中国水稻科学 ›› 2023, Vol. 37 ›› Issue (6): 642-656.DOI: 10.16819/j.1001-7216.2023.230304
• 研究报告 • 上一篇
邹宇傲1, 吴启侠1,*(), 周乾顺1, 朱建强1, 晏军1,2
收稿日期:
2023-03-16
修回日期:
2023-08-10
出版日期:
2023-11-10
发布日期:
2023-11-14
通讯作者:
*email: qixiawu@yangtzeu.edu.cn
基金资助:
ZOU Yuao1, WU Qixia1,*(), ZHOU Qianshun1, ZHU Jianqiang1, YAN Jun1,2
Received:
2023-03-16
Revised:
2023-08-10
Online:
2023-11-10
Published:
2023-11-14
Contact:
*email: qixiawu@yangtzeu.edu.cn
摘要:
【目的】 为分析水稻孕穗期对淹涝胁迫的响应,减少淹涝胁迫导致的水稻产量损失。【方法】 于2017和2018年在中稻丰两优香1号孕穗期设计了不同淹涝时间(3 d、6 d和9 d)和淹涝深度[淹1/4(水深达试验开始时水稻株高的25%)、淹1/2、3/4和淹4/4]交互试验。【结果】 水稻孕穗期受淹涝胁迫后,株高显著增高,其主要是第4节间显著增长,单穗干质量显著降低。水稻剑叶叶绿素a含量、叶绿素b含量、可溶性蛋白含量、净光合速率、气孔导度、蒸腾速率随着淹涝持续时间和淹涝深度的增加不断下降;胞间CO2浓度随着淹涝深度的增加不断下降,但在全淹涝条件下浓度出现回升。水稻剑叶中的丙二醛(MDA)含量和过氧化物酶(POD)活性随着淹涝深度的增加而增高,剑叶可溶性糖含量随着淹涝深度的增加先上升后下降。淹涝3 d时,水稻剑叶超氧化物歧化酶(SOD)活性、根系MDA含量和SOD活性随淹涝深度的增加而升高;随着淹涝持续时间的延长,水稻剑叶SOD活性、根系MDA含量和SOD活性随淹涝深度的增加先升高后降低。根系POD活性在淹涝3 d和6 d时随淹涝深度的增加而升高,在淹涝9 d时随淹涝深度的增加先升高后降低。随着淹涝深度的加深,水稻有效穗数、穗实粒数、结实率、千粒重和实际产量均降低。水稻淹涝持续时间超过6 d或淹涝深度超过植株1/2时,水稻减产均超过25%,水稻实际产量与淹涝天数和淹涝深度拟合呈二元一次关系,且淹涝深度的影响大于淹涝持续时间。【结论】 叶绿素含量、可溶性蛋白含量、净光合速率、气孔导度和蒸腾速率与水稻实际产量的相关性最高,灰色关联系数均大于0.6,可作为水稻孕穗期受淹涝后的指标,确定其受淹及减产程度。
邹宇傲, 吴启侠, 周乾顺, 朱建强, 晏军. 孕穗期杂交中稻对淹涝胁迫的响应[J]. 中国水稻科学, 2023, 37(6): 642-656.
ZOU Yuao, WU Qixia, ZHOU Qianshun, ZHU Jianqiang, YAN Jun. Response of Middle-season Hybrid Rice to Flooding Stress at the Booting Stage[J]. Chinese Journal OF Rice Science, 2023, 37(6): 642-656.
pH | 土壤速效养分含量Soil available nutrient content | 每盆肥料用量 Application level per pot | |||||
---|---|---|---|---|---|---|---|
碱解氮 Alkaline nitrogen /(mg·kg−1) | 速效磷 Available nitrogen /(mg·kg−1) | 速效钾 Available nitrogen /(mg·kg−1) | 尿素 Urea/g | 氯化钾 Potassium chloride/g | 过磷酸钙 Superphosphate/g | ||
7.6 | 69.4 | 28.7 | 118.7 | 2.5(70%基肥、30%分蘖肥) 2.5(70% as basal fertilizer, 30% for tillering) | 1.95(基肥) 1.95(Basal fertilizer) | 1.13(基肥) 1.13(Basal fertilizer) |
表1 土壤速效养分含量及每盆肥料用量
Table 1. Soil available nutrient contents and fertilizer application level.
pH | 土壤速效养分含量Soil available nutrient content | 每盆肥料用量 Application level per pot | |||||
---|---|---|---|---|---|---|---|
碱解氮 Alkaline nitrogen /(mg·kg−1) | 速效磷 Available nitrogen /(mg·kg−1) | 速效钾 Available nitrogen /(mg·kg−1) | 尿素 Urea/g | 氯化钾 Potassium chloride/g | 过磷酸钙 Superphosphate/g | ||
7.6 | 69.4 | 28.7 | 118.7 | 2.5(70%基肥、30%分蘖肥) 2.5(70% as basal fertilizer, 30% for tillering) | 1.95(基肥) 1.95(Basal fertilizer) | 1.13(基肥) 1.13(Basal fertilizer) |
指标 Indicator | 年份 Year(Y) | 淹涝天数 Flooding days(D) | 淹涝深度 Flooding depth(H) | Y×D | Y×H | D×H | Y×D×H |
---|---|---|---|---|---|---|---|
株高增长量Plant height growth(PHG) | 3.27 | 33.02** | 40.25** | 1.33 | 0.62 | 2.93* | 0.27 |
第4节间长Length of the 4th internode(L4I) | 0.38 | 3.81* | 54.22** | 0.06 | 0.08 | NS | 0.01 |
单穗干质量Dry weight per panicle(DWPP) | 0.06 | 33.68** | 92.72** | 1.26 | 0.22 | 4.78** | 0.36 |
剑叶MDA Flag leaf MDA(F-MDA) | 1.52 | NS | 503.80** | 1.20 | 1.15 | NS | 0.69 |
根系MDA Root MDA(R-MDA) | 0.35 | 44.51** | 123.88** | 0.04 | 0.25 | 72.59** | 0.32 |
叶绿素a含量Chl a content | 0.03 | 103.11** | 222.31** | 0.03 | 0.04 | 9.12* | 0.03 |
叶绿素b含量Chl b content | 0.25 | 4.69* | 35.93** | 0.34 | 0.02 | NS | 0.01 |
可溶性糖含量Soluble sugar content(SS) | 0.02 | 6.74** | 136.62** | 1.26 | 1.39 | 10.04** | 0.58 |
可溶性蛋白含量Soluble protein content(SP) | 1.58 | 30.44** | 253.54** | 1.69 | 2.07 | NS | 0.59 |
剑叶POD活性 Flag leaf POD activity(F-POD) | 0.01 | 260.61** | 751.44** | 0.06 | 0.21 | 24.61** | 0.06 |
根系POD活性 Root POD activity(R-POD) | 0.09 | 170.49** | 69.58** | 69.58 | 0.57 | 43.77** | 0.27 |
剑叶SOD活性 Flag leaf SOD activity(F-SOD) | 0.71 | 286.95** | 130.64** | 0.63 | 0.57 | 166.97** | 0.48 |
根系SOD活性 Root SOD activity(R-SOD) | 0.46 | 121.99** | 132.64** | 0.07 | 1.84 | 126.59** | 3.21** |
净光合速率Pn | 1.71 | 89.68** | 464.66** | 0.04 | 0.01 | 5.99** | 0.06 |
气孔导度Gs | 0.06 | 359.18** | 1666.49** | 1.68 | 0.06 | 21.44** | 0.21 |
胞间CO2浓度Ci | 0.31 | 30.27** | 81.00** | 0.09 | 0.04 | 2.61* | 0.01 |
蒸腾速率Tr | 0.00 | 72.17** | 115.21** | 0.00 | 0.00 | 3.23** | 0.00 |
表2 淹涝胁迫下水稻形态、生理指标的方差分析
Table 2. Variance analysis of morphological and physiological indexes of rice under flooding stress.
指标 Indicator | 年份 Year(Y) | 淹涝天数 Flooding days(D) | 淹涝深度 Flooding depth(H) | Y×D | Y×H | D×H | Y×D×H |
---|---|---|---|---|---|---|---|
株高增长量Plant height growth(PHG) | 3.27 | 33.02** | 40.25** | 1.33 | 0.62 | 2.93* | 0.27 |
第4节间长Length of the 4th internode(L4I) | 0.38 | 3.81* | 54.22** | 0.06 | 0.08 | NS | 0.01 |
单穗干质量Dry weight per panicle(DWPP) | 0.06 | 33.68** | 92.72** | 1.26 | 0.22 | 4.78** | 0.36 |
剑叶MDA Flag leaf MDA(F-MDA) | 1.52 | NS | 503.80** | 1.20 | 1.15 | NS | 0.69 |
根系MDA Root MDA(R-MDA) | 0.35 | 44.51** | 123.88** | 0.04 | 0.25 | 72.59** | 0.32 |
叶绿素a含量Chl a content | 0.03 | 103.11** | 222.31** | 0.03 | 0.04 | 9.12* | 0.03 |
叶绿素b含量Chl b content | 0.25 | 4.69* | 35.93** | 0.34 | 0.02 | NS | 0.01 |
可溶性糖含量Soluble sugar content(SS) | 0.02 | 6.74** | 136.62** | 1.26 | 1.39 | 10.04** | 0.58 |
可溶性蛋白含量Soluble protein content(SP) | 1.58 | 30.44** | 253.54** | 1.69 | 2.07 | NS | 0.59 |
剑叶POD活性 Flag leaf POD activity(F-POD) | 0.01 | 260.61** | 751.44** | 0.06 | 0.21 | 24.61** | 0.06 |
根系POD活性 Root POD activity(R-POD) | 0.09 | 170.49** | 69.58** | 69.58 | 0.57 | 43.77** | 0.27 |
剑叶SOD活性 Flag leaf SOD activity(F-SOD) | 0.71 | 286.95** | 130.64** | 0.63 | 0.57 | 166.97** | 0.48 |
根系SOD活性 Root SOD activity(R-SOD) | 0.46 | 121.99** | 132.64** | 0.07 | 1.84 | 126.59** | 3.21** |
净光合速率Pn | 1.71 | 89.68** | 464.66** | 0.04 | 0.01 | 5.99** | 0.06 |
气孔导度Gs | 0.06 | 359.18** | 1666.49** | 1.68 | 0.06 | 21.44** | 0.21 |
胞间CO2浓度Ci | 0.31 | 30.27** | 81.00** | 0.09 | 0.04 | 2.61* | 0.01 |
蒸腾速率Tr | 0.00 | 72.17** | 115.21** | 0.00 | 0.00 | 3.23** | 0.00 |
图1 不同淹涝处理下水稻株高增长量 CK代表对照;1/4PH、1/2PH、3/4PH和4/4PH分别代表淹涝深度为株高的1/4、1/2、3/4、4/4;图柱上标不同小写字母表示差异达显著水平(P<0.05)。下同。
Fig. 1. Growth of rice plant height in different flooding treatments. CK, Control; 1/4PH, 1/2PH, 3/4PH and 4/4PH represent flooding depth of 1/4, 1/2, 3/4 and full plant height; different lowercase letters on the columns show significant differences between treatments ( P < 0.05 ). The same below.
年份 Year | 回归关系式 Regression equation | 标准化回归系数绝对值 Absolute value of standardized regression coefficient | 相关系数 Correlation coefficients | F值 F-value | |
---|---|---|---|---|---|
D | H | ||||
2017 | YPH=1.613D+0.121H−4.793 | 0.578 | 0.751 | 0.95 | 52.89** |
2018 | YPH=2.517D+0.156H−6.747 | 0.688 | 0.704 | 0.97 | 96.85** |
表3 淹涝胁迫下杂交中稻株高增长量(YPH)与淹涝时间(D)、淹涝深度(H)的量化关系
Table 3. Quantitative relationship of increase in plant height (YPH) with flooding duration(D), flooding depth(H) of mid-season hybrid rice under flooding stress.
年份 Year | 回归关系式 Regression equation | 标准化回归系数绝对值 Absolute value of standardized regression coefficient | 相关系数 Correlation coefficients | F值 F-value | |
---|---|---|---|---|---|
D | H | ||||
2017 | YPH=1.613D+0.121H−4.793 | 0.578 | 0.751 | 0.95 | 52.89** |
2018 | YPH=2.517D+0.156H−6.747 | 0.688 | 0.704 | 0.97 | 96.85** |
年份 Year | 处理 Treatment | 有效穗数 Effective panicle number per plant | 每穗实粒数 Number of grains per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 实际产量 Actual yield/(g·pot−1) | 减产率 Yield reduction rate/% |
---|---|---|---|---|---|---|---|
2017 | CK | 14.7±0.58 ab | 251.67±5.65 a | 85.51±1.15 a | 23.78±0.41 a | 160.73±3.30 a | 0.00 |
1/4PH-3 | 15.3±1.53 a | 214.61±6.43 b | 73.00±3.11 b | 23.59±0.55 ab | 127.60±4.68 b | 20.61 | |
1/2PH-3 | 14.0±1.00 abc | 199.53±5.04 c | 72.73±2.13 b | 22.77±0.59 abc | 125.54±3.01 b | 21.90 | |
3/4PH-3 | 13.3±2.08 abc | 188.41±6.75 d | 70.11±1.83 bcd | 22.70±0.23 abc | 104.94±1.17 d | 34.71 | |
4/4PH-3 | 12.3±2.31 c | 90.56±3.24 f | 67.10±2.71 d | 21.41±0.55 def | 44.91±0.70 f | 72.06 | |
1/4PH-6 | 15.0±1.00 ab | 206.75±10.46 bc | 71.10±1.91 bc | 22.54±0.59 bcd | 120.12±3.55 c | 25.27 | |
1/2PH-6 | 14.0±2.00 abc | 199.77±12.00 c | 67.80±3.43 cd | 22.49±0.53 bcd | 116.45±2.47 c | 27.55 | |
3/4PH-6 | 9.7±0.58 d | 173.13±3.26 e | 66.27±1.71 d | 20.91±0.10 f | 63.13±3.04 e | 60.72 | |
4/4PH-6 | 9.3±0.58 d | 63.15±2.46 g | 37.29±2.24 f | 20.64±0.86 f | 23.25±2.46 g | 85.54 | |
1/4PH-9 | 14.3±2.08 abc | 202.55±7.96 c | 69.74±2.66 bcd | 22.27±0.21 cde | 118.59±4.63 c | 26.22 | |
1/2PH-9 | 13.0±1.00 bc | 180.59±7.08 de | 61.56±0.28 e | 21.15±0.49 ef | 105.49±3.98 d | 34.37 | |
3/4PH-9 | 8.3±0.58 d | 82.77±3.55 h | 32.52±3.69 g | 20.47±1.84 f | 25.85±3.31 g | 83.92 | |
4/4PH-9 | 0.0±0.00 e | 0.00±0.00 | 0.00±0.00 h | 0.00±0.00 g | 0.00±0.00 h | 100.00 | |
2018 | CK | 15.0±0.00 ab | 231.59±5.59 a | 84.93±0.84 a | 24.47±0.75 a | 157.85±15.78 a | 0.00 |
1/4PH-3 | 15.3±1.53 a | 221.69±15.82 ab | 72.57±1.49 b | 23.82±0.90 ab | 124.09±5.36 b | 21.97 | |
1/2PH-3 | 13.7±0.58 bc | 203.15±4.65 c | 71.92±1.93 b | 22.70±0.81 bc | 123.17±6.55 b | 21.39 | |
3/4PH-3 | 12.7±0.58 cd | 187.99±5.12 de | 70.26±3.04 bc | 22.60±1.06 bc | 103.78±3.71 c | 34.25 | |
4/4PH-3 | 12.0±0.00 d | 91.43±5.82 f | 68.24±2.95 cd | 21.70±1.00 cd | 43.05±2.18 e | 72.73 | |
1/4PH-6 | 14.7±0.58 ab | 208.3±9.65 bc | 72.12±1.55 b | 22.59±1.02 bc | 123.67±6.15 b | 21.65 | |
1/2PH-6 | 14.0±0.00 abc | 197.77±9.38 cd | 67.55±1.92 cd | 22.84±1.46 abc | 118.46±5.63 b | 24.96 | |
3/4PH-6 | 9.7±0.58 e | 178.74±3.44 e | 65.87±0.11 d | 20.53±0.84 d | 61.77±5.91 d | 60.87 | |
4/4PH-6 | 9.3±1.53 e | 70.26±5.85 g | 37.97±1.56 f | 20.30±0.41 d | 25.91±4.78 f | 83.59 | |
1/4PH-9 | 13.7±0.58 bc | 200.52±2.78 cd | 67.38±2.66 cd | 22.44±1.49 bc | 115.04±4.34 b | 27.12 | |
1/2PH-9 | 13.0±1.73 cd | 182.54±11.81 e | 61.05±1.49 e | 21.59±1.00 cd | 102.45±6.00 c | 35.10 | |
3/4PH-9 | 8.3±0.58 e | 82.24±11.81 fg | 32.66±2.90 g | 20.79±0.95 d | 25.37±5.50 f | 83.93 | |
4/4PH-9 | 0.0±0.00 f | 0.00±0.00 h | 0.00±0.00 h | 0.00±0.00 e | 0.00±0.00 g | 100.00 | |
ANOVA | |||||||
年份Year(Y) | 0.15 | 2.67 | 0.28 | 1.38 | 0.80 | ||
淹涝天数Flooding days(D) | 94.61** | 344.41** | 1116.62** | 358.38** | 174.92** | ||
淹涝深度Flooding depth(H) | 167.72** | 1839.64** | 1553.42** | 430.35** | 1290.14** | ||
Y×D | 0.07 | 0.29 | 0.28 | 0.17 | 0.56 | ||
Y×H | 0.24 | 8.31** | 0.3 | 0.6 | 0.14 | ||
D×H | 36.01** | 78.12** | 317.36** | 247.29** | 38.045** | ||
Y×D×H | 0.09 | 0.33 | 0.24 | 0.13 | 0.14 |
表4 不同淹涝处理下水稻产量结构
Table 4. Yield components of rice under different flooding treatments.
年份 Year | 处理 Treatment | 有效穗数 Effective panicle number per plant | 每穗实粒数 Number of grains per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 实际产量 Actual yield/(g·pot−1) | 减产率 Yield reduction rate/% |
---|---|---|---|---|---|---|---|
2017 | CK | 14.7±0.58 ab | 251.67±5.65 a | 85.51±1.15 a | 23.78±0.41 a | 160.73±3.30 a | 0.00 |
1/4PH-3 | 15.3±1.53 a | 214.61±6.43 b | 73.00±3.11 b | 23.59±0.55 ab | 127.60±4.68 b | 20.61 | |
1/2PH-3 | 14.0±1.00 abc | 199.53±5.04 c | 72.73±2.13 b | 22.77±0.59 abc | 125.54±3.01 b | 21.90 | |
3/4PH-3 | 13.3±2.08 abc | 188.41±6.75 d | 70.11±1.83 bcd | 22.70±0.23 abc | 104.94±1.17 d | 34.71 | |
4/4PH-3 | 12.3±2.31 c | 90.56±3.24 f | 67.10±2.71 d | 21.41±0.55 def | 44.91±0.70 f | 72.06 | |
1/4PH-6 | 15.0±1.00 ab | 206.75±10.46 bc | 71.10±1.91 bc | 22.54±0.59 bcd | 120.12±3.55 c | 25.27 | |
1/2PH-6 | 14.0±2.00 abc | 199.77±12.00 c | 67.80±3.43 cd | 22.49±0.53 bcd | 116.45±2.47 c | 27.55 | |
3/4PH-6 | 9.7±0.58 d | 173.13±3.26 e | 66.27±1.71 d | 20.91±0.10 f | 63.13±3.04 e | 60.72 | |
4/4PH-6 | 9.3±0.58 d | 63.15±2.46 g | 37.29±2.24 f | 20.64±0.86 f | 23.25±2.46 g | 85.54 | |
1/4PH-9 | 14.3±2.08 abc | 202.55±7.96 c | 69.74±2.66 bcd | 22.27±0.21 cde | 118.59±4.63 c | 26.22 | |
1/2PH-9 | 13.0±1.00 bc | 180.59±7.08 de | 61.56±0.28 e | 21.15±0.49 ef | 105.49±3.98 d | 34.37 | |
3/4PH-9 | 8.3±0.58 d | 82.77±3.55 h | 32.52±3.69 g | 20.47±1.84 f | 25.85±3.31 g | 83.92 | |
4/4PH-9 | 0.0±0.00 e | 0.00±0.00 | 0.00±0.00 h | 0.00±0.00 g | 0.00±0.00 h | 100.00 | |
2018 | CK | 15.0±0.00 ab | 231.59±5.59 a | 84.93±0.84 a | 24.47±0.75 a | 157.85±15.78 a | 0.00 |
1/4PH-3 | 15.3±1.53 a | 221.69±15.82 ab | 72.57±1.49 b | 23.82±0.90 ab | 124.09±5.36 b | 21.97 | |
1/2PH-3 | 13.7±0.58 bc | 203.15±4.65 c | 71.92±1.93 b | 22.70±0.81 bc | 123.17±6.55 b | 21.39 | |
3/4PH-3 | 12.7±0.58 cd | 187.99±5.12 de | 70.26±3.04 bc | 22.60±1.06 bc | 103.78±3.71 c | 34.25 | |
4/4PH-3 | 12.0±0.00 d | 91.43±5.82 f | 68.24±2.95 cd | 21.70±1.00 cd | 43.05±2.18 e | 72.73 | |
1/4PH-6 | 14.7±0.58 ab | 208.3±9.65 bc | 72.12±1.55 b | 22.59±1.02 bc | 123.67±6.15 b | 21.65 | |
1/2PH-6 | 14.0±0.00 abc | 197.77±9.38 cd | 67.55±1.92 cd | 22.84±1.46 abc | 118.46±5.63 b | 24.96 | |
3/4PH-6 | 9.7±0.58 e | 178.74±3.44 e | 65.87±0.11 d | 20.53±0.84 d | 61.77±5.91 d | 60.87 | |
4/4PH-6 | 9.3±1.53 e | 70.26±5.85 g | 37.97±1.56 f | 20.30±0.41 d | 25.91±4.78 f | 83.59 | |
1/4PH-9 | 13.7±0.58 bc | 200.52±2.78 cd | 67.38±2.66 cd | 22.44±1.49 bc | 115.04±4.34 b | 27.12 | |
1/2PH-9 | 13.0±1.73 cd | 182.54±11.81 e | 61.05±1.49 e | 21.59±1.00 cd | 102.45±6.00 c | 35.10 | |
3/4PH-9 | 8.3±0.58 e | 82.24±11.81 fg | 32.66±2.90 g | 20.79±0.95 d | 25.37±5.50 f | 83.93 | |
4/4PH-9 | 0.0±0.00 f | 0.00±0.00 h | 0.00±0.00 h | 0.00±0.00 e | 0.00±0.00 g | 100.00 | |
ANOVA | |||||||
年份Year(Y) | 0.15 | 2.67 | 0.28 | 1.38 | 0.80 | ||
淹涝天数Flooding days(D) | 94.61** | 344.41** | 1116.62** | 358.38** | 174.92** | ||
淹涝深度Flooding depth(H) | 167.72** | 1839.64** | 1553.42** | 430.35** | 1290.14** | ||
Y×D | 0.07 | 0.29 | 0.28 | 0.17 | 0.56 | ||
Y×H | 0.24 | 8.31** | 0.3 | 0.6 | 0.14 | ||
D×H | 36.01** | 78.12** | 317.36** | 247.29** | 38.045** | ||
Y×D×H | 0.09 | 0.33 | 0.24 | 0.13 | 0.14 |
图9 不同淹涝处理下水稻产量结构因子与单穗干质量和生理指标的相关性 Tr-蒸腾速率;Ci-胞间CO2浓度;Gs-气孔导度;Pn-净光合速率;SP-可溶性蛋白含量;SS-可溶性糖含量;R-SOD-根系SOD活性;F-SOD-剑叶SOD活性;R-POD-根系POD活性;F-POD-剑叶POD活性;R-MDA-根系MDA含量;F-MDA-剑叶MDA含量;DWSE-单穗干质量。下同。
Fig. 9. Correlation of yield compments with single panicle dry weight and physiological indexes under various flooding trentments. Tr, Transpiration rate; Ci, Intercellular CO2 concentration; Gs, Stomatal conductance; Pn, Net photosynthesis; SP, Soluble protein content; SS, Soluble sugar content; R-SOD, Root SOD activity; F-SOD, Flag leaf SOD activity; R-POD, Root POD activity; F-POD, Flag leaf POD activity; R-MDA, Root MDA content; F-MDA, Flag leaf MDA content; DWSE, Dry weight per panicle. The same below.
年份 Year | 回归关系式 Regression equation | 标准化回归系数绝对值 Standardized regression coefficient absolute value | 相关系数 Correlation coefficients | F值 F value | |
---|---|---|---|---|---|
D | H | ||||
2017 | Ry=194.513−5.102D−133.397H | 0.244 | 0.922 | 0.95 | 60.99** |
2018 | Ry=162.499−3.730D−109.620H | 0.214 | 0.908 | 0.93 | 40.00** |
表5 不同淹涝处理下水稻实际产量(YR)与淹涝时间(D)和淹涝深度(H)之间的量化关系
Table 5. Quantitative relationship of actual rice yield(YR) with flooding duration(D) and flooding depth(H) in various flooding treatments.
年份 Year | 回归关系式 Regression equation | 标准化回归系数绝对值 Standardized regression coefficient absolute value | 相关系数 Correlation coefficients | F值 F value | |
---|---|---|---|---|---|
D | H | ||||
2017 | Ry=194.513−5.102D−133.397H | 0.244 | 0.922 | 0.95 | 60.99** |
2018 | Ry=162.499−3.730D−109.620H | 0.214 | 0.908 | 0.93 | 40.00** |
指标 Indicator | 关联系数 Correlation coefficient | 排序 Order |
---|---|---|
叶绿素b含量Chl b content | 0.6620 | 1 |
叶绿素a含量Chl a content | 0.6598 | 2 |
可溶性蛋白含量Soluble protein content(SP) | 0.6401 | 3 |
蒸腾速率Tr | 0.6321 | 4 |
气孔导度Gs | 0.6223 | 5 |
净光合速率Pn | 0.6169 | 6 |
可溶性糖含量Soluble sugar content(SS) | 0.4598 | 7 |
单穗干质量DWSE | 0.4562 | 8 |
根系SOD活性 Root SOD activity(R-SOD) | 0.4291 | 9 |
胞间CO2浓度Ci | 0.4280 | 10 |
根系MDA含量 Root MDA content(R-MDA) | 0.4191 | 11 |
剑叶SOD活性Flag leaf SOD activity(F-SOD) | 0.3960 | 12 |
根系POD活性Root POD activity(R-POD) | 0.3738 | 13 |
株高增长量Plant height growth(PHG) | 0.3179 | 14 |
第4节间长Length of the 4th internode(L4I) | 0.3154 | 15 |
剑叶MDA含量Flag leaf MDA content(F-MDA) | 0.3071 | 16 |
剑叶POD含量Flag leaf POD content(F-POD) | 0.2639 | 17 |
表6 水稻实际产量与各形态、生理指标的关联系数分析
Table 6. Gray correlation analysis of actual yield with morphological and physiological index.
指标 Indicator | 关联系数 Correlation coefficient | 排序 Order |
---|---|---|
叶绿素b含量Chl b content | 0.6620 | 1 |
叶绿素a含量Chl a content | 0.6598 | 2 |
可溶性蛋白含量Soluble protein content(SP) | 0.6401 | 3 |
蒸腾速率Tr | 0.6321 | 4 |
气孔导度Gs | 0.6223 | 5 |
净光合速率Pn | 0.6169 | 6 |
可溶性糖含量Soluble sugar content(SS) | 0.4598 | 7 |
单穗干质量DWSE | 0.4562 | 8 |
根系SOD活性 Root SOD activity(R-SOD) | 0.4291 | 9 |
胞间CO2浓度Ci | 0.4280 | 10 |
根系MDA含量 Root MDA content(R-MDA) | 0.4191 | 11 |
剑叶SOD活性Flag leaf SOD activity(F-SOD) | 0.3960 | 12 |
根系POD活性Root POD activity(R-POD) | 0.3738 | 13 |
株高增长量Plant height growth(PHG) | 0.3179 | 14 |
第4节间长Length of the 4th internode(L4I) | 0.3154 | 15 |
剑叶MDA含量Flag leaf MDA content(F-MDA) | 0.3071 | 16 |
剑叶POD含量Flag leaf POD content(F-POD) | 0.2639 | 17 |
[1] | Ivanic M, Martin W. Implications of higher global food prices for poverty in low-income countries 1[J]. Agricultural economics, 2008, 39: 405-416. |
[2] | 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008(5): 915-924. |
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008(5): 915-924. (in Chinese with English abstract) | |
[3] | Shao G, Wang M, Yu S, Liu N, Xiao M, Yuan M. Potential of controlled irrigation and drainage for reducing nitrogen emission from rice paddies in Southern China[J]. Journal of Chemistry, 2015, 913470. |
[4] | Kotera A, Nawata E. Role of plant height in the submergence tolerance of rice: A simulation analysis using an empirical model[J]. Agricultural Water Management, 2007, 89(1-2): 49-58. |
[5] | 李阳生, 李绍清. 淹涝胁迫对水稻生育后期的生理特性和产量性状的影响[J]. 武汉植物学研究, 2000(2): 117-122. |
Li Y S, Li S Q. Effect of submergence on physiologic indexes and yield component at reproductive stage in rice[J]. Plant Science Journal, 2000(2): 117-122. (in Chinese with English abstract) | |
[6] | 李开江, 石鹤付, 史健, 顾长善. 分蘖期淹水对水稻生长发育和产量的影响[J]. 安徽农学通报, 2007, 90(20): 64-65. |
Li K J, Shi H F, Shi J, Gu Z S. Effects of flooding at tillering stage on growth and yield of rice[J]. Anhui Agricultural Science Bulletin, 2007, 90(20): 64-65. (in Chinese with English abstract) | |
[7] | 姜丽霞, 闫敏慧, 翟墨, 闫平, 韩俊杰, 何锋, 王铭, 于艳梅. 关键生育期淹涝胁迫对黑龙江省水稻的影响[J]. 灾害学, 2020, 35(4): 128-134. |
Jiang L X, Yan M H, Zhai M, Yan P, Han J J, He F, Wang M, Yu Y M. Effects of waterlogging stress on japonica rice during critical growth period in Heilongjiang province[J]. Journal of Catastrophology, 2020, 35(4): 128-134. (in Chinese with English abstract) | |
[8] | 姜丽霞, 于艳梅, 刘泽恩, 王萍, 孙丽莉, 闫平, 赵慧颖. 淹涝胁迫对寒地水稻生长和产量的影响研究[J]. 海洋气象学报, 2020, 40(2): 140-148. |
Jiang L X, Yu Y M, Liu Z E, Wang P, Sun L P, Yan P, Zhao H Y. Impact of waterlogging stress on japonica rice growth and vield in cold region[J]. Journal of Marine Meteorology, 2020, 40(2): 140-148. (in Chinese with English abstract) | |
[9] | 吴凤燕, 王煌, 朱瑞, 翟丽妮, 胡铁松. 拔节-孕穗期淹涝胁迫对水稻生长的后效影响[J]. 农业工程学报, 2021, 37(24): 85-93. |
Wu F Y, Wang H, Zhu R, Zhai L N, Hu T S. Post-effects of waterlogging on the rice growth at the jointing-booting stage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 85-93. (in Chinese with English abstract) | |
[10] | 成添, 胡继超, 李映雪, 谢晓金, 李永秀. 淹涝胁迫对水稻植株叶片光合性能的影响[J]. 气象与环境科学, 2019, 42(1): 26-33. |
Cheng T, Hu J C, Li Y X, Xie X J, Li Y X,. Effects of flooding stress on leave's photosynthetic capability of paddy rice[J]. Meteorological and Environmental Sciences, 2019, 42(1): 26-33. (in Chinese with English abstract) | |
[11] | 晏军, 吴启侠, 朱建强. 中稻灌浆期对淹水胁迫的响应及排水指标研究[J]. 灌溉排水学报, 2017, 36(5): 59-65. |
Yan J, Wu Q X, Zhu J Q. Response of mid-season rice to waterlogging at filing stage and its consideration in design of drainage standard[J]. Journal of Irrigation and Drainage, 2017, 36(5): 59-65. (in Chinese with English abstract) | |
[12] | 晏军, 吴启侠, 朱建强, 徐笑笑, 张露萍. 拔节期杂交中稻对淹水胁迫的响应及指示性指标探讨[J]. 中国稻米, 2017, 23(1): 17-25. |
Yan J, Wu Q X, Zhu J Q, Xu X X, Zhang L P. Response of hybrid mid-season rice to flooding and discussion of indicative index at the jointing stage[J]. China Rice, 2017, 23(1): 17-25. (in Chinese with English abstract) | |
[13] | 彭斯敏, 耿延琢, 程勤学, 王毅. 丰两优香1号在湖北省种植表现及其高产栽培技术[J]. 杂交水稻, 2009, 24(5): 52-53. |
Peng S M, Geng Y Z, Cheng Q X, Wang Y. Performance and high-yielding cultural techniques of fengliangyou xiang 1 in Hubei Province[J]. Hybrid Rice, 2009, 24(5): 52-53. (in Chinese with English abstract) | |
[14] | 潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展[J]. 生态学杂志, 2012, 31(10): 2662-2672. |
Pan L, Xue L. Plant physiological mechanisms in adapting to waterlogging stress: A review[J]. Chinese Journal of Ecology, 2012, 31(10): 2662-2672. (in Chinese with English abstract) | |
[15] | 谭淑端, 朱明勇, 张克荣, 党海山, 张全发. 植物对水淹胁迫的响应与适应[J]. 生态学杂志, 2009, 28(9): 1871-1877. |
Tan S D, Zhu M Y, Zhang K R, Dang H S, Zhang Q F. Response and adaptation of plants to submergence stress[J]. Chinese Journal of Ecology, 2009, 28(9): 1871-1877. (in Chinese with English abstract) | |
[16] | Karalija E, Selović A. The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress[J]. Environmental Science and Pollution Research, 2018, 25(33): 33370-33380. |
[17] | 李一路, 郭照辉, 肖蓉, 程伟, 张敏, 胡丹, 王玉双, 单世平, 魏小武. 外源柠檬酸杆菌对水稻镉吸收和亚细胞分布及生理特性的影响[J]. 湖南农业大学学报: 自然科学版, 2023, 49(1): 35-42. |
Li Y L, Guo Z H, Xiao R, Cheng W, Zhang M, Hu D, Wang Y S, Dan S P, Wei X W. Effects of exogenous addition of Citrobacter sp. on Cd uptake and the subcellular distribution of Cd and physiological characteristics in rice[J]. Journal of Hunan Agricultural University(Natural Sciences), 2023, 49(1): 35-42. (in Chinese with English abstract). | |
[18] | Zeng L S, Liao M, Chen C L, Huang C Y. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system[J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 67-74. |
[19] | Sone C, Ito O, Sakagami J I. Characterizing submergence survival strategy in rice via chlorophyll fluorescence[J]. Journal of Agronomy and Crop Science, 2012, 198(2): 152-160. |
[20] | 向镜, 陈惠哲, 张玉屏, 张义凯, 朱德峰. 淹涝条件下水温对水稻幼苗形态和生理的影响[J]. 中国水稻科学, 2016, 30(5): 525-531. |
Xiang J, Chen H Z, Zhang Y P, Zhang Y K, Zhu D F. Morphological and physiological responses of rice seedlings to water temperature under complete submergence[J]. Chinese Journal of Rice Science, 2016, 30(5): 525-531. (in Chinese with English abstract) | |
[21] | 甄博, 周新国, 陆红飞, 李会贞. 高温与涝交互胁迫对水稻孕穗期生理指标的影响[J]. 灌溉排水学报, 2019, 38(3): 1-7. |
Zhen B, Zhou X G, Lu H F, Li H Z. The effects of alternate hot wave and waterlogging on physiological traits of rice at booting stage[J]. Journal of Irrigation and Drainage, 2019, 38(3): 1-7. (in Chinese with English abstract) | |
[22] | 向丽霞, 胡立盼, 孟森, 邹志荣. 叶面喷施亚精胺对高温胁迫下番茄叶绿素合成代谢的影响[J]. 西北植物学报, 2020, 40(5): 846-851. |
Xiang L X, Hu L P, Meng S, Zou Z R. Effects of foliar-spraying spermidine on chlorophyll synthesis metabolism of tomato seedlings under heat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(5): 846-851. (in Chinese with English abstract) | |
[23] | 吴思佳, 李仁英, 谢晓金, 张婍, 陈佳林, 徐向华, 胡宗荟, 卢炳浩, 张娜. 抽穗期高温对水稻叶片光合特性、叶绿素荧光特性和产量构成因素的影响[J]. 南方农业学报, 2021, 52(1): 20-27. |
Wu S J, Li R Y, Xie X J, Zhang Q, Chen J L, Xu X H, Hu Z H, Lu B H, Zhang N. Effects of high temperature on characteristics of photosynthesis and chlorophyll fluorescence and yield components of rice at heading stage[J]. Journal of Southern Agriculture, 2021, 52(1): 20-27. (in Chinese with English abstract) | |
[24] | Flexas J, Bota J, Loreto F, Cornic G, Sharkey T D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J]. Plant Biology, 2004, 6(3): 269-279. |
[25] | Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees[J]. Plant, Cell & Environment, 2005, 28(7): 834-849. |
[26] | Kumar A, Nayak A K, Hanjagi P S, Kumari K, Vijayakumar S, Mohanty S, Tripathi R, Panneerselvam P. Submergence stress in rice: Adaptive mechanisms, coping strategies and future research needs[J]. Environmental and Experimental Botany, 2021, 186: 104448. |
[27] | 徐涛, 才硕, 时红, 时元智, 谢亨旺, 刘方平, 梁举. 拔节期淹水胁迫对水稻叶片酶活性及产量的影响[J]. 中国农村水利水电, 2020, 457(11): 89-93. |
Xu T, Cai S, Shi H, Shi Y Z, Xie H W, Liu F P, Liang J. The effects of different flooding stresses on enzymatic activity of the blade and the yield of rice at elongation stage[J]. China Rural Water and Hydropower, 2020, 457(11): 89-93. (in Chinese with English abstract). | |
[28] | 李学昊, 罗强, 秦婷婷, 袁帅, 程伦国, 刘路广. 暴雨后不同滞蓄水深对虾稻田中水稻拔节期生长及产量的影响[J]. 中国农村水利水电, 2021, 467(9): 124-127. |
Li X H, Luo Q, Qin T T, Yuan S, Cheng L G, Liu L G. Effects of different detention water depths on rice growth and yield in shrimp rice fields after a heavy rain[J]. China Rural Water and Hydropower, 2021, 467(9): 124-127. (in Chinese with English abstract) | |
[29] | 彭克勤, 夏石头, 李阳生. 涝害对早中稻生理特性及产量的影响[J]. 湖南农业大学学报: 自然科学版, 2001(3): 173-176. |
Peng K Q, Xia S T, Li Y S. Effects of complete submergence on some physiological and yield characteristics of early and middle-season rice[J]. Journal of Hunan Agricultural University: Natural Sciences, 2001(3): 173-176. (in Chinese with English abstract) | |
[30] | 王矿, 王友贞, 汤广民. 水稻在拔节孕穗期对淹水胁迫的响应规律[J]. 中国农村水利水电, 2016(9): 81-87. |
Wang K, Wang Y Z, Tang G M. Experimental study of response rice jointing-booting stage to inundation condition[J]. China Rural Water and Hydropower, 2016(9): 81-87. (in Chinese with English abstract) | |
[31] | 姬静华, 霍治国, 唐力生, 杜尧东, 胡飞. 早稻灌浆期淹水对剑叶理化特性及产量和品质的影响[J]. 中国水稻科学, 2016, 30(2): 181-192. |
Ji J H, Huo Z G, Tang L S, Du Y D, Hu F. Grain yield and quality and physiological and biochemical characteristics of glag leaf in early rice as affected by submergence at filling stage[J]. Chinese Journal of Rice Science, 2016, 30(2): 181-192. (in Chinese with English abstract) | |
[32] | 徐涛, 才硕, 时红, 时元智, 刘方平, 谢亨旺, 梁举. 分蘖期淹水胁迫对早稻生长发育及产量构成的影响[J]. 节水灌溉, 2020, 301(9): 16-20. |
Xu T, Cai S, Shi H, Shi Y Z, Liu F P, Xie H W, Liang J. Effects of waterlogging stress on growth and yield of early rice at tillering stage[J]. Water Saving Irrigation, 2020, 301(9): 16-20. (in Chinese with English abstract). | |
[33] | Fu J, Jian Y, Wang X, Li L, Ciais P, Zscheischler J, Wang Y, Tang Y, Müller C, Webber H. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades[J]. Nature Food, 2023: 1-11. |
[34] | 逯涛, 曾庆涛, 张文, 王文博, 王政洋, 杨芮, 孙玉岩. 主成分分析及灰色关联度分析综合评价棉花产量与品质[J]. 新疆农业科学, 2023, 60(5): 1099-1109. |
Lu T, Ceng Q T, Zhang W, Wang W B, Wang Z Y, Yang R, Sun Y Y. Comprehensive evaluation of cotton yield and quality by principal component analysis and grey correlation analysis[J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1099-1109. (in Chinese with English abstract). | |
[35] | 袁伟玲, 曹凑贵, 程建平. 水稻产量及构成因素的灰色关联度分析[J]. 湖北农业科学, 2005(2): 24-25. |
Yuan W L, Cao C G, Cheng J P. Gray correlation analysis of rice yield and its compositions[J]. Hubei Agricultural Sciences, 2005(2): 24-25. (in Chinese with English abstract) | |
[36] | 曹燕燕, 张宏套, 郭春强, 葛昌斌, 廖平安, 黄杰, 乔冀良, 齐双丽, 李雷雷. 不同冬小麦品种拔节期低温生理生化反应及其灰色关联度分析[J]. 山东农业科学, 2021, 53(8): 37-42. |
Cao Y Y, Zhang H T, Guo C Q, Ge C B, Liao P A, Huang J, Qiao J L, Qi S L, Li L L. Physiological and biochemical reactions of different winter wheat varieties at jointing stage under low temperature and their grey correlation analysis[J]. Shandong Agricultural Sciences, 2021, 53(8): 37-42. (in Chinese with English abstract) | |
[37] | 胡江龙, 郭林涛, 王友华, 周治国. 棉花渍害恢复的生理指示指标探讨[J]. 中国农业科学, 2013, 46(21): 4446-4453. |
Hu J L, Guo L T, Wang Y H, Zhou Z G. Physiological indicator of cotton plant in recovery from waterlogging damage[J]. Scientia Agricultura Sinica, 2013, 46(21): 4446-4453. (in Chinese with English abstract) | |
[38] | Ennahli S, Earl H J. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress[J]. Crop Science, 2005, 45(6): 2374-2382. |
[39] | 冯方剑, 宋敏, 陈全家, 姚正培, 李杨阳, 刘艳, 王兴安, 曲延英. 棉花苗期抗旱相关指标的主成分分析及综合评价[J]. 新疆农业大学学报, 2011, 34(3): 211-217. |
Feng F J, Song M, Chen Q J, Yao Z P, Li Y Y, Liu Y, Wang X A, Qu Y Y. Analysis and comprehensive evaluation on principal component of relative indices of drought resistance at the seedling stage of cotton[J]. Journal of Xinjiang Agricultural University, 2011, 34(3): 211-217. (in Chinese with English abstract) | |
[40] | 周广生, 梅方竹, 周竹青, 朱旭彤. 小麦不同品种耐湿性生理指标综合评价及其预测[J]. 中国农业科学, 2003(11): 1378-1382. |
Zhou G S, Mei F Z, Zhou Z Q, Zhu X T. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties[J]. Scientia Agricultura Sinica, 2003(11): 1378-1382. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[4] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
[5] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[6] | 彭显龙, 董强, 张辰, 李鹏飞, 李博琳, 刘智蕾, 于彩莲. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响[J]. 中国水稻科学, 2024, 38(2): 198-210. |
[7] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
[8] | 袁沛, 周旋, 杨威, 尹凌洁, 靳拓, 彭建伟, 荣湘民, 田昌. 化肥减氮配施对洞庭湖区双季稻产量和田面水氮磷流失风险的影响[J]. 中国水稻科学, 2023, 37(5): 518-528. |
[9] | 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542. |
[10] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[11] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[12] | 王文婷, 马佳颖, 李光彦, 符卫蒙, 李沪波, 林洁, 陈婷婷, 奉保华, 陶龙兴, 符冠富, 秦叶波. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J]. 中国水稻科学, 2023, 37(3): 253-264. |
[13] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
[14] | 魏晓东, 宋雪梅, 赵凌, 赵庆勇, 陈涛, 路凯, 朱镇, 黄胜东, 王才林, 张亚东. 硅锌肥及其施用方式对南粳46产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 295-306. |
[15] | 林聃, 江敏, 苗波, 郭萌, 石春林. 水稻高温热害模型研究及其在福建省的应用[J]. 中国水稻科学, 2023, 37(3): 307-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||