中国水稻科学 ›› 2017, Vol. 31 ›› Issue (6): 665-672.DOI: 10.16819/j.1001-7216.2017.7115
• • 上一篇
收稿日期:
2017-05-20
修回日期:
2017-06-25
出版日期:
2017-11-25
发布日期:
2017-11-10
通讯作者:
钱前
基金资助:
Haixiang HUANG1, Qian QIAN2,*()
Received:
2017-05-20
Revised:
2017-06-25
Online:
2017-11-25
Published:
2017-11-10
Contact:
Qian QIAN
摘要:
水稻粒形遗传机制和粒形育种一直是水稻品质和产量研究的重要领域。在粳稻品种选育中,对长粒形遗传种质的选择,已经成为近年来一种新的育种趋势。我们在总结粒长及其相关性状的遗传研究进展和已知粒长相关基因功能的基础上,系统地介绍了南方稻区长粒粳稻的育种历程及其选育策略。同时,对以品种嘉禾218为代表的南方长粒晚粳稻系列品种农艺性状和品质特性进行了比较,在阐明长粒粳稻优质、高产的品种特点的同时,提出长粒晚粳育种中选择粒形、兼顾株型、保产提质的选育思路。
中图分类号:
黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6): 665-672.
Haixiang HUANG, Qian QIAN. Progress in Genetic Research of Rice Grain Shape and Breeding Achievements of Long-grain Shape and Good Quality japonica Rice[J]. Chinese Journal OF Rice Science, 2017, 31(6): 665-672.
图1 长粒粳稻不育系嘉禾212A GS3基因突变位点鉴定 A–长粒不育系嘉禾212A、杂交种嘉禾优7245及恢复系中恢7245的抽穗期的植株特征;B–嘉禾212不育系、杂交种嘉禾优7245及恢复系中恢7245粒形特征;C–嘉禾212不育系与其恢复系中恢7245、杂交种嘉禾优7245以及日本晴在GS3基因上突变位点的比较。
Fig. 1. GS3 gene mutational site identification in CMS-Jiahe 212.A, Phenotypic characteristic of cytoplasmic male sterile line Jiahe 212(CMS-Jiahe 212), Jiaheyou 7245 and its restorer line Zhonghui 7245 at the heading stage; B, Grain shape characteristic of CMS-Jiahe 212, Jiaheyou 7245 and its restorer line Zhonghui 7245; C, Comparison of the mutational site in GS3 gene among CMS-Jiahe 212, Jiaheyou 7245, Zhonghui 7245 and Nipponbare.
品种 Cultivar | 糙米率 Brown rice rate /% | 精米率 Milled rice rate /% | 整精米率 Head milled rice rate/% | 粒长 Grain length /mm | 长宽比 Length-width ratio | 垩白粒率 Chalky rice rate /% |
---|---|---|---|---|---|---|
嘉禾218 Jiahe 218 | 84.7 | 77.8 | 58.2 | 7.0 | 3.0 | 6 |
嘉禾288 Jiahe 288 | 84.5 | 75.6 | 70.8 | 5.4 | 1.8 | 54 |
嘉禾291 Jiahe 291 | 85.0 | 77.5 | 70.3 | 6.6 | 2.4 | 12 |
秀水63 Xiushui 63 | 83.4 | 74.9 | 71.3 | 4.9 | 1.7 | 20 |
粳稻一级 J1 | ≥84.0 | ≥77.0 | ≥72.0 | - | - | ≤10 |
籼稻一级 I1 | ≥81.0 | ≥73.0 | ≥50.0 | ≥6.6 | ≥2.8 | ≤10 |
品种 Cultivar | 垩白度 Chalkiness degree | 透明度 Transparency | 碱消值 Alkali spreading value | 胶稠度 Gel consistency/mm | 直链淀粉含量 Amylose content /% | 蛋白质含量 Protein content /% |
嘉禾218 Jiahe 218 | 0.6 | 1 | 7.0 | 74 | 16.6 | 9.3 |
嘉禾288 Jiahe 288 | 7.9 | 2 | 7.0 | 74 | 14.7 | 9.8 |
嘉禾291 Jiahe 291 | 1.5 | 1 | 7.0 | 81 | 16.5 | 10.2 |
秀水63 Xiushui 63 | 4.0 | 2 | 7.0 | 72 | 15.2 | 8.9 |
粳稻一级J1 | ≤1.0 | 1 | ≥7.0 | ≥80 | 15.0~18.0 | ≥9.0 |
籼稻一级I1 | ≤2.0 | 1 | ≥6.0 | ≥70 | 17.0~22.0 | ≥10.0 |
表1 部分嘉禾系列品种的品质性状
Table 1 Quality characters of some Jiahe series cultivars.
品种 Cultivar | 糙米率 Brown rice rate /% | 精米率 Milled rice rate /% | 整精米率 Head milled rice rate/% | 粒长 Grain length /mm | 长宽比 Length-width ratio | 垩白粒率 Chalky rice rate /% |
---|---|---|---|---|---|---|
嘉禾218 Jiahe 218 | 84.7 | 77.8 | 58.2 | 7.0 | 3.0 | 6 |
嘉禾288 Jiahe 288 | 84.5 | 75.6 | 70.8 | 5.4 | 1.8 | 54 |
嘉禾291 Jiahe 291 | 85.0 | 77.5 | 70.3 | 6.6 | 2.4 | 12 |
秀水63 Xiushui 63 | 83.4 | 74.9 | 71.3 | 4.9 | 1.7 | 20 |
粳稻一级 J1 | ≥84.0 | ≥77.0 | ≥72.0 | - | - | ≤10 |
籼稻一级 I1 | ≥81.0 | ≥73.0 | ≥50.0 | ≥6.6 | ≥2.8 | ≤10 |
品种 Cultivar | 垩白度 Chalkiness degree | 透明度 Transparency | 碱消值 Alkali spreading value | 胶稠度 Gel consistency/mm | 直链淀粉含量 Amylose content /% | 蛋白质含量 Protein content /% |
嘉禾218 Jiahe 218 | 0.6 | 1 | 7.0 | 74 | 16.6 | 9.3 |
嘉禾288 Jiahe 288 | 7.9 | 2 | 7.0 | 74 | 14.7 | 9.8 |
嘉禾291 Jiahe 291 | 1.5 | 1 | 7.0 | 81 | 16.5 | 10.2 |
秀水63 Xiushui 63 | 4.0 | 2 | 7.0 | 72 | 15.2 | 8.9 |
粳稻一级J1 | ≤1.0 | 1 | ≥7.0 | ≥80 | 15.0~18.0 | ≥9.0 |
籼稻一级I1 | ≤2.0 | 1 | ≥6.0 | ≥70 | 17.0~22.0 | ≥10.0 |
品种 Cultivar | 株高 Plant height /cm | 穗长 Panicle length /cm | 单株穗数 No. of panicles per plant | 每穗总粒数 No. of grains per panicle | 实粒数 No. of filled grains per panicle | |||
---|---|---|---|---|---|---|---|---|
嘉禾291 Jiahe 291 | 97.8 | 16.9 | 21.5 | 103.1 | 93.9 | |||
嘉禾288 Jiahe 288 | 95.6 | 15.5 | 20.8 | 131.5 | 112.7 | |||
秀水134 Xiushui 134(CK) | 90.8 | 14.8 | 21.2 | 128.9 | 109.9 | |||
品种 Cultivar | 结实率 Seed-setting rate/% | 千粒重 1000-grain rate/g | 实产 Yield/(kg∙667 m-2) | 产量增减 Compared to CK/% | ||||
嘉禾291 Jiahe 291 | 91.1 | 33.8 | 667.2 | 12.2 | ||||
嘉禾288 Jiahe 288 | 85.7 | 27.6 | 635.5 | 6.9 | ||||
秀水134 Xiushui 134(CK) | 85.2 | 26.7 | 594.4 |
表2 2016年常规晚稻品比试验产量及经济性状
Table 2 Quality and economical characters of Jiahe 291 and Jiahe 288 compared with conventional late rice in 2016.
品种 Cultivar | 株高 Plant height /cm | 穗长 Panicle length /cm | 单株穗数 No. of panicles per plant | 每穗总粒数 No. of grains per panicle | 实粒数 No. of filled grains per panicle | |||
---|---|---|---|---|---|---|---|---|
嘉禾291 Jiahe 291 | 97.8 | 16.9 | 21.5 | 103.1 | 93.9 | |||
嘉禾288 Jiahe 288 | 95.6 | 15.5 | 20.8 | 131.5 | 112.7 | |||
秀水134 Xiushui 134(CK) | 90.8 | 14.8 | 21.2 | 128.9 | 109.9 | |||
品种 Cultivar | 结实率 Seed-setting rate/% | 千粒重 1000-grain rate/g | 实产 Yield/(kg∙667 m-2) | 产量增减 Compared to CK/% | ||||
嘉禾291 Jiahe 291 | 91.1 | 33.8 | 667.2 | 12.2 | ||||
嘉禾288 Jiahe 288 | 85.7 | 27.6 | 635.5 | 6.9 | ||||
秀水134 Xiushui 134(CK) | 85.2 | 26.7 | 594.4 |
[1] | 胡子诚, 贾锦娟. 长粒优质高产水稻新品种宁粳36的选育及其栽培要点.中国稻米, 2007(1): 26. |
Hu Z C, Jia J J.Breeding and cultivation method of Ningjing 36, a long-grain rice cultivar with good quality.China Rice, 2007(1): 26. (in Chinese) | |
[2] | 徐建龙, 薛庆中, 罗利军, 黎志康. 水稻粒重及其相关性状的遗传解析. 中国水稻科学, 2002, 16(1): 6-10. |
Xu J L, Xue Q Z, Luo L J, Li Z K.Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chin J Rice Sci, 2002, 16(1): 6-10. (in Chinese with English abstract) | |
[3] | 高志强, 占小登, 梁永书, 程式华, 曹立勇. 水稻粒形性状的遗传及相关基因定位与克隆研究进展. 遗传, 2011, 33(4): 314-321. |
Gao Z Q, Zhan X D, Liang Y S, Cheng S H, Cao L Y.Progress on genetics of rice grain shape trait and its related gene mapping and cloning.Hereditas(Beijing), 2011, 33(4): 314-321. (in Chinese with English abstract) | |
[4] | 罗玉坤, 朱智伟, 陈能, 段彬伍, 章林平. 中国主要稻米的粒型及其品质特性. 中国水稻科学, 2004, 18(2): 135-139. |
Luo Y K, Zhu Z W, Chen N, Duan B W, Zhang L P.Grain types and related quality characteristics of rice in China.Chin J Rice Sci, 2004, 18(2): 135-139. (in Chinese with English abstract) | |
[5] | 杨梯丰, 曾瑞珍, 朱海涛, 陈岚, 张泽民, 丁效华, 李文涛, 张桂权. 水稻粒长基因GS3在聚合育种中的效应. 分子植物育种, 2010, 8(1): 59-66. |
Yang T F, Zeng R Z, Zhu H T, Chen L, Zhang Z M, Ding X H, Li W T, Zhang G Q.Effect of grain length geneGS3 in pyramiding breeding of rice. Mol Plant Breed, 2010, 8(1): 59-66. (in Chinese with English abstract) | |
[6] | 姚国新, 卢磊. 水稻粒重基因定位克隆研究. 安徽农业科学, 2007, 35(27): 8468-8478. |
Yao G X, Lu L.Research on the localization and clone of grain weight genes in rice.J Anhui Agric Sci, 2007, 35(27): 8468-8478. (in Chinese with English abstract) | |
[7] | Mckenize K S, Rutger J N.Genetic analysis of amylase content, alkali spreading score and grain dimensions in rice.Crop Sci, 1983, 23(2): 306-313. |
[8] | 芮重庆, 赵安常. 籼稻粒重及粒型性状F1遗传特性双列分析. 中国农业科学, 1983, 16(5): 14-20. |
Rui C Q, Zhao C A.Genetic analysis of weight and shape of F1’s grains by diallel crossing method in hsien rice.Sci Agric Sin, 1983, 16(5): 14-20. (in Chinese with English abstract) | |
[9] | 石春海, 申宗坦. 早籼稻谷粒性状遗传效应分析. 浙江农业大学学报, 1994, 20(4): 405-410. |
Shi C H, Shen Z T.Analysis of genetic effects of grain traits inindica rice. J Zhejiang Agric Univ, 1994, 20(4): 405-410. (in Chinese with English abstract) | |
[10] | 林鸿宣,闵绍措,熊振民,钱惠荣,庄杰云,陆军,郑康乐. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位. 中国农业科学, 1995, 28(4): 1-7. |
Lin H X, Min S K, Xiong Z M, Qian H R, Zhuang J Y, Lu J, Zheng K L.RFLP mapping of QTLs for grain shape traits inindica rice(Oryza sativa L. subsp indica). Sci Agric Sin, 1995, 28(4): 1-7. (in Chinese with English abstract) | |
[11] | 莫惠栋. 我国稻米品质的改良. 中国农业科学, 1993, 26(4): 8-14. |
Mo H D.Quality improvement of rice grain in china.Sci Agric Sin, 1993, 26(4): 8-14. (in Chinese with English abstract) | |
[12] | 刘晓辉. 谷子千粒重遗传的双列分析. 吉林农业科学, 1989(4): 33-35. |
Liu X H. Diallel genetic analysis of millet1000 grain weight.J Jilin Agric Sci, 1989(4): 33-35. (in Chinese) | |
[13] | 石春海, 申宗坦. 籼稻粒形及产量性状的加性相关和显性相关分析. 作物学报, 1996, 22(1): 36-42. |
Shi C H, Shen Z T.Additive and dominance correlation analysis of grain shape and yield traits in indica rice.Acta Agron Sin, 1996, 22(1): 36-42. (in Chinese with English abstract) | |
[14] | 石春海, 申宗坦. 早籼粒形的遗传和改良. 中国水稻科学, 1995, 9(1): 27-32. |
Shi C H, Shen Z T.Inheritance and improvement of grain shape inindica rice. Chin J Rice Sci, 1995, 9(1): 27-32. (in Chinese with English abstract) | |
[15] | 周清元, 安华, 张毅, 沈福成. 水稻子粒形态性状遗传研究. 西南农业大学学报, 2000, 22(2): 102-104. |
Zhou Y Q, An H, Zhang Y, Shen F C.Study on heredity of morphological character of rice grain. J Southwest Agric Univ, 2000, 22(2): 102-104. (in Chinese with English abstract) | |
[16] | 符福鸿, 王丰. 杂交水稻谷粒性状的遗传分析. 作物学报, 1994, 20(1): 39-45. |
Fu F H, Wang F.Genetic analysis on grain characters in hybrid rice.Acta Agron Sin, 1994, 20(1): 39-45. (in Chinese with English abstract) | |
[17] | Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M.A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway.Plant & Cell Physiol, 2014, 55(5): 897-912. |
[18] | Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nat Genet, 2010, 42(6): 541-544. |
[19] | Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Theor Appl Genet, 2006, 112(6): 1164-1171. |
[20] | Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.Proc Natl Acad Sci USA, 2010, 107(45): 19579-19584. |
[21] | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.Nat Genet, 2013, 45(6): 707-711. |
[22] | Heang D, Sassa H.An atypical bHLH protein encoded byPOSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci, 2012, 62(2): 133-141. |
[23] | Heang D, Sassa H.Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice.PLoS One, 2012, 7(2): e31325. |
[24] | Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q.Copy number variation at theGL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47(8): 944-948. |
[25] | Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice.Nat Genet, 2016, 48(4): 447-456. |
[26] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3.Cell Res, 2012, 22(12): 1666-1680. |
[27] | Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses.Nat Plants, 2015, 21(2): 15195. |
[28] | Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q.A rare allele ofGS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8(10): 1455-1465. |
[29] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet, 2007, 39(5): 623-630. |
[30] | Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J.Isolation and initial characterization ofGW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18(12): 1199-1209. |
[31] | Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J.GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3: 17043. |
[32] | Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X.Control of grain size, shape and quality byOsSPL16 in rice. Nat Genet, 2012, 44(8): 950-954. |
[33] | Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.Nat Genet, 2015, 47(8): 949-954. |
[34] | Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun X, Sun C.GS6, a member of the GRAS gene family, negatively regulates grain size in rice.J Integr Plant Biol, 2013, 55(10): 938-949. |
[35] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication.Nat Genet, 2008, 40(8): 1023-1028. |
[36] | Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat Genet, 2011, 43(12): 1266-1269. |
[37] | 徐正进, 陈温福, 马殿荣, 吕英娜, 周淑清, 刘丽霞. 稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004, 30(9): 894-900. |
Xu Z J, Chen W F, Ma D R, Lv Y N, Zhou S Q, Liu L X.Correlations between rice grain shapes and main qualitative characteristics.Acta Agron Sin, 2004, 30(9): 894-900. (in Chinese with English abstract) | |
[38] | Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41(4): 494-497. |
[1] | 伏荣桃, 陈诚, 王剑, 赵黎宇, 陈雪娟, 卢代华. 转录组和代谢组联合分析揭示稻曲病菌的致病因子[J]. 中国水稻科学, 2024, 38(4): 375-385. |
[2] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[3] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[4] | 高郡茹, 权弘羽, 袁刘珍, 李钦颖, 乔磊, 李文强. 水稻D1基因新等位突变体的鉴定与功能分析[J]. 中国水稻科学, 2024, 38(2): 140-149. |
[5] | 刘忠奇, 张海清, 贺记外, 桂金鑫. 成熟期水稻种子脱水速率全基因组关联分析[J]. 中国水稻科学, 2024, 38(2): 150-159. |
[6] | 梁楚炎, 巫明明, 黄凤明, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 基因编辑及全基因组选择技术在水稻育种中的应用展望[J]. 中国水稻科学, 2024, 38(1): 1-12. |
[7] | 侯本福, 杨传铭, 张喜娟, 杨贤莉, 王立志, 王嘉宇, 李红宇, 姜树坤. 利用龙稻5号/中优早8号RIL群体定位粒形QTL[J]. 中国水稻科学, 2024, 38(1): 13-24. |
[8] | 程祖锌, 肖长春, 张玉婷, 黄昕颖, 史夏蕾, 凌波, 王泓超, 陈小玲, 林荔辉. 红米水稻抗氧化活性成分的遗传效应与环境互作[J]. 中国水稻科学, 2024, 38(1): 25-32. |
[9] | 景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47. |
[10] | 黄奇娜, 徐有祥, 林光号, 党洪阳, 郑振权, 张燕, 王晗, 邵国胜, 尹献远. 硅对镉胁迫下水稻苗期抗氧化酶系统及镉离子吸收和转运相关基因表达水平的影响[J]. 中国水稻科学, 2023, 37(5): 486-496. |
[11] | 徐欢, 周涛, 孙悦, 王木妹, 杨亚春, 马卉, 李浩, 徐大伟, 周海, 杨剑波, 倪金龙. 水稻颖壳类病斑突变体glmm1的鉴定与基因定位[J]. 中国水稻科学, 2023, 37(5): 497-506. |
[12] | 夏杨, 李传明, 刘琴, 韩光杰, 徐彬, 黄立鑫, 祁建杭, 陆玉荣, 徐健. 印度梨形孢对盐胁迫下水稻幼苗生长及抗氧化系统的影响[J]. 中国水稻科学, 2023, 37(5): 543-552. |
[13] | 肖乐铨, 李雷, 戴伟民, 强胜, 宋小玲. 转cry2A*/bar基因水稻与杂草稻杂交后代的苗期生长特性[J]. 中国水稻科学, 2023, 37(4): 347-358. |
[14] | 李刚, 高清松, 李伟, 张雯霞, 王健, 程保山, 王迪, 高浩, 徐卫军, 陈红旗, 纪剑辉. 定向敲除SD1基因提高水稻的抗倒性和稻瘟病抗性[J]. 中国水稻科学, 2023, 37(4): 359-367. |
[15] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||