |
[16] | 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 紫云英与尿素或控释尿素配施对双季稻产量及氮钾利用率的影响[J]. 植物营养与肥料学报, 2017, 23(2): 360-368. |
Lu Y H, Liao Y L, Nie J, Zhou X, Xie J, Yang Z P.Effect of different incorporation of Chinese milk vetch coupled with urea or controlled release urea on yield and nitrogen and potassium nutrient use efficiency in double-cropping rice system[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 360-368. (in Chinese with English abstract) | |
[17] | 吕玉虎, 郭晓彦, 李本银, 刘春增, 张丽霞, 曹卫东, 潘兹亮. 翻压不同量紫云英配施减量化肥对土壤肥力和水稻产量的影响[J]. 中国土壤与肥料, 2017(5): 94-98. |
Lü Y H, Guo X Y, Li B Y, Liu C Z, Zhang L X, Cao W D, Pan Z L. Effects of the incorporation of various amounts of Chinese milk vetch(Astragalus sinicus L.) and reducing chemical fertilizer on soil fertility and rice yield. Soil and Fertilizer Sciences in China, 2017(5): 94-98. (in Chinese with English abstract) | |
[18] | 张颖睿, 杨滨娟, 黄国勤. 紫云英翻压量与不同施氮量对水稻生长和氮素吸收利用的影响[J]. 生态学杂志, 2018, 37(2): 430-437. |
Zhang Y R, Yang B J, Huang G Q.Effects of Chinese milk vetch as a green manure and nitrogen fertilization on rice growth and nitrogen absorption and utilization of rice[J]. Chinese Journal of Ecology, 2018, 37(2): 430-437. (in Chinese with English abstract) | |
[19] | 万水霞, 朱宏斌, 唐杉, 郭熙盛, 王允青. 紫云英与化肥配施对安徽沿江双季稻区土壤生物学特性的影响[J]. 植物营养与肥料学报, 2015, 21(2): 115-123. |
Wan S X, Zhu H B, Tang S, Guo X S, Wang Y Q.Effects of Astragalus sinicus manure and fertilizer combined application on biological properties of soil in Anhui double cropping rice areas along the Yangtze River[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 387-395. (in Chinese with English abstract) | |
[20] | Gao S, Chang D, Zou C, Cao W, Gao J, Huang J, Bai J, Zeng N, Rees R, Thorup-Kristensen K.Archaea are the predominant and responsive ammonia oxidizing prokaryotes in a red paddy soil receiving green manures[J]. European Journal of Soil Biology, 2018, 88: 27-35. |
[21] | Fang Y, Wang F, Jia X, Chen J.Distinct responses of ammonia-oxidizing bacteria and archaea to green manure combined with reduced chemical fertilizer in a paddy soil[J]. Journal of Soil & Sediments, 2019, 19(4): 1613-1623. |
[22] | 杨滨娟, 黄国勤, 王超, 林青, 徐宁. 稻田冬种绿肥对水稻产量和土壤肥力的影响[J]. 中国生态农业学报, 2013, 21(10): 1209-1216. |
Yang B J, Huang G Q, Wang C, Lin Q, Xu N.Effects of winter green manure cultivation on rice yield and soil fertility in paddy field[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1209-1216. (in Chinese with English abstract) | |
[23] | 高菊生, 曹卫东, 李冬初, 徐明岗, 曾希柏, 聂军, 张文菊. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J]. 生态学报, 2011, 31(16): 57-63. |
Gao J S, Cao W D, Li D C, Xu M G, Zeng X B, Nie J, Zhang W J.Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 57-63. (in Chinese with English abstract) | |
[24] | Yang Z, Xu M, Zheng S, Nie J, Gao J, Liao Y, Xie J.Effects of long-term winter planted green manure on physical properties of reddish paddy soil under a double-rice cropping system[J]. Journal of Integrative Agriculture, 2012, 11(4): 139-148. |
[25] | 王志强, 刘英, 杨文亭, 周泉, Muhammad A, 王海, 黄国勤, 赵其国. 稻田复种轮作休耕对土壤团聚体分布及稳定性的影响[J]. 土壤学报, 2018, 55(5): 106-118. |
Wang Z Q, Liu Y, Yang W T, Zhou Q, Muhammad A, Wang H, Huang G Q, Zhao Q G.Effects of rotation and fallow in paddy field on distribution and stability of soil aggregates[J]. Acta Pedologica Sinica, 2018, 55(5): 1143-1155. (in Chinese with English abstract) | |
[26] | 刘春增, 刘小粉, 李本银, 王守刚, 丰大清, 刘祥臣, 曹卫东. 紫云英还田对水稻产量、土壤团聚性及其有机碳和全氮分布的影响[J]. 华北农学报, 2012, 27(6): 227-231. |
Liu C Z, Liu X F, Li B Y, Wang S G, Feng D Q, Liu X C, Cao W D.Effects of planting Chinese milk vetch on rice yield,soil aggregation and distributions of its carbon and total nitrogen[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(6): 224-228. (in Chinese with English abstract) | |
[27] | Dong W, Zhang X, Wang H, Dai X, Sun X, Qiu W, Yang F.Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China[J]. Plos One, 2012, 7(9): e44504. |
[28] | 陈云峰, 邹贤斌, 罗时明, 李双来, 胡诚, 乔艳, 刘东海. 连年翻压紫云英对早稻田土壤性质及酶活性动态的影响[J]. 中国土壤与肥料, 2019(2): 30-35. |
Chen Y F, Zou J B, Luo S P, Li S L, Hu C, Qiao Y, Liu D H. Effects of Chinese milk vetch(Astragalus sinicus L.) incorporation on dynamics of soil characteristics and enzyme activities in early rice[J]. Soil and Fertilizer Sciences in China, 2019(2): 30-35. (in Chinese with English abstract) | |
[29] | 杨文叶, 王忠, 李丹, 张丹, 周航. 不同冬绿肥对水稻田土壤有机质及酸碱度的影响[J]. 浙江农业科学, 2017, 58(2): 239-240. |
Yang Q Y, Wang Z, Li D, Zhang D, Zhou H.Effects of different winter green fertilizers on soil organic matter and pH in paddy field[J]. Zhejiang Agricultural Sciences, 2017, 58(2): 239-240. (in Chinese with English abstract) | |
[30] | 谢志坚, 贺亚琴, 徐昌旭. 紫云英-早稻-晚稻农田系统的生态功能服务价值评价[J]. 自然资源学报, 2018, 33(5): 735-746. |
Xie Z J, He Y Q, Xu C X.Appraisal on ecological services from Chinese milk vetch-early rice-late rice cropping ecosystem[J]. Journal of Natural Resources, 2018, 33(5): 735-746. (in Chinese with English abstract) | |
[31] | Elliott E T.Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-633. |
[32] | 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社, 2000. |
Lu R K.Soil agricultural chemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000. | |
[33] | Guo Z C, Zhang J B, Fan J, Yang X Y, Yi Y L, Han X R, Wang D Z, Zhu P, Peng X H.Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments[J]. Science of Total Environment, 2019, 660: 1029-1037. |
[34] | 林新坚, 兰忠明, 张辉, 王飞, 何春梅. 不同紫云英基因型根系分泌物中有机酸成分分析[J]. 草业学报, 2014, 23(4): 146-152. |
Lin X J, Lan Z M, Zhang H, Wang F, He C M.Organic acid composition analysis of root exudation of Chinese milk vetch genotypes[J]. Acta Prataculturae Sinica, 2014, 23(4): 146-152. (in Chinese with English abstract) | |
[35] | Liu K L, Huang J, Li D M, Yu X C, Ye H C, Hu H W, Hu Z H, Huang Q H, Zhang H M.Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China[J]. Journal of Integrative Agriculture, 2019, 18(6): 1348-1359. |
[36] | 黄晶, 高菊生, 张杨珠, 曹卫东, 刘淑军. 紫云英还田后不同施肥下的腐解及土壤供钾特征[J]. 中国土壤与肥料, 2016(1): 83-88. |
Huang J, Gao J S, Zhang Y Z, Cao W D, Liu S J. Dynamics of Chinese milk vetch decomposition in paddy field under different fertilization and the supply ability of soil potassium[J]. Soil and Fertilizer Sciences in China, 2016(1): 83-88. (in Chinese with English abstract) | |
[37] | 孟红旗, 吕家珑, 徐明岗, 蔡泽江, 王伯仁. 有机肥的碱度及其减缓土壤酸化的机制[J]. 植物营养与肥料学报, 2012, 18(5): 1159-1167. |
Meng H Q, Lü J L, Xu M G, Cai Z J, Wang B R.Alkalinity of organic manure and its mechanism for mitigating soil acidification[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(5): 1159-1167. (in Chinese with English abstract) | |
[38] | 易琼, 杨少海, 黄巧义, 黄旭, 蒋瑞平, 唐拴虎. 改良剂对反酸田土壤性质与水稻产量的影响[J]. 土壤学报, 2014, 51(1): 176-183. |
Yi Q, Yang S H, Huang Q Y, Huang X, Jiang R P, Tang S H.Effect of soil ameliorants on soil properties and rice yield of acid sulfate paddy field[J]. Acta Pedologica Sinica, 2014, 51(1): 176-183. (in Chinese with English abstract) | |
[39] | 曾勇军, 周庆红, 吕伟生, 谭雪明, 潘晓华, 石庆华. 土壤酸化对双季早、晚稻产量的影响[J]. 作物学报, 2014, 40(5): 899-907. |
Zeng Y J, Zhou Q H, Lv W S, Tan X M, Pan X H, Shi Q H.Effects of soil acidification on the yield of double season rice[J]. Acta Agronomica Sinica, 2014, 40(5): 899-907. (in Chinese with English abstract) | |
[40] | 郭尔静, 杨晓光, 王晓煜, 张天一, 黄晚华, 刘子琪, 李涛. 湖南省双季稻产量差时空分布特征[J]. 中国农业科学, 2017, 50(2): 399-412. |
Guo E J, Yang X G, Wang X Y, Zhang T Y, Huang W H, Liu Z Q, Li T.Spatial-temporal distribution of double cropping rice’s yield gap in Hunan Province[J]. Scientia Agricultura Sinica, 2017, 50(2): 399-412. (in Chinese with English abstract) | |
[41] | Peng X, Zhu Q, Zhang Z, Hallett P.Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers[J]. Soil Biology and Biochemistry, 2017, 109: 81-94. |
[42] | 余喜初, 李大明, 柳开楼, 黄庆海, 叶会财, 徐小林, 陈明, 胡惠文. 长期施肥红壤稻田有机碳演变规律及影响因素[J]. 土壤, 2013, 45(4): 655-660. |
Yu X C, Li D M, Liu K L, Huang Q H, Ye H C, Xu X L, Chen M, Hu H W.Evolution and influencing factors of soil organic carbon under long-term fertilization in subtropical paddy field of China[J]. Soils, 2013, 45(4): 655-660. (in Chinese with English abstract) | |
[43] | Liu K, Han T, Huang J, Zhang S, Gao H, Zhang L, Shah A, Huang S, Zhu P, Gao S, Ma C, Xue Y, Zhang H.Change of soil productivity in three different soils after long-term field fertilization treatments[J]. Journal of Integrative Agriculture, 2020, 19(3): 848-858. |
[44] | Liu K, Han T, Huang J, Huang Q, Li D, Hu Z, Yu X, Muhammad Q, Ahmed W, Hu H, Zhang H.Response of soil aggregate-associated potassium to long-term fertilization in red soil[J]. Geoderma, 2019, 352: 160-170. |
[45] | 邓华凤, 舒服, 蒲宏铁. 对长江流域早籼稻品质改良中几个问题的看法[J]. 杂交水稻, 2001, 16(4): 4-6. |
Deng H F, Shu F, Pu H T.Views on several problems in the grain quality improvement of early indica rice of the Yangtze River valley[J]. Hybrid Rice, 2001, 16(4): 4-6. (in Chinese with English abstract) | |
[46] | 曾研华, 吴建富, 潘晓华, 石庆华, 朱德峰. 稻草不同还田方式对双季水稻产量及稻米品质的影响[J]. 植物营养与肥料学报, 2013, 19(3): 534-542. |
Zeng Y H, Wu J F, Pan X H, Shi Q H, Zhu D F.Study on yield and quality of double cropping rice in different straw return approaches[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(3): 534-542. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[4] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
[5] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[6] | 彭显龙, 董强, 张辰, 李鹏飞, 李博琳, 刘智蕾, 于彩莲. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响[J]. 中国水稻科学, 2024, 38(2): 198-210. |
[7] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
[8] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[9] | 邹宇傲, 吴启侠, 周乾顺, 朱建强, 晏军. 孕穗期杂交中稻对淹涝胁迫的响应[J]. 中国水稻科学, 2023, 37(6): 642-656. |
[10] | 袁沛, 周旋, 杨威, 尹凌洁, 靳拓, 彭建伟, 荣湘民, 田昌. 化肥减氮配施对洞庭湖区双季稻产量和田面水氮磷流失风险的影响[J]. 中国水稻科学, 2023, 37(5): 518-528. |
[11] | 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542. |
[12] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[13] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[14] | 王文婷, 马佳颖, 李光彦, 符卫蒙, 李沪波, 林洁, 陈婷婷, 奉保华, 陶龙兴, 符冠富, 秦叶波. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J]. 中国水稻科学, 2023, 37(3): 253-264. |
[15] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||