中国水稻科学 ›› 2024, Vol. 38 ›› Issue (3): 277-289.DOI: 10.16819/j.1001-7216.2024.231110
收稿日期:
2023-11-15
修回日期:
2024-01-22
出版日期:
2024-05-10
发布日期:
2024-05-13
通讯作者:
*email:cuikehui@mail.hzau.edu.cn
基金资助:
ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui*()
Received:
2023-11-15
Revised:
2024-01-22
Online:
2024-05-10
Published:
2024-05-13
Contact:
*email:cuikehui@mail.hzau.edu.cn
摘要:
【目的】明确分蘖期干旱锻炼对幼穗分化期高温下水稻穗发育和产量形成的影响,并探究其生理机理。【方法】以两优培九(热敏感型)和汕优63(耐热型)为材料,在盆栽条件下设置全生育期淹灌和分蘖期干旱锻炼、幼穗分化期适温和高温共四种水分和温度处理组合,研究干旱锻炼对高温胁迫下水稻颖花分化与退化、花粉活力、颖花育性、颖花大小、产量及穗生理特性的影响。【结果】与淹灌相比,在适温下干旱锻炼对两个品种产量无显著影响,但高温下干旱锻炼后两优培九和汕优63的产量分别显著提高了54.0%和20.1%,这主要是因为结实率和千粒重显著提高。与淹灌相比,幼穗分化期高温下,分蘖期干旱锻炼显著增强两优培九颖花过氧化物酶和超氧化物歧化酶活性,降低了丙二醛含量,其花粉活力和颖花育性分别显著提高了26.0%和39.0%。与适温相比,全生育期淹灌下,高温显著降低了两个品种的颖花大小和总颖花分化数。与淹灌相比,分蘖期干旱锻炼显著提高了幼穗分化期高温下两品种穗非结构性碳水化合物含量和颖花细胞分裂素(反式玉米素+反式玉米素核苷)含量,两个品种颖花长、颖花宽和总颖花分化数平均显著增加了3.2%、4.4%和15.0%。【结论】分蘖期干旱锻炼可通过增加抗氧化酶活性、非结构性碳水化合物和细胞分裂素含量来促进颖花发育和提高颖花育性,进而缓解幼穗分化期高温对水稻产量的不利影响,研究结果可为高温热害频发地区的水稻生产实践提供理论指导。
赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289.
ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice[J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289.
图1 干旱锻炼处理期间的土壤水势数据为均值 ± 标准误 (n=3)。LYPJ:两优培九;SY63:汕优63。W1:淹灌;W2:干旱锻炼。下同。
Fig. 1. Soil water potential during drought priming treatment Data are shown as mean ± SE (n=3). LYPJ, Liangyoupeijiu; SY63, Shanyou 63. W1, Flooding irrigation; W2, Drought priming. The same as below.
图2 高温处理期间温室的平均温度和湿度数值为高温处理期间各时间点的均值 ± 标准误 (n=4)。T1:适温处理;T2:高温处理。
Fig. 2. Average daytime temperature and relative humidity in the greenhouse during high temperature treatment The data at each point-in-time are the average values over the duration of the high temperature treatment ± SE (n=4). T1, Normal temperature; T2, High temperature.
品种 Variety | 处理 Treatment | 产量 Yield(g/plant) | 单株穗数 Panicles per plant | 每穗粒数 Grains per panicle | 结实率 Seed setting rate(%) | 千粒重 1000-grain weight(g) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 24.6±0.1 a | 11.4±0.6 a | 133.7±2.8 a | 69.0±1.7 a | 23.6±0.1 a |
Liangyoupeijiu | W2T1 | 24.4±1.0 a | 11.9±0.5 a | 133.2±2.0 a | 64.7±2.1 a | 23.9±0.3 a |
W1T2 | 15.5±1.1 b | 11.0±0.2 a | 131.6±5.6 a | 48.5±3.1 b | 22.3±0.2 b | |
W2T2 | 23.9±1.6 a | 12.0±0.7 a | 131.9±11.6 a | 66.2±1.8 a | 23.3±0.3 a | |
汕优63 | W1T1 | 35.5±0.4 a* | 12.3±0.4 a | 133.9±5.8 ab | 84.6±3.5 a* | 25.6±0.1 a* |
Shanyou 63 | W2T1 | 34.6±1.9 a* | 13.3±0.2 a | 142.5±8.3 a | 73.4±1.5 b* | 25.2±0.1 a* |
W1T2 | 25.9±1.2 b* | 12.3±0.4 a | 119.7±3.1 b | 78.7±3.5 ab* | 22.6±0.1 c | |
W2T2 | 31.2±1.2 a* | 13.4±0.6 a | 128.1±2.3 ab | 78.4±1.4 ab* | 23.5±0.2 b | |
ANOVA | ||||||
品种 Variety(V) | ++ | ns | ns | ++ | ++ | |
温度 Temperature(T) | ++ | ns | ns | ns | ++ | |
水分 Water content(W) | + | ++ | ns | ns | + | |
V×T | ns | ns | ns | ns | ++ | |
V×W | ns | ns | ns | ++ | ns | |
T×W | ++ | ns | ns | ++ | + | |
V×T×W | ns | ns | ns | ns | ns |
表1 干旱锻炼对幼穗分化期高温下水稻产量的影响
Table 1. Effects of drought priming on rice yield under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 产量 Yield(g/plant) | 单株穗数 Panicles per plant | 每穗粒数 Grains per panicle | 结实率 Seed setting rate(%) | 千粒重 1000-grain weight(g) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 24.6±0.1 a | 11.4±0.6 a | 133.7±2.8 a | 69.0±1.7 a | 23.6±0.1 a |
Liangyoupeijiu | W2T1 | 24.4±1.0 a | 11.9±0.5 a | 133.2±2.0 a | 64.7±2.1 a | 23.9±0.3 a |
W1T2 | 15.5±1.1 b | 11.0±0.2 a | 131.6±5.6 a | 48.5±3.1 b | 22.3±0.2 b | |
W2T2 | 23.9±1.6 a | 12.0±0.7 a | 131.9±11.6 a | 66.2±1.8 a | 23.3±0.3 a | |
汕优63 | W1T1 | 35.5±0.4 a* | 12.3±0.4 a | 133.9±5.8 ab | 84.6±3.5 a* | 25.6±0.1 a* |
Shanyou 63 | W2T1 | 34.6±1.9 a* | 13.3±0.2 a | 142.5±8.3 a | 73.4±1.5 b* | 25.2±0.1 a* |
W1T2 | 25.9±1.2 b* | 12.3±0.4 a | 119.7±3.1 b | 78.7±3.5 ab* | 22.6±0.1 c | |
W2T2 | 31.2±1.2 a* | 13.4±0.6 a | 128.1±2.3 ab | 78.4±1.4 ab* | 23.5±0.2 b | |
ANOVA | ||||||
品种 Variety(V) | ++ | ns | ns | ++ | ++ | |
温度 Temperature(T) | ++ | ns | ns | ns | ++ | |
水分 Water content(W) | + | ++ | ns | ns | + | |
V×T | ns | ns | ns | ns | ++ | |
V×W | ns | ns | ns | ++ | ns | |
T×W | ++ | ns | ns | ++ | + | |
V×T×W | ns | ns | ns | ns | ns |
图3 干旱锻炼对幼穗分化期高温下水稻花粉活力和颖花育性的影响数据为均值 ± 标准误 (n=3)。不同小写字母表示同一品种在不同水分和温度处理组合下同一性状在P < 0.05水平下差异显著(LSD法)。*表示相同水分与温度处理组合下两个品种间同一性状在P < 0.05水平下差异显著。V表示品种,T表示温度,W表示水分。+和++分别表示在P < 0.05和P < 0.01水平下差异显著,ns表示在P < 0.05水平下差异不显著。W1T1表示淹灌和适温,W2T1表示干旱锻炼和适温,W1T2表示淹灌和高温,W2T2表示干旱锻炼和高温。
Fig. 3. Effects of drought priming on rice pollen viability and spikelet fertility under high temperature during panicle initiation stage Data are shown as mean ± SE (n=3). Different lowercase letters indicate significant difference for a given trait among the four water and temperature treatment combinations for the same variety at P<0.05 (LSD test). * indicates the significant difference for a given trait between two varieties in the same combination of water and temperature treatment at P<0.05. V indicates variety, T indicates temperature, and W indicates water. + and ++ indicate significant difference at P <0.05 and P <0.01, respectively, while ns indicates no significant difference at P <0.05. W1T1 indicates flooded irrigation and normal temperature, W2T1 indicates drought priming and normal temperature, W1T2 indicates flooded irrigation and high temperature, and W2T2 indicates drought priming and high temperature.
品种 Variety | 处理 Treatment | 抽穗期Heading stage | 成熟期Mature stage | |||
---|---|---|---|---|---|---|
颖花长 Spikelet length(mm) | 颖花宽 Spikelet width(mm) | 籽粒长 Grain length(mm) | 籽粒宽 Grain width(mm) | |||
两优培九 | W1T1 | 9.07±0.02 a* | 3.00±0.03 a | 8.85±0.05 a* | 2.62±0.05 b | |
Liangyoupeijiu | W2T1 | 8.97±0.00 a* | 2.98±0.04 a | 8.82±0.02 ab* | 2.69±0.02 a | |
W1T2 | 8.77±0.07 b* | 2.82±0.02 b | 8.72±0.03 b* | 2.54±0.03 c | ||
W2T2 | 9.00±0.13 a* | 2.96±0.07 a | 8.80±0.08 ab* | 2.63±0.02 b | ||
汕优63 | W1T1 | 8.40±0.11 a | 3.28±0.04 a* | 8.44±0.06 a | 2.96±0.00 a* | |
Shanyou 63 | W2T1 | 8.37±0.02 a | 3.22±0.01 a* | 8.48±0.04 a | 2.94±0.02 a* | |
W1T2 | 7.98±0.01 b | 2.97±0.02 c* | 8.15±0.07 c | 2.78±0.01 c* | ||
W2T2 | 8.28±0.03 a | 3.09±0.01 b* | 8.32±0.09 b | 2.87±0.01 b* | ||
ANOVA | ||||||
品种 Variety(V) | ++ | ++ | ++ | ++ | ||
温度 Temperature(T) | + | ++ | + | + | ||
水分 Water content(W) | ns | ns | ns | ++ | ||
V×T | ns | ns | ns | ns | ||
V×W | ns | ns | ns | + | ||
T×W | + | + | ns | ++ | ||
V×T×W | ns | ns | ns | + |
表2 干旱锻炼对幼穗分化期高温下颖花大小和籽粒大小的影响
Table 2. Effects of drought priming on rice spikelet size and grain size under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 抽穗期Heading stage | 成熟期Mature stage | |||
---|---|---|---|---|---|---|
颖花长 Spikelet length(mm) | 颖花宽 Spikelet width(mm) | 籽粒长 Grain length(mm) | 籽粒宽 Grain width(mm) | |||
两优培九 | W1T1 | 9.07±0.02 a* | 3.00±0.03 a | 8.85±0.05 a* | 2.62±0.05 b | |
Liangyoupeijiu | W2T1 | 8.97±0.00 a* | 2.98±0.04 a | 8.82±0.02 ab* | 2.69±0.02 a | |
W1T2 | 8.77±0.07 b* | 2.82±0.02 b | 8.72±0.03 b* | 2.54±0.03 c | ||
W2T2 | 9.00±0.13 a* | 2.96±0.07 a | 8.80±0.08 ab* | 2.63±0.02 b | ||
汕优63 | W1T1 | 8.40±0.11 a | 3.28±0.04 a* | 8.44±0.06 a | 2.96±0.00 a* | |
Shanyou 63 | W2T1 | 8.37±0.02 a | 3.22±0.01 a* | 8.48±0.04 a | 2.94±0.02 a* | |
W1T2 | 7.98±0.01 b | 2.97±0.02 c* | 8.15±0.07 c | 2.78±0.01 c* | ||
W2T2 | 8.28±0.03 a | 3.09±0.01 b* | 8.32±0.09 b | 2.87±0.01 b* | ||
ANOVA | ||||||
品种 Variety(V) | ++ | ++ | ++ | ++ | ||
温度 Temperature(T) | + | ++ | + | + | ||
水分 Water content(W) | ns | ns | ns | ++ | ||
V×T | ns | ns | ns | ns | ||
V×W | ns | ns | ns | + | ||
T×W | + | + | ns | ++ | ||
V×T×W | ns | ns | ns | + |
品种 Variety | 处理 Treatment | 总枝梗分化数 NBD (No./panicle) | 一次枝梗分化数 NPBD (No./panicle) | 二次枝梗分化数 NSBD (No./panicle) | 一次枝梗退化数 NPBG (No./panicle) | 二次枝梗退化数 NSBG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 73.7±2.3 a | 12.8±0.4 a | 60.9±1.9 a | 0.0±0.0 a | 22.3±2.3 ab |
Liangyoupeijiu | W2T1 | 68.0±1.6 a | 12.3±0.2 a | 55.7±1.5 a | 0.0±0.0 a | 18.9±1.6 ab |
W1T2 | 66.8±1.5 a | 12.1±0.1 a | 54.7±1.4 a | 0.0±0.0 a | 23.8±1.7 a | |
W2T2 | 68.0±1.9 a | 12.2±0.1 a | 55.8±1.8 a | 0.0±0.0 a | 18.6±1.1 b | |
汕优63 | W1T1 | 67.3±0.7 a | 14.0±0.3 a | 53.3±1.0 a* | 0.0±0.0 a | 17.7±1.2 a |
Shanyou 63 | W2T1 | 67.0±2.1 a | 13.2±0.7 a | 53.8±1.5 a | 0.0±0.0 a | 17.2±3.6 a |
W1T2 | 64.4±0.2 a | 13.4±0.1 a* | 51.0±0.3 a | 0.0±0.0 a | 22.4±1.3 a | |
W2T2 | 65.8±1.0 a | 13.1±0.1 a* | 52.7±1.1 a | 0.0±0.0 a | 17.9±0.9 a | |
ANOVA | ||||||
品种 Variety(V) | ns | ns | + | ns | ns | |
温度 Temperature(T) | + | ns | + | ns | ns | |
水分 Water content(W) | ns | ns | ns | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ns | ns | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
表3 干旱锻炼对幼穗分化期高温下每穗枝梗数的影响
Table 3. Effects of drought priming on the number of rachis branches per panicle under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 总枝梗分化数 NBD (No./panicle) | 一次枝梗分化数 NPBD (No./panicle) | 二次枝梗分化数 NSBD (No./panicle) | 一次枝梗退化数 NPBG (No./panicle) | 二次枝梗退化数 NSBG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 73.7±2.3 a | 12.8±0.4 a | 60.9±1.9 a | 0.0±0.0 a | 22.3±2.3 ab |
Liangyoupeijiu | W2T1 | 68.0±1.6 a | 12.3±0.2 a | 55.7±1.5 a | 0.0±0.0 a | 18.9±1.6 ab |
W1T2 | 66.8±1.5 a | 12.1±0.1 a | 54.7±1.4 a | 0.0±0.0 a | 23.8±1.7 a | |
W2T2 | 68.0±1.9 a | 12.2±0.1 a | 55.8±1.8 a | 0.0±0.0 a | 18.6±1.1 b | |
汕优63 | W1T1 | 67.3±0.7 a | 14.0±0.3 a | 53.3±1.0 a* | 0.0±0.0 a | 17.7±1.2 a |
Shanyou 63 | W2T1 | 67.0±2.1 a | 13.2±0.7 a | 53.8±1.5 a | 0.0±0.0 a | 17.2±3.6 a |
W1T2 | 64.4±0.2 a | 13.4±0.1 a* | 51.0±0.3 a | 0.0±0.0 a | 22.4±1.3 a | |
W2T2 | 65.8±1.0 a | 13.1±0.1 a* | 52.7±1.1 a | 0.0±0.0 a | 17.9±0.9 a | |
ANOVA | ||||||
品种 Variety(V) | ns | ns | + | ns | ns | |
温度 Temperature(T) | + | ns | + | ns | ns | |
水分 Water content(W) | ns | ns | ns | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ns | ns | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
品种 Variety | 处理 Treatment | 总颖花分化数 NSD (No./panicle) | 一次颖花分化数 NPSD (No./panicle) | 二次颖花分化数 NSSD (No./panicle) | 一次颖花退化数 NPSG (No./panicle) | 二次颖花退化数 NSSG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 189.4±5.5 a | 69.6±2.9 a | 119.9±4.1 a | 0.0±0.0 a | 7.4±0.9 b* |
Liangyoupeijiu | W2T1 | 187.7±1.3 a | 69.6±1.7 a | 118.1±2.1 a | 0.0±0.0 a | 7.6±3.9 b |
W1T2 | 162.3±1.9 b | 66.0±0.8 a | 96.3±2.2 b* | 0.1±0.1 a | 16.4±3.5 a* | |
W2T2 | 182.9±3.2 a | 67.0±1.3 a | 115.9±2.5 a | 0.1±0.1 a | 8.0±1.8 b | |
汕优63 | W1T1 | 197.0±5.3 a | 80.7±3.3 a | 116.3±7.3 a | 0.1±0.1 a | 3.0±1.0 b |
Shanyou 63 | W2T1 | 193.2±0.8 a | 80.6±3.6 a | 112.7±3.8 a | 0.0±0.0 a | 3.4±0.7 b |
W1T2 | 160.3±3.7 b | 74.0±2.0 a* | 86.3±2.8 b | 0.3±0.3 a | 8.0±1.0 a | |
W2T2 | 188.2±4.0 a | 75.3±1.8 a* | 112.9±5.1 a | 0.0±0.0 a | 4.7±0.9 ab | |
ANOVA | ||||||
品种 Variety (V) | ns | ns | + | ns | ns | |
温度 Temperature (T) | ++ | ns | ++ | ns | + | |
水分 Water content (W) | ++ | ns | ++ | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ++ | ns | ++ | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
表4 干旱锻炼对幼穗分化期高温下每穗颖花数的影响
Table 4. Effects of drought priming on spikelets per panicle under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 总颖花分化数 NSD (No./panicle) | 一次颖花分化数 NPSD (No./panicle) | 二次颖花分化数 NSSD (No./panicle) | 一次颖花退化数 NPSG (No./panicle) | 二次颖花退化数 NSSG (No./panicle) |
---|---|---|---|---|---|---|
两优培九 | W1T1 | 189.4±5.5 a | 69.6±2.9 a | 119.9±4.1 a | 0.0±0.0 a | 7.4±0.9 b* |
Liangyoupeijiu | W2T1 | 187.7±1.3 a | 69.6±1.7 a | 118.1±2.1 a | 0.0±0.0 a | 7.6±3.9 b |
W1T2 | 162.3±1.9 b | 66.0±0.8 a | 96.3±2.2 b* | 0.1±0.1 a | 16.4±3.5 a* | |
W2T2 | 182.9±3.2 a | 67.0±1.3 a | 115.9±2.5 a | 0.1±0.1 a | 8.0±1.8 b | |
汕优63 | W1T1 | 197.0±5.3 a | 80.7±3.3 a | 116.3±7.3 a | 0.1±0.1 a | 3.0±1.0 b |
Shanyou 63 | W2T1 | 193.2±0.8 a | 80.6±3.6 a | 112.7±3.8 a | 0.0±0.0 a | 3.4±0.7 b |
W1T2 | 160.3±3.7 b | 74.0±2.0 a* | 86.3±2.8 b | 0.3±0.3 a | 8.0±1.0 a | |
W2T2 | 188.2±4.0 a | 75.3±1.8 a* | 112.9±5.1 a | 0.0±0.0 a | 4.7±0.9 ab | |
ANOVA | ||||||
品种 Variety (V) | ns | ns | + | ns | ns | |
温度 Temperature (T) | ++ | ns | ++ | ns | + | |
水分 Water content (W) | ++ | ns | ++ | ns | ns | |
V×T | ns | ns | ns | ns | ns | |
V×W | ns | ns | ns | ns | ns | |
T×W | ++ | ns | ++ | ns | ns | |
V×T×W | ns | ns | ns | ns | ns |
图4 干旱锻炼对幼穗分化期高温下穗部非结构性碳水化合物含量的影响数据为均值±标准误(n=3)。不同小写字母表示同一品种在不同水分和温度处理组合下同一性状在P < 0.05水平下差异显著(LSD法)。*表示相同水分与温度处理组合下两个品种间同一性状在P < 0.05水平下差异显著。V表示品种,T表示温度,W表示水分。+表示在P < 0.05水平下差异显著,ns表示在P < 0.05水平下差异不显著。W1T1表示淹灌和适温,W2T1表示干旱锻炼和适温,W1T2表示淹灌和高温,W2T2表示干旱锻炼和高温。
Fig. 4. Effects of drought priming on non-structural carbohydrate contents in panicle under high temperature during panicle initiation stage Data are shown as mean ± SE (n=3). Different lowercase letters indicate significant difference for a given trait among the four water and temperature treatment combinations for the same variety at P<0.05 (LSD test). * indicates significant difference for a given trait between two varieties in the same combination of water and temperature treatment at P<0.05. V indicates variety, T indicates temperature, and W indicates water. + indicates significant difference at P <0.05, and ns indicates no significant difference at P <0.05. W1T1 indicates flooded irrigation and normal temperature, W2T1 indicates drought priming and normal temperature, W1T2 indicates flooded irrigation and high temperature, and W2T2 indicates drought priming and high temperature.
图5 干旱锻炼对幼穗分化期高温下颖花丙二醛含量和抗氧化酶活性的影响数据为均值 ± 标准误 (n=3)。不同小写字母表示同一品种在不同水分和温度处理组合下同一性状在P < 0.05水平下差异显著(LSD法)。*表示相同水分与温度处理组合下两个品种间同一性状在P < 0.05水平下差异显著。V表示品种,T表示温度,W表示水分。+和++分别表示在P < 0.05和P < 0.01水平下差异显著,ns表示在P < 0.05水平下差异不显著。W1T1表示淹灌和适温,W2T1表示干旱锻炼和适温,W1T2表示淹灌和高温,W2T2表示干旱锻炼和高温。
Fig. 5. Effects of drought priming on MDA content and antioxidant enzyme activities in spikelet under high temperature during panicle initiation stage Data are shown as mean ± SE (n=3). Different lowercase letters indicate significant difference for a given trait among the four water and temperature treatment combinations for the same variety at P<0.05 (LSD test). * indicates significant difference for a given trait between two varieties in the same combination of water and temperature treatment at P<0.05. V indicates variety, T indicates temperature, and W indicates water. + and ++ indicate significant difference at P <0.05 and P <0.01, respectively, while ns indicates no significant difference at P <0.05. W1T1 indicates flooded irrigation and normal temperature, W2T1 indicates drought priming and normal temperature, W1T2 indicates flooded irrigation and high temperature, and W2T2 indicates drought priming and high temperature.
品种 Variety | 处理 Treatment | 活性细胞 分裂素总量 aCTKs(ng/g) | 反式玉米素含量 tZ(ng/g) | 反式玉米素 核苷含量 tZR(ng/g) | 异戊烯腺嘌呤含量 iP(ng/g) | 异戊烯腺苷含量 iPA(ng/g) | 异戊烯腺苷 磷酸含量 iPMP(ng/g) |
---|---|---|---|---|---|---|---|
两优培九 | W1T1 | 19.38±0.97 a | 0.70±0.01 a | 1.41±0.08 a | 1.90±0.09 a | 1.32±0.06 a* | 14.05±1.11 a |
Liangyoupeijiu | W2T1 | 19.54±1.34 a | 0.69±0.02 a | 1.55±0.09 a | 1.74±0.07 a* | 1.23±0.06 a* | 14.33±1.16 a |
W1T2 | 15.05±0.53 c | 0.11±0.00 c | 0.69±0.02 b | 2.01±0.06 a* | 1.35±0.08 a | 10.89±0.44 b | |
W2T2 | 17.18±0.95 b | 0.15±0.00 b | 1.41±0.06 a | 1.89±0.08 a | 1.33±0.11 a | 12.40±0.82 ab | |
汕优63 | W1T1 | 19.43±0.73 a | 0.64±0.06 a | 1.71±0.14 a* | 1.70±0.21 a | 1.17±0.08 a | 14.23±0.27 a |
Shanyou 63 | W2T1 | 19.56±0.97 a | 0.65±0.07 a | 1.69±0.11 a | 1.58±0.07 a | 1.09±0.08 a | 14.54±0.77 a |
W1T2 | 18.59±0.65 a* | 0.64±0.02 a* | 1.36±0.03 b* | 1.80±0.06 a | 1.29±0.05 a | 13.50±0.63 a* | |
W2T2 | 19.29±1.12 a* | 0.71±0.03 a* | 1.65±0.07 a* | 1.80±0.01 a | 1.30±0.10 a | 13.84±1.03 a | |
ANOVA | |||||||
品种 Variety(V) | + | ++ | ns | + | ns | ns | |
温度 Temperature(T) | + | ++ | ++ | ns | ns | ns | |
水分 Water content(W) | ns | ns | ++ | ns | ns | ns | |
V×T | ns | ++ | ns | ns | ns | ns | |
V×W | ns | ns | ++ | ns | ns | ns | |
T×W | ns | ns | ++ | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns | ns |
表5 干旱锻炼对幼穗分化期高温下颖花细胞分裂素含量的影响
Table 5. Effects of drought priming on cytokinin contents in spikelet under high temperature during panicle initiation stage
品种 Variety | 处理 Treatment | 活性细胞 分裂素总量 aCTKs(ng/g) | 反式玉米素含量 tZ(ng/g) | 反式玉米素 核苷含量 tZR(ng/g) | 异戊烯腺嘌呤含量 iP(ng/g) | 异戊烯腺苷含量 iPA(ng/g) | 异戊烯腺苷 磷酸含量 iPMP(ng/g) |
---|---|---|---|---|---|---|---|
两优培九 | W1T1 | 19.38±0.97 a | 0.70±0.01 a | 1.41±0.08 a | 1.90±0.09 a | 1.32±0.06 a* | 14.05±1.11 a |
Liangyoupeijiu | W2T1 | 19.54±1.34 a | 0.69±0.02 a | 1.55±0.09 a | 1.74±0.07 a* | 1.23±0.06 a* | 14.33±1.16 a |
W1T2 | 15.05±0.53 c | 0.11±0.00 c | 0.69±0.02 b | 2.01±0.06 a* | 1.35±0.08 a | 10.89±0.44 b | |
W2T2 | 17.18±0.95 b | 0.15±0.00 b | 1.41±0.06 a | 1.89±0.08 a | 1.33±0.11 a | 12.40±0.82 ab | |
汕优63 | W1T1 | 19.43±0.73 a | 0.64±0.06 a | 1.71±0.14 a* | 1.70±0.21 a | 1.17±0.08 a | 14.23±0.27 a |
Shanyou 63 | W2T1 | 19.56±0.97 a | 0.65±0.07 a | 1.69±0.11 a | 1.58±0.07 a | 1.09±0.08 a | 14.54±0.77 a |
W1T2 | 18.59±0.65 a* | 0.64±0.02 a* | 1.36±0.03 b* | 1.80±0.06 a | 1.29±0.05 a | 13.50±0.63 a* | |
W2T2 | 19.29±1.12 a* | 0.71±0.03 a* | 1.65±0.07 a* | 1.80±0.01 a | 1.30±0.10 a | 13.84±1.03 a | |
ANOVA | |||||||
品种 Variety(V) | + | ++ | ns | + | ns | ns | |
温度 Temperature(T) | + | ++ | ++ | ns | ns | ns | |
水分 Water content(W) | ns | ns | ++ | ns | ns | ns | |
V×T | ns | ++ | ns | ns | ns | ns | |
V×W | ns | ns | ++ | ns | ns | ns | |
T×W | ns | ns | ++ | ns | ns | ns | |
V×T×W | ns | ns | ns | ns | ns | ns |
[1] | IPCC. Climate change 2021: The Physical Science Basis. Contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Combridge University Press, 2021: 3949. |
[2] | 中华人民共和国农业行业标准. NY/T 2915-2016. 水稻高温热害鉴定与分级[S]. 武汉: 中国农业出版社, 2016. |
Agricultural Industry Standard of the People's Republic of China. NY/T 2915-2016. Identification and classification of heat injury of rice[S]. Beijing: China Agriculture Press, 2016. (in Chinese with English abstract) | |
[3] | Iovane M, Aronne G. High temperatures during microsporogenesis fatally shorten pollen lifespan[J]. Plant Reproduction, 2022, 35(1): 9-17. |
[4] | 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024(1): 8-15. |
Xie K Z, Gao T, Cui K H. Research progress of potassium fertilizer controlling rice yield under high temperature[J]. Crops, 2024(1): 8-15. (in Chinese with English abstract) | |
[5] | Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice[J]. Journal of Integrative Agriculture, 2018, 17(7): 1475-1481. |
[6] | Liu X L, Ji P, Yang H T, Jiang C J, Liang Z W, Chen Q Z, Lu F, Chen X, Yang Y Y, Zhang X B. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes[J]. Plant Growth Regulation, 2022, 98(1): 23-38. |
[7] | Kumar S, Thakur M, Mitra R, Basu S, Anand A. Sugar metabolism during pre- and post-fertilization events in plants under high temperature stress[J]. Plant Cell Reports, 2022, 41(3): 655-673. |
[8] | 王亚梁, 张玉屏, 朱德峰, 向镜, 陈惠哲, 张义凯. 水稻器官形态和干物质积累对穗分化不同时期高温的响应[J]. 中国水稻科学, 2016, 30(2): 161-169. |
Wang Y L, Zhang Y P, Zhu D F, Xiang J, Chen H Z, Zhang Y K. Response of rice organ morphology and dry matter accumulation to high temperature at different panicle initiation stages[J]. Chinese Journal of Rice Science, 2016, 30(2): 161-169. (in Chinese with English abstract) | |
[9] | Zhang C X, Feng B H, Chen T T, Fu W M, Li H B, Li G Y, Jin Q Y, Tao L X, Fu G F. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation[J]. Environmental and Experimental Botany, 2018, 155: 718-733. |
[10] | Yi J, Moon S, Lee Y S, Zhu L, Liang W, Zhang D, Jung K H, An G. Defective Tapetum Cell Death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology, 2016, 170(3): 1611-1623. |
[11] | Zhao Q, Zhou L J, Liu J C, Du X X, Asad M A U, Huang F D, Pan G, Cheng F M. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122: 90-101. |
[12] | Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regulation, 2017, 83(2): 313-323. |
[13] | Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
[14] | Zhang C X, Fu G F, Yang X Q, Yang Y J, Zhao X, Chen T T, Zhang X F, Jin Q Y, Tao L X. Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity[J]. Journal of Agronomy and Crop Science, 2016, 202(5): 394-408. |
[15] | Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature, 2007, 445(7128): 652-655. |
[16] | Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Mohapatra P K, Peng S B. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice[J]. Frontiers in Plant Science, 2017, 8: 371. |
[17] | Bruce T J A, Matthes M C, Napier J A, Pickett J A. Stressful “memories” of plants: Evidence and possible mechanisms[J]. Plant Science, 2007, 173(6): 603-608. |
[18] | Zhang X X, Wang X Y, Zhuang L L, Gao Y L, Huang B R. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis[J]. Physiologia Plantarum, 2019, 167(4): 488-501. |
[19] | Sintaha M, Man C K, Yung W S, Duan S, Li M W, Lam H M. Drought stress priming improved the drought tolerance of soybean[J]. Plants-Basel, 2022, 11(21): 2954. |
[20] | Zhang X X, Wang X L, Zhong J W, Zhou Q, Wang X, Cai J, Dai T B, Cao W X, Jiang D. Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat[J]. Environmental and Experimental Botany, 2016, 127: 26-36. |
[21] | Liu S, Li X, Larsen D H, Zhu X, Song F, Liu F. Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat[J]. Journal of Agronomy and Crop Science, 2017, 203(1): 29-40. |
[22] | Tankari M, Wang C, Ma H Y, Li X N, Li L, Soothar R K, Cui N B, Zaman-Allah M, Hao W P, Liu F L, Wang Y S. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress[J]. Agricultural Water Management, 2021, 245: 106565. |
[23] | Gunawardena T A, Fukai S, Blamey F P C. Low temperature induced spikelet sterility in rice: I. Nitrogen fertilisation and sensitive reproductive period[J]. Australian Journal of Agricultural Research, 2003, 54(10): 937-946. |
[24] | 王亚梁, 张玉屏, 曾研华, 武辉, 向镜, 陈惠哲, 张义凯, 朱德峰. 水稻穗分化期高温对颖花分化及退化的影响[J]. 中国农业气象, 2015, 36(6): 724-731. |
Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang J, Chen H Z, Zhang Y K, Zhu D F. Effect of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 724-731. (in Chinese with English abstract) | |
[25] | Cock J H, Yoshida S. Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant[J]. Japanese Journal of Crop Science, 1972, 41(2): 226-234. |
[26] | Pucher G W, Leavenworth C S, Vickery H B. Determination of starch in plant tissues[J]. Analytical Chemistry, 1948, 20: 850-853. |
[27] | Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines[J]. Frontiers Plant Science, 2017, 8: 1369. |
[28] | Heath R L, Packer L. Photoperoxidation in isolated chloroplasts I. kinetics and stoichiometry of fatty acid peroxidation[J]. Archives Biochemistry Biophysics, 1968, 125(1): 189-198. |
[29] | Dhindsa R S, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany, 1981, 32(1): 79-91. |
[30] | Maehly A C, Chance B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 1954, 1: 357-424. |
[31] | Aebi H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105: 121-126. |
[32] | Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2): 248-254. |
[33] | 何爱斌. 头季源库调节对再生稻再生力的影响及其机理探究[D]. 武汉: 华中农业大学图书馆, 2022. |
He A B. Effect of source-sink regulation at main season on the regeneration ability of ratoon rice and its mechanism[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[34] | Wu C, Cui K H, Fahad S. Heat stress decreases rice grain weight: Evidence and physiological mechanisms of heat effects prior to flowering[J]. International Journal of Molecular Sciences, 2022, 23(18): 10922. |
[35] | Jagadish S V K, Craufurd P Q, Wheeler T R. Phenotyping parents of mapping populations of rice for heat tolerance during anthesis[J]. Crop Science, 2008, 48(3): 1140-1146. |
[36] | Cheabu S, Panichawong N, Rattanametta P, Wasuri B, Kasemsap P, Arikit S, Vanavichit A, Malumpong C. Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population[J]. Rice Science, 2019, 26(4): 229-238. |
[37] | Saini R, Das R, Adhikary A, Kumar R, Singh I, Nayyar H, Kumar S. Drought priming induces chilling tolerance and improves reproductive functioning in chickpea (Cicer arietinum L.)[J]. Plant Cell Reports, 2022, 41(10): 2005-2022. |
[38] | Giorno F, Wolters-Arts M, Mariani C, Rieu I. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development[J]. Plants, 2013, 2(3): 489-506. |
[39] | Hasanuzzaman M, Nahar K, Alam M M, Fujita M. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress[J]. Biological Trace Element Research, 2014, 161(3): 297-307. |
[40] | Abid M, Tian Z W, Ata-Ul-Karim S T, Liu Y, Cui Y K, Zahoor R, Jiang D, Dai T B. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars[J]. Plant Physiology and Biochemistry, 2016, 106: 218-227. |
[41] | Ru C, Hu X T, Chen D Y, Wang W E. Droughts and thermo-priming enhance acclimation to later drought and heat stress in maize seedlings by improving leaf physiological activity[J]. Agronomy, 2023, 13(4): 1124. |
[42] | Saini R, Adhikary A, Juneja S, Kumar R, Singh I, Nayyar H, Kumar S. Drought priming triggers diverse metabolic adjustments and induces chilling tolerance in chickpea (Cicer arietinum L.)[J]. Plant Physiology and Biochemistry, 2023, 194: 418-439. |
[43] | Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants[J]. Biologia, 2022, 77(11): 3037-3058. |
[44] | Ru C, Hu X T, Chen D Y, Wang W, Song T Y. Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis, root morphology, and antioxidant defense in maize seedlings[J]. Environmental and Experimental Botany, 2022, 202: 105010. |
[45] | Abid M, Shao Y H, Liu S X, Wang F, Gao J W, Jiang D, Tian Z W, Dai T B. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.)[J]. Planta, 2017, 246(3): 509-524. |
[46] | Wang Y L, Zhang K, Shi Q H, Chen H Z, Xiang J, Hu G H, Chen Y H, Wang X D, Wang J K, Yi Z H, Zhu D F, Zhang Y P. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction[J]. Rice Science, 2020, 27(1): 44-45. |
[47] | Bahuguna R N, Tamilselvan A, Muthurajan R, Solis C A, Jagadish S V K. Mild preflowering drought priming improves stress defences, assimilation and sink strength in rice under severe terminal drought[J]. Functional Plant Biology, 2018, 45(8): 27-839. |
[48] | Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Peng S B. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice[J]. Scientific Reports, 2016, 6: 34978. |
[49] | Wang X L, Wang J J, Sun R H, Hou X G, Zhao W, Shi J, Zhang Y F, Qi L, Li X L, Dong P H, Zhang L X, Xu G W, Gan H B. Correlation of the corn compensatory growth mechanism after post-drought rewatering with cytokinin induced by root nitrate absorption[J]. Agricultural Water Management, 2016, 166: 77-85. |
[50] | Hirose N, Take K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation[J]. Journal of experimental Botany, 2008, 59(1): 75-83. |
[51] | Zhang Y J, Du H, Gui Y, Xu F Y, Liu J P, Zhang J H, Xu W F. Moderate water stress in rice induces rhizosheath formation associated with abscisic acid and auxin responses[J]. Journal of Experimental Botany, 2020, 71(9): 2740-2751. |
[52] | Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice[J]. Field Crops Research, 2020, 258: 107946. |
[1] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点 [J]. 中国水稻科学, 2024, 38(5): 544-554. |
[2] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[3] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[4] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[5] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[6] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[7] | 彭显龙, 董强, 张辰, 李鹏飞, 李博琳, 刘智蕾, 于彩莲. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响[J]. 中国水稻科学, 2024, 38(2): 198-210. |
[8] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
[9] | 邹宇傲, 吴启侠, 周乾顺, 朱建强, 晏军. 孕穗期杂交中稻对淹涝胁迫的响应[J]. 中国水稻科学, 2023, 37(6): 642-656. |
[10] | 袁沛, 周旋, 杨威, 尹凌洁, 靳拓, 彭建伟, 荣湘民, 田昌. 化肥减氮配施对洞庭湖区双季稻产量和田面水氮磷流失风险的影响[J]. 中国水稻科学, 2023, 37(5): 518-528. |
[11] | 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542. |
[12] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[13] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[14] | 王文婷, 马佳颖, 李光彦, 符卫蒙, 李沪波, 林洁, 陈婷婷, 奉保华, 陶龙兴, 符冠富, 秦叶波. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J]. 中国水稻科学, 2023, 37(3): 253-264. |
[15] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||