中国水稻科学 ›› 2024, Vol. 38 ›› Issue (1): 33-47.DOI: 10.16819/j.1001-7216.2024.230804
景秀1, 周苗2, 王晶1, 王岩1, 王旺1, 王开1, 郭保卫1,*(), 胡雅杰1, 邢志鹏1, 许轲1, 张洪程1
收稿日期:
2023-08-12
修回日期:
2023-09-30
出版日期:
2024-01-10
发布日期:
2024-01-16
通讯作者:
* email: 基金资助:
JING Xiu1, ZHOU Miao2, WANG Jing1, WANG Yan1, WANG Wang1, WANG Kai1, GUO Baowei1,*(), HU Yajie1, XING Zhipeng1, XU Ke1, ZHANG Hongcheng1
Received:
2023-08-12
Revised:
2023-09-30
Online:
2024-01-10
Published:
2024-01-16
Contact:
* email: 摘要:
【目的】研究穗分化末期至灌浆初期土壤干旱对优质食味粳稻根系形态生理与叶片光合特性的影响,为水稻抗旱栽培提供理论参考。【方法】以南粳9108和丰粳1606为供试材料,分别在穗分化末期至籽粒灌浆初期20 d(BAH)、穗分化末期10 d(BH)与灌浆初期10 d(AH)设置轻度干旱(LD, ψsoil = −20±5 kPa)、重度干旱(SD, ψsoil = −40±5 kPa)及常规水分(CK)处理。【结果】1)在处理结束当天、处理结束后10 d、穗后30 d与成熟期,根长、根表面积、根体积、根尖数、根干质量与根系活力均表现为SD<LD<CK,根冠比呈相反趋势。在处理结束时,BAH时段SD、LD均与CK差异显著,除根冠比外,BH、AH时段SD与CK差异显著,LD与CK无显著差异。处理结束后10 d、穗后30 d与成熟期,BAH时期SD与CK差异显著,除根尖数外LD与CK差异不显著,BH时期SD根系部分指标与CK差异显著,AH时期水分处理间无显著差异。2)在处理结束时、处理结束后10 d、穗后30 d与成熟期,剑叶净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)、最大光化学效率(Fv/Fm)、光化学猝灭系数(qp)均表现为SD<LD<CK,非光化学猝灭系数(NPQ)呈相反趋势。在处理结束时,BAH时段SD、LD各指标均与CK差异显著,除Ci外SD、LD间差异也显著,BH、AH时段SD各指标均与CK差异显著,LD与CK差异不显著。在处理结束后10 d、穗后30 d与成熟期,BAH时段SD与CK差异显著,LD与CK差异多不显著,BH时段SD的Pn、Tr、Fv/Fm较CK差异显著,而AH时段各指标在水分处理间差异多数不显著。3)三处理时段下各胁迫处理间产量均表现为SD<LD<CK,BAH、BH时段不同水分处理间差异显著,AH时段LD、CK间无显著差异,但二者均与SD差异显著。【结论】BAH时期轻度干旱、重度干旱均会抑制根系生长与叶片光合能力,显著降低产量,其中轻度干旱影响较小。BH时期土壤重度干旱时,根、叶形态生理指标在处理结束后难以恢复至对照水平,AH时期轻度干旱、重度干旱处理各指标在处理结束后能较快恢复。可见,在穗分化末期至灌浆初期,水稻根系和叶片生长对穗分化末期干旱胁迫更为敏感。
景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47.
JING Xiu, ZHOU Miao, WANG Jing, WANG Yan, WANG Wang, WANG Kai, GUO Baowei, HU Yajie, XING Zhipeng, XU Ke, ZHANG Hongcheng. Effect of Drought Stress on Root Morphology and Leaf Photosynthetic Characteristics of Good Taste japonica Rice from Late Stage of Panicle Differentiation to Early Stage of Grain Filling[J]. Chinese Journal OF Rice Science, 2024, 38(1): 33-47.
处理时段 | 干旱处理 | 土壤水势 |
---|---|---|
Processing period | Drought treatment | Soil water potential/kPa |
抽穗前1-10 d与抽穗后1~10 d 10 d before heading and 10 d after heading, BAH | 轻度干旱 Light drought, LD | −20±5 |
重度干旱 Severe drought, SD | −40±5 | |
常规水分处理 CK | 0 | |
抽穗前1-10 d 1~10 d before heading, BH | 轻度干旱 Light drought, LD | −20±5 |
重度干旱 Severe drought, SD | −40±5 | |
常规水分处理 CK | 0 | |
抽穗后1-10 d 1~10 d after heading, AH | 轻度干旱 Light drought, LD | −20±5 |
重度干旱 Severe drought, SD | −40±5 | |
常规水分处理 CK | 0 |
表1 本研究中的土壤干旱处理设计
Table 1. Soil drought stress design in the study.
处理时段 | 干旱处理 | 土壤水势 |
---|---|---|
Processing period | Drought treatment | Soil water potential/kPa |
抽穗前1-10 d与抽穗后1~10 d 10 d before heading and 10 d after heading, BAH | 轻度干旱 Light drought, LD | −20±5 |
重度干旱 Severe drought, SD | −40±5 | |
常规水分处理 CK | 0 | |
抽穗前1-10 d 1~10 d before heading, BH | 轻度干旱 Light drought, LD | −20±5 |
重度干旱 Severe drought, SD | −40±5 | |
常规水分处理 CK | 0 | |
抽穗后1-10 d 1~10 d after heading, AH | 轻度干旱 Light drought, LD | −20±5 |
重度干旱 Severe drought, SD | −40±5 | |
常规水分处理 CK | 0 |
品种 Variety | 处理时段 Processing period | 土壤水分处理 Soil water treatment | 胁迫结束时At the end of drought stress | 胁迫结束后10 d 10 d after drought stress | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | 总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | ||||
南粳 9108 Nanjing 9108 | BAH | CK | 79.52±2.94 a | 10.44±0.77 a | 97.14±4.15 a | 49.09±1.98 a | 72.71±0.67 a | 10.44±0.77 a | 85.88±2.18 a | 43.58±2.11 a | |
LD | 72.70±1.80 b | 9.17±0.58 b | 85.76±1.82 b | 40.59±1.42 b | 70.61±0.71 a | 9.17±0.58 b | 83.43±2.01 a | 37.06±2.16 b | |||
SD | 66.11±2.83 c | 8.06±0.75 c | 82.09±3.13 b | 34.87±1.30 c | 63.59±1.97 b | 8.06±0.75 c | 75.31±4.49 b | 34.48±2.96 b | |||
BH | CK | 82.52±1.23 a | 11.23±1.04 a | 101.31±3.18 a | 53.98±2.50 a | 79.52±2.94 a | 11.23±1.04 a | 97.14±1.23 a | 49.09±1.98 a | ||
LD | 81.61±1.30 a | 10.81±1.14 a | 99.70±1.21 a | 50.33±3.50 ab | 78.71±0.53 a | 10.81±1.14 a | 96.63±1.61 a | 46.28±2.52 ab | |||
SD | 78.94±1.08 b | 9.79±0.49 b | 93.52±3.47 b | 46.92±3.36 b | 78.08±2.03 a | 9.79±0.49 b | 92.79±0.86 b | 42.17±3.03 b | |||
AH | CK | 79.52±1.97 a | 10.44±0.77 a | 97.14±4.15 a | 49.09±1.98 a | 72.71±0.67 a | 10.44±0.77 a | 85.88±2.18 a | 43.58±2.11 a | ||
LD | 78.53±1.06 a | 10.23±0.75 a | 96.32±1.62 a | 48.41±1.04 ab | 73.04±1.05 a | 10.23±0.75 a | 85.31±1.46 a | 42.67±1.91 a | |||
SD | 76.30±0.35 b | 9.27±0.92 b | 95.15±1.51 b | 47.18±1.11 b | 71.92±1.55 a | 9.27±0.92 b | 84.72±1.15 a | 41.25±1.50 a | |||
丰粳 1606 Fengjing1606 | BAH | CK | 70.84±1.84 a | 8.04±0.82 a | 89.11±3.02 a | 36.20±1.90 a | 65.62±0.97 a | 8.04±0.82 a | 80.25±3.87 a | 33.84±1.33 a | |
LD | 64.17±1.03 b | 6.75±0.30 b | 80.68±0.86 b | 27.56±1.39 b | 63.78±0.85 a | 6.75±0.30 b | 77.87±2.72 ab | 27.11±2.32 b | |||
SD | 57.83±1.50 c | 6.34±0.90 b | 75.20±1.84 c | 25.29±2.45 b | 57.69±2.73 b | 6.34±0.90 b | 73.32±4.79 b | 25.07±1.04 b | |||
BH | CK | 71.24±0.31 a | 8.41±1.04 a | 93.50±2.24 a | 38.46±1.91 a | 70.84±1.84 a | 8.41±1.04 a | 89.11±3.02 a | 36.20±1.90 a | ||
LD | 71.13±0.66 a | 8.23±0.71 a | 91.54±2.15 a | 36.59±0.66 ab | 69.43±1.73 a | 8.23±0.71 a | 87.95±3.11 a | 33.21±1.03 ab | |||
SD | 69.03±1.29 b | 7.29±0.63 b | 84.50±0.68 b | 33.68±1.07 b | 67.87±0.36 a | 7.29±0.63 b | 84.10±2.17 b | 30.88±2.12 b | |||
AH | CK | 70.84±1.84 a | 8.04±0.82 a | 89.11±3.02 a | 36.20±1.90 a | 65.62±0.97 a | 8.04±0.82 a | 80.25±3.87 a | 33.84±1.33 a | ||
LD | 70.69±1.07 a | 7.73±0.20 ab | 87.60±2.08 ab | 36.12±0.67 a | 66.04±1.39 a | 7.73±0.20 ab | 80.06±3.30 a | 32.90±1.69 a | |||
SD | 68.17±0.65 b | 7.42±0.60 b | 84.90±1.39 b | 33.72±1.21 b | 65.39±1.11 a | 7.42±0.60 b | 79.81±1.54 a | 32.65±0.64 a | |||
品种 Variety | 处理时段 Processing period | 土壤水分处理 Soil water treatment | 穗后30 d 30 d after heading | 成熟期 Maturity | |||||||
总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | 总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | ||||
南粳 9108 NJ9108 | BAH | CK | 58.23±2.59 a | 8.44±0.87 a | 72.84±1.97 a | 32.35±3.73 a | 36.71±1.67 a | 5.33±0.74 a | 63.64±1.05 a | 23.81±1.56 a | |
LD | 56.48±1.50 a | 7.87±0.54 ab | 68.76±2.68 ab | 26.96±1.22 b | 35.08±0.65 ab | 5.04±0.22 ab | 61.52±1.83 ab | 21.07±1.77 b | |||
SD | 51.09±1.73 b | 7.09±0.71 b | 63.65±2.53 b | 25.86±1.06 b | 33.95±0.52 b | 4.72±0.69 b | 57.58±3.51 b | 20.09±1.19 b | |||
BH | CK | 58.23±2.59 a | 8.44±0.87 a | 72.84±1.97 a | 32.35±3.73 a | 36.71±1.67 a | 5.33±0.74 a | 63.64±1.05 a | 23.81±1.56 a | ||
LD | 57.81±0.82 a | 8.38±0.56 a | 71.99±2.85 a | 29.63±0.61 ab | 35.61±2.31 a | 5.21±0.66 a | 62.30±1.07 ab | 22.42±0.92 ab | |||
SD | 57.38±1.15 a | 7.65±0.71 b | 65.97±1.92 b | 25.86±1.13 b | 35.15±1.57 a | 4.92±0.51 b | 59.45±2.17 b | 20.78±1.05 b | |||
AH | CK | 58.23±2.59 a | 8.44±0.87 a | 72.84±1.97 a | 32.35±3.73 a | 36.71±1.67 a | 5.33±0.74 a | 63.64±1.05 a | 23.81±1.56 a | ||
LD | 59.62±1.15 a | 8.26±0.42 a | 71.64±0.78 a | 31.52±0.99 a | 36.26±3.19 a | 5.26±0.61 a | 62.84±1.66 a | 23.22±0.86 a | |||
SD | 57.42±1.36 a | 8.16±0.89 a | 71.08±3.75 a | 31.13±1.91 a | 35.84±1.29 a | 5.20±0.35 a | 62.54±1.11 a | 23.04±1.09 a | |||
丰粳 1606 FJ1606 | BAH | CK | 54.98±1.63 a | 6.64 ±1.04 a | 64.11±3.65 a | 27.90±1.82 a | 32.13±1.74 a | 4.54±0.55 a | 47.50±1.22 a | 17.90±2.52 a | |
LD | 52.50±2.79 a | 6.28±0.56 ab | 62.29±1.62 ab | 23.61±2.09 b | 31.33±0.91 ab | 4.34±0.69 ab | 45.99±2.68 ab | 15.93±0.81 b | |||
SD | 47.69±2.12 b | 5.68±0.50 b | 59.62±3.20 b | 22.70±0.90 b | 29.36±0.77 b | 4.18±0.71 b | 41.84±3.18 b | 14.93±1.90 b | |||
BH | CK | 54.98±1.63 a | 6.64±1.04 a | 64.11±3.65 a | 27.90±1.82 a | 32.13±1.74 a | 4.54±0.55 a | 47.50±1.22 a | 17.90±2.52 a | ||
LD | 54.06±0.58 a | 6.48±0.54 ab | 62.54±1.62 a | 25.68±1.05 ab | 31.24±2.89 a | 4.43±0.57 ab | 47.01±1.43 a | 17.28±0.98 ab | |||
SD | 53.78±0.90 a | 6.04±0.71 b | 56.66±1.66 b | 22.39±0.57 b | 30.97±0.99 a | 4.31±0.70 b | 44.08±1.04 b | 16.02±1.09 b | |||
AH | CK | 54.98±1.63 a | 6.64±1.04 a | 64.11±3.65 a | 27.90±1.82 a | 32.13±1.74 a | 4.54±0.55 a | 47.50±1.22 a | 17.90±2.52 a | ||
LD | 54.82±1.00 a | 6.53±1.09 a | 63.94±1.64 a | 27.63±1.03 a | 33.10±0.98 a | 4.49±0.24 a | 47.05±1.15 a | 17.50±1.22 a | |||
SD | 54.51±0.93 a | 6.47±1.08 a | 63.73±2.29 a | 27.33±0.95 a | 32.02±1.03 a | 4.44±0.84 a | 47.17±1.84 a | 17.38±0.91 a |
表2 穗分化末期-籽粒灌浆初期土壤水分处理对优质食味粳稻根系形态指标的影响
Table 2. Effect of soil water treatment on root morphological indicators of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling.
品种 Variety | 处理时段 Processing period | 土壤水分处理 Soil water treatment | 胁迫结束时At the end of drought stress | 胁迫结束后10 d 10 d after drought stress | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | 总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | ||||
南粳 9108 Nanjing 9108 | BAH | CK | 79.52±2.94 a | 10.44±0.77 a | 97.14±4.15 a | 49.09±1.98 a | 72.71±0.67 a | 10.44±0.77 a | 85.88±2.18 a | 43.58±2.11 a | |
LD | 72.70±1.80 b | 9.17±0.58 b | 85.76±1.82 b | 40.59±1.42 b | 70.61±0.71 a | 9.17±0.58 b | 83.43±2.01 a | 37.06±2.16 b | |||
SD | 66.11±2.83 c | 8.06±0.75 c | 82.09±3.13 b | 34.87±1.30 c | 63.59±1.97 b | 8.06±0.75 c | 75.31±4.49 b | 34.48±2.96 b | |||
BH | CK | 82.52±1.23 a | 11.23±1.04 a | 101.31±3.18 a | 53.98±2.50 a | 79.52±2.94 a | 11.23±1.04 a | 97.14±1.23 a | 49.09±1.98 a | ||
LD | 81.61±1.30 a | 10.81±1.14 a | 99.70±1.21 a | 50.33±3.50 ab | 78.71±0.53 a | 10.81±1.14 a | 96.63±1.61 a | 46.28±2.52 ab | |||
SD | 78.94±1.08 b | 9.79±0.49 b | 93.52±3.47 b | 46.92±3.36 b | 78.08±2.03 a | 9.79±0.49 b | 92.79±0.86 b | 42.17±3.03 b | |||
AH | CK | 79.52±1.97 a | 10.44±0.77 a | 97.14±4.15 a | 49.09±1.98 a | 72.71±0.67 a | 10.44±0.77 a | 85.88±2.18 a | 43.58±2.11 a | ||
LD | 78.53±1.06 a | 10.23±0.75 a | 96.32±1.62 a | 48.41±1.04 ab | 73.04±1.05 a | 10.23±0.75 a | 85.31±1.46 a | 42.67±1.91 a | |||
SD | 76.30±0.35 b | 9.27±0.92 b | 95.15±1.51 b | 47.18±1.11 b | 71.92±1.55 a | 9.27±0.92 b | 84.72±1.15 a | 41.25±1.50 a | |||
丰粳 1606 Fengjing1606 | BAH | CK | 70.84±1.84 a | 8.04±0.82 a | 89.11±3.02 a | 36.20±1.90 a | 65.62±0.97 a | 8.04±0.82 a | 80.25±3.87 a | 33.84±1.33 a | |
LD | 64.17±1.03 b | 6.75±0.30 b | 80.68±0.86 b | 27.56±1.39 b | 63.78±0.85 a | 6.75±0.30 b | 77.87±2.72 ab | 27.11±2.32 b | |||
SD | 57.83±1.50 c | 6.34±0.90 b | 75.20±1.84 c | 25.29±2.45 b | 57.69±2.73 b | 6.34±0.90 b | 73.32±4.79 b | 25.07±1.04 b | |||
BH | CK | 71.24±0.31 a | 8.41±1.04 a | 93.50±2.24 a | 38.46±1.91 a | 70.84±1.84 a | 8.41±1.04 a | 89.11±3.02 a | 36.20±1.90 a | ||
LD | 71.13±0.66 a | 8.23±0.71 a | 91.54±2.15 a | 36.59±0.66 ab | 69.43±1.73 a | 8.23±0.71 a | 87.95±3.11 a | 33.21±1.03 ab | |||
SD | 69.03±1.29 b | 7.29±0.63 b | 84.50±0.68 b | 33.68±1.07 b | 67.87±0.36 a | 7.29±0.63 b | 84.10±2.17 b | 30.88±2.12 b | |||
AH | CK | 70.84±1.84 a | 8.04±0.82 a | 89.11±3.02 a | 36.20±1.90 a | 65.62±0.97 a | 8.04±0.82 a | 80.25±3.87 a | 33.84±1.33 a | ||
LD | 70.69±1.07 a | 7.73±0.20 ab | 87.60±2.08 ab | 36.12±0.67 a | 66.04±1.39 a | 7.73±0.20 ab | 80.06±3.30 a | 32.90±1.69 a | |||
SD | 68.17±0.65 b | 7.42±0.60 b | 84.90±1.39 b | 33.72±1.21 b | 65.39±1.11 a | 7.42±0.60 b | 79.81±1.54 a | 32.65±0.64 a | |||
品种 Variety | 处理时段 Processing period | 土壤水分处理 Soil water treatment | 穗后30 d 30 d after heading | 成熟期 Maturity | |||||||
总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | 总根长 Root length / (×103cm·hill-1) | 根表面积 Root surface area/ (×103cm2·hill-1) | 根体积 Root volume/ (cm3·hill-1) | 根尖数 Root tip number/ (×104·hill-1) | ||||
南粳 9108 NJ9108 | BAH | CK | 58.23±2.59 a | 8.44±0.87 a | 72.84±1.97 a | 32.35±3.73 a | 36.71±1.67 a | 5.33±0.74 a | 63.64±1.05 a | 23.81±1.56 a | |
LD | 56.48±1.50 a | 7.87±0.54 ab | 68.76±2.68 ab | 26.96±1.22 b | 35.08±0.65 ab | 5.04±0.22 ab | 61.52±1.83 ab | 21.07±1.77 b | |||
SD | 51.09±1.73 b | 7.09±0.71 b | 63.65±2.53 b | 25.86±1.06 b | 33.95±0.52 b | 4.72±0.69 b | 57.58±3.51 b | 20.09±1.19 b | |||
BH | CK | 58.23±2.59 a | 8.44±0.87 a | 72.84±1.97 a | 32.35±3.73 a | 36.71±1.67 a | 5.33±0.74 a | 63.64±1.05 a | 23.81±1.56 a | ||
LD | 57.81±0.82 a | 8.38±0.56 a | 71.99±2.85 a | 29.63±0.61 ab | 35.61±2.31 a | 5.21±0.66 a | 62.30±1.07 ab | 22.42±0.92 ab | |||
SD | 57.38±1.15 a | 7.65±0.71 b | 65.97±1.92 b | 25.86±1.13 b | 35.15±1.57 a | 4.92±0.51 b | 59.45±2.17 b | 20.78±1.05 b | |||
AH | CK | 58.23±2.59 a | 8.44±0.87 a | 72.84±1.97 a | 32.35±3.73 a | 36.71±1.67 a | 5.33±0.74 a | 63.64±1.05 a | 23.81±1.56 a | ||
LD | 59.62±1.15 a | 8.26±0.42 a | 71.64±0.78 a | 31.52±0.99 a | 36.26±3.19 a | 5.26±0.61 a | 62.84±1.66 a | 23.22±0.86 a | |||
SD | 57.42±1.36 a | 8.16±0.89 a | 71.08±3.75 a | 31.13±1.91 a | 35.84±1.29 a | 5.20±0.35 a | 62.54±1.11 a | 23.04±1.09 a | |||
丰粳 1606 FJ1606 | BAH | CK | 54.98±1.63 a | 6.64 ±1.04 a | 64.11±3.65 a | 27.90±1.82 a | 32.13±1.74 a | 4.54±0.55 a | 47.50±1.22 a | 17.90±2.52 a | |
LD | 52.50±2.79 a | 6.28±0.56 ab | 62.29±1.62 ab | 23.61±2.09 b | 31.33±0.91 ab | 4.34±0.69 ab | 45.99±2.68 ab | 15.93±0.81 b | |||
SD | 47.69±2.12 b | 5.68±0.50 b | 59.62±3.20 b | 22.70±0.90 b | 29.36±0.77 b | 4.18±0.71 b | 41.84±3.18 b | 14.93±1.90 b | |||
BH | CK | 54.98±1.63 a | 6.64±1.04 a | 64.11±3.65 a | 27.90±1.82 a | 32.13±1.74 a | 4.54±0.55 a | 47.50±1.22 a | 17.90±2.52 a | ||
LD | 54.06±0.58 a | 6.48±0.54 ab | 62.54±1.62 a | 25.68±1.05 ab | 31.24±2.89 a | 4.43±0.57 ab | 47.01±1.43 a | 17.28±0.98 ab | |||
SD | 53.78±0.90 a | 6.04±0.71 b | 56.66±1.66 b | 22.39±0.57 b | 30.97±0.99 a | 4.31±0.70 b | 44.08±1.04 b | 16.02±1.09 b | |||
AH | CK | 54.98±1.63 a | 6.64±1.04 a | 64.11±3.65 a | 27.90±1.82 a | 32.13±1.74 a | 4.54±0.55 a | 47.50±1.22 a | 17.90±2.52 a | ||
LD | 54.82±1.00 a | 6.53±1.09 a | 63.94±1.64 a | 27.63±1.03 a | 33.10±0.98 a | 4.49±0.24 a | 47.05±1.15 a | 17.50±1.22 a | |||
SD | 54.51±0.93 a | 6.47±1.08 a | 63.73±2.29 a | 27.33±0.95 a | 32.02±1.03 a | 4.44±0.84 a | 47.17±1.84 a | 17.38±0.91 a |
图2 穗分化末期−籽粒灌浆初期土壤水分处理对优质食味粳稻根系干物质量的影响 NJ9108−南粳9108;FJ1606−丰粳1606;i−处理结束当天;ii−处理结束后10 d;iii−穗后30 d;iv−成熟期。平均值±标准差(n=3)。图中不同小写字母表示各时段水分处理间在P<0.05水平上差异显著。
Fig. 2. Effect of soil drought stress on root dry weight of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling. NJ9108, Nanjing 9108; FJ1606, Fengjing 1606; i, on the day of the end of drought stresses; ii, 10 d after drought stresses; iii, 30 d after heading; iv, Maturity stage. Data are means ±SD from three replicates. Different lowercase letters indicate significant differences among treatments for a processing period (P<0.05).
图3 穗分化末期−籽粒灌浆初期土壤水分处理对优质食味粳稻根冠比的影响 数据为3个测定重复的平均值±标准差(n=3)。图中不同小写字母表示各时段3个胁迫处理间在P<0.05水平上差异显著。
Fig. 3. Effect of soil drought stress on root-shoot ratio of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling. Data are means ±SD of three replicates. Different lowercase letters indicate significant differences among treatments for a processing period (P<0.05).
图4 穗分化末期-籽粒灌浆初期土壤水分处理对优质食味粳稻根系活力的影响 数据为3个测定重复的平均值±标准差(n=3)。图中不同小写字母表示各时段下三胁迫处理间在P<0.05水平上差异显著。
Fig. 4. Effect of soil drought stress on root activity of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling. Data are means ±SD of three determination replicates. Different lowercase letters indicate significant differences among treatments for a processing period (P<0.05).
图5 穗分化末期-籽粒灌浆初期土壤水分处理对优质食味粳稻剑叶光合参数的影响 Pn−净光合速率;Tr−蒸腾速率;Gs−气孔导度;Ci−胞间CO2浓度。数据为3个测定重复的平均值±标准差(n=3)。图中不同小写字母表示各时段下3个胁迫处理间在P<0.05水平上差异显著。
Fig. 5. Effect of soil drought stress on photosynthetic parameters of flag leaf of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling. Pn, Net photosynthetic rate; Tr, Transpiration rate; Gs, Stomatal conductance; Ci, Intercellular CO2 concentration. Data are means ±SD of three determination replicates. Different lowercase letters indicate significant differences among treatments for a processing period (P<0.05).
图6 穗分化末期-籽粒灌浆初期土壤水分处理对优质食味粳稻叶绿素荧光参数的影响 Fv/Fm−最大光化学效率;qp−光化学猝灭系数;NPQ−非光化学猝灭系数。数据为3个测定重复的平均值±标准差(n=3)。图中不同小写字母表示各时段下三胁迫处理间在P<0.05水平上差异显著。
Fig. 6. Effect of soil drought stress on chlorophyll fluorescence parameters of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling. Fv/Fm, Maximum photochemical efficiency; qp, Photochemical quenching coefficient; NPQ, Non−photochemical quenching coefficient. Data are means ±SD of three determination replicates. Different lowercase letters indicate significant differences among treatments for a processing period (P<0.05).
图7 穗分化末期-籽粒灌浆初期土壤水分处理对优质食味粳稻产量的影响 数据为6个测定重复的平均值±标准差(n=6)。图中不同小写字母表示各时段下3个胁迫处理间在P<0.05水平上差异显著。
Fig. 7. Effect of soil drought stress on yield of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling. Data are means ±SD of six determination replicates. Different lowercase letters indicate significant differences among treatments for a treatment period (P<0.05).
变异来源 Source of variation | 总根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 根尖数 Root tip number | 根干质量 Root dry weight | 根冠比 Root-shoot rate | 根系活力 Root activity | 净光合速率 Net photosynthetic rate | 产量 Yield |
---|---|---|---|---|---|---|---|---|---|
品种Variety(V) | 46.19** | 117.89** | 107.88** | 67.94** | 42.26** | 63.32** | 56.91** | 154.41** | 17.86** |
处理时段 Treatment period(P) | 4.00* | 11.20** | 8.44** | 10.17** | 14.22** | 4.06* | 5.46** | 10.43** | 35.75** |
土壤水分 Soil water content(SW) | 8.39** | 17.82** | 19.54** | 25.51** | 34.50** | 21.38** | 20.81** | 17.45** | 108.78** |
V×P | 0.04 | 0.45 | 1.80 | 0.10 | 2.40 | 15.11** | 0.10 | 0.12 | 0.16 |
V×SW | 0.44 | 0.29 | 0.50 | 0.21 | 2.18 | 0.40 | 0.68 | 0.07 | 0.74 |
P×SW | 2.31 | 5.39* | 3.08* | 3.48* | 3.97** | 4.10** | 3.09* | 3.43* | 9.03** |
V×P×SW | 1.02 | 0.12 | 0.47 | 0.09 | 0.73 | 0.06 | 0.11 | 0.19 | 0.16 |
表3 不同土壤水分处理下优质食味粳稻根系形态生理指标、叶片净光合速率与产量的方差分析
Table 3. Variance analysis of root morphological and physiological indicators, leaf net photosynthetic rate and yield of good taste japonica rice under different soil water treatments.
变异来源 Source of variation | 总根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 根尖数 Root tip number | 根干质量 Root dry weight | 根冠比 Root-shoot rate | 根系活力 Root activity | 净光合速率 Net photosynthetic rate | 产量 Yield |
---|---|---|---|---|---|---|---|---|---|
品种Variety(V) | 46.19** | 117.89** | 107.88** | 67.94** | 42.26** | 63.32** | 56.91** | 154.41** | 17.86** |
处理时段 Treatment period(P) | 4.00* | 11.20** | 8.44** | 10.17** | 14.22** | 4.06* | 5.46** | 10.43** | 35.75** |
土壤水分 Soil water content(SW) | 8.39** | 17.82** | 19.54** | 25.51** | 34.50** | 21.38** | 20.81** | 17.45** | 108.78** |
V×P | 0.04 | 0.45 | 1.80 | 0.10 | 2.40 | 15.11** | 0.10 | 0.12 | 0.16 |
V×SW | 0.44 | 0.29 | 0.50 | 0.21 | 2.18 | 0.40 | 0.68 | 0.07 | 0.74 |
P×SW | 2.31 | 5.39* | 3.08* | 3.48* | 3.97** | 4.10** | 3.09* | 3.43* | 9.03** |
V×P×SW | 1.02 | 0.12 | 0.47 | 0.09 | 0.73 | 0.06 | 0.11 | 0.19 | 0.16 |
图8 根系形态生理指标、叶片光合荧光参数与产量间的相关性分析 RL−总根长;RSA−根表面积;RV−根体积;RTN−根尖数;RDW−根干质量;R/S−根冠比;RA−根系活力;Pn−净光合速率;Tr−蒸腾速率;Gs−气孔导度;Ci−胞间CO2浓度;Fv/Fm−最大光化学效率;qp−光化学猝灭系数;NPQ−非光化学猝灭系数。采用Pearson分析方法,样本数n=42。
Fig. 8. Correlation analysis between root morphological and physiological indicators, leaf photosynthetic parameters, chlorophyll fluorescence parameters and yield. RL, Root length; RSA, Root surface area; RV, Root volume; RTN, Root tip number; RDW, Root dry weight; R/S, Root−shoot ratio; RA, Root activity; Pn, Net photosynthetic rate; Tr, Transpiration rate; Gs, Stomatal conductance; Ci, Intercellular CO2 concentration; Fv/Fm, Maximum photochemical efficiency; qP, Photochemical quenching coefficient; NPQ, Non-photochemical quenching coefficient. Pearson correlation analysis is used to analyze the data (n=42).
[1] | 吴兆丹, 张依, 吴兆磊, 操信春, 梁希瑶, 吴奕卓. 中国粮食主产区农作物生产广义用水经济效率时空演变及影响因素研究[J]. 长江流域资源与环境, 2021, 30(11): 2763-2777. |
Wu Z D, Zhang Y, Wu Z L, Cao X C, Liang X Y, Wu Y Z. Study on the spatio-temporal evolution and influencing factors of economic efficiency of generalized water use for crop production in China's major grain-producing area[J]. Resources and Environment in the Yangtze Basin, 2021, 30(11): 2763-2777. (in Chinese with English abstract) | |
[2] | Guo H, Wang R, Garfin, G M, Zhang A Y, Lin D G, Liang Q O, Wang J A. Rice drought risk assessment under climate change: Based on physical vulnerability a quantitative assessment method[J]. Science of the Total Environment, 2021, 751: 141481. |
[3] | Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52-58. |
[4] | 朱民政. 农业灌溉用水效率及其影响因素研究[J]. 农业灾害研究, 2023, 3(13): 157-159. |
Zhu M Z. Study on agricultural irrigation water use efficiency and its influencing factors[J]. Journal of Agricultural Catastrophology, 2023, 3(13): 157-159. (in Chinese with English abstract) | |
[5] | 杨晓龙, 程建平, 汪本福, 李阳, 张枝盛, 李进兰, 李萍. 灌浆期干旱胁迫对水稻生理性状和产量的影响[J]. 中国水稻科学, 2021, 35(1): 38-46. |
Yang X L, Cheng J P, Wang B F, Li Y, Zhang Z S, Li J L, Li P. Effects of drought stress at grain filling stage on rice physiological characteristics and yield[J]. Chinese Journal of Rice Science, 2021, 35(1): 38-46. (in Chinese with English abstract) | |
[6] | 张玉屏, 朱德峰, 林贤青, 陈惠哲. 不同时期水分胁迫对水稻生长特性和产量形成的影响[J]. 干旱地区农业研究, 2005, 23(2): 48-53. |
Zhang Y P, Zhu D F, Lin X Q, Chen H Z. Effects of water stress on rice growth and yield at different growth stages[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 48-53. (in Chinese with English abstract) | |
[7] | 陈茜茜, 屈艳萍, 吕娟, 常文娟. 长江流域干旱灾害风险分布特征分析[J]. 中国防汛抗旱, 2022, 32(10): 17-22. |
Chen X X, Qu Y P, Lv J, Chang W J. Study on the spatial and temporal distribution characteristics of drought disasters in the Yangtze River Basin[J]. China Flood & Drought Management, 2022, 32(10): 17-22. (in Chinese with English abstract) | |
[8] | Gowda V R P, Henry A, Yamauchi A, Shashidhar H E, Serraj R. Root biology and genetic improvement for drought avoidance in rice[J]. Field Crops Research, 2011, 122(1): 1-13. |
[9] | Kano-Nakata M, Gowda V R P, Henry A, Serraj R, Inukai Y, Fujita D, Kobayashi N, Suralta R R, Yamauchi A. Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions[J]. Field Crops Research, 2013, 144: 288-296. |
[10] | 褚光, 周群, 薛亚光, 颜晓元, 刘立军, 杨建昌. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响[J]. 作物学报, 2014, 40(7): 1245-1258. |
Chu G, Zhou Q, Xue Y G, Yan X Y, Liu L J, Yang J C. Effects of cultivation patterns on root morph-physiological traits and aboveground development of japonica hybrid rice cultivar Changyou 5[J]. Acta Agronomica Sinica, 2014, 40(7): 1245-1258. (in Chinese with English abstract) | |
[11] | 马廷臣, 余蓉蓉, 陈荣军, 曾汉来, 张端品. PEG-6000模拟干旱对水稻幼苗期根系的影响[J]. 中国生态农业学报, 2010, 18(6): 1206-1211. |
Ma T C, Yu R R, Chen R J, Zeng H L, Zhang D P. Effect of drought stress simulated with PEG- 6000 on root system in rice seedling[J]. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1206-1211. (in Chinese with English abstract) | |
[12] | 补红英, 宋维周, 曹凑贵, 李萍. 节水抗旱稻旱优113号的根系生长对土壤水分亏缺的响应[J]. 中国农业科学, 2017, 50(22): 4277-4289. |
Bu H Y, Song W Z, Cao C G, Li P. Root growth responses to soil water deficit for a water-saving and drought- resistant rice genotype Hanyou113[J]. Scientia Agricultura Sinica, 2017, 50(22): 4277-4289. (in Chinese with English abstract) | |
[13] | 汪妮娜, 黄敏, 陈德威, 徐世宏, 韦善清, 江立庚. 不同生育期水分胁迫对水稻根系生长及产量的影响[J]. 热带作物学报, 2013, 34(9): 1650-1656. |
Wang N N, Huang M, Chen D W, Xu S H, Wei S Q, Jiang L G. Effects of water stress on root and yield of rice at different growth stages[J]. Chinese Journal of Tropical Crops, 2013, 34(9): 1650-1656. (in Chinese with English abstract) | |
[14] | 裴鹏刚, 张均华, 朱练峰, 禹盛苗, 金千瑜. 根际氧浓度调控水稻根系形态和生理特性研究进展[J]. 中国稻米, 2013, 19(2): 6-8. |
Pei P G, Zhang J H, Zhu L F, Yu S M, Jin Q Y. Research progress on the regulation of rice root morphology and physiological characteristics by rhizosphere oxygen concentration[J]. China Rice, 2013, 19(2): 6-8. (in Chinese with English abstract) | |
[15] | 陈苏, 谢建坤, 黄文新, 陈登云, 彭晓剑, 付学琴. 根际促生细菌对干旱胁迫下水稻生理特性的影响[J]. 中国水稻科学, 2018, 32(5): 485-492. |
Chen S, Xie J K, Huang W X, Chen D Y, Peng X J, Fu X Q. Effects of plant growth-promoting rhizobacteria (PGPR) on physiological characteristics of rice under drought stress[J]. Chinese Journal of Rice Science, 2018, 32(5): 485-492. (in Chinese with English abstract) | |
[16] | 王成瑷, 赵磊, 王伯伦, 张文香, 赵秀哲, 高良文, 侯文平, 于亚彬. 干旱胁迫对水稻生育性状与生理指标的影响[J]. 农学学报, 2014, 4(1): 4-14. |
Wang C A, Zhao L, Wang B L, Zhang W X, Zhao X Z, Gao L W, Hou W P, Yu Y B. Effect of water stress of soil on growing characteristics and physiological index of rice (Oryza sativa)[J]. Journal of Agriculture, 2014, 4(1): 4-14. (in Chinese with English abstract) | |
[17] | 郝树荣, 郭相平, 张展羽, 王为木. 水稻根冠功能对水分胁迫及复水的补偿响应[J]. 农业机械学报, 2010, 41(5): 52-55. |
Hao S R, Guo X P, Zhang Z Y, Wang W M. Compensation effects of water stress and re-watering on the function of root shoot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(5): 52-55. (in Chinese with English abstract) | |
[18] | Ramasamy S, Ten Berge H F M, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application[J]. Field Crops Research, 1997, 51(1-2): 65-82. |
[19] | Suralta R R, Julaton M C N, Rebong D B. Functional roles of constitutive root system development in maintaining higher water use and grain yield under post flowering drought stress in hybrid rice[J]. Philippine Agricultural Scientist, 2015, 98(1): 81-88. |
[20] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1): 36-46. |
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Chinese Journal of Eco-Agriculture, 2011, 44(1): 36-46. (in Chinese with English abstract) | |
[21] | Meng T Y, Wei H H, Li X Y, Dai Q G, Huo Z Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice[J]. Field Crops Research, 2018, 228: 135-146. |
[22] | Kim Y, Chung Y S, Lee E, Tripathi P, Heo S, Kim K H. Root response to drought stress in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2020, 21(4): 1513-1534. |
[23] | Pandey V, Shukla A. Acclimation and tolerance strategies of rice under drought stress[J]. Rice Science, 2015, 22(4): 147-161. |
[24] | 伍龙梅, 陈德威, 卢李威, 黄敏, 张玉, 徐世宏, 唐国荣, 田绿苗, 江立庚. 孕穗期和灌浆期水分胁迫及复水对桂两优2号生理及产量的影响[J]. 南方农业学报, 2014, 45(6): 955-960. |
Wu L M, Chen D W, Lu L W, Huang M, Zhang Y, Xu S H, Tang G R, Tian L M, Jiang L G. Effects of water stress and re-watering at booting and grain filling stages on physiology and yield of Guiliangyou 2[J]. Journal of Southern Agriculture, 2014, 45(6): 955-960. (in Chinese with English abstract) | |
[25] | 吴学祝, 蔡昆争, 骆世明. 抽穗期土壤干旱对水稻根系和叶片生理特性的影响[J]. 中国农学通报, 2008, 24(07): 202-207. |
Wu X Z, Cai K Z, Luo S M. Effects of soil drying at heading stage on physiological characteristics in root and leaf of rice[J]. Chinese Agricultural Science Bulletin, 2008, 24(07): 202-207. (in Chinese with English abstract) | |
[26] | 柏彦超, 沈淮东, 薛巧云, 倪梅娟, 王娟娟. 不同水、氮对不同基因型水稻根系生长的影响[J]. 灌溉排水学报, 2007(6): 69-72. |
Bai Y C, Shen H D, Xue Q Y, Ni M J, Wang J J. Effect of root growth of different genotype rice under the condition of different water and nitrogen forms[J]. Journal of Irrigation and Drainage, 2007, 6(26): 69-72. (in Chinese with English abstract) | |
[27] | 徐孟亮, 姜孝成, 周广洽, 陈良碧. 干旱对水稻根系活力与结实性状的影响[J]. 湖南师范大学自然科学学报, 1998, 21(3): 65-69. |
Xu M L, Jiang X C, Zhou G Q, Chen L B. Effects of drought on roots' activity and major characters of grain yield in rice (Oryza sativa L.)[J]. Journal of Natural Science of Hunan Normal University, 1998, 21(3): 65-69. (in Chinese with English abstract) | |
[28] | 蔡昆争, 吴学祝, 骆世明, 王维. 不同生育期水分胁迫对水稻根系活力、叶片水势和保护酶活性的影响[J]. 华南农业大学学报, 2008, 29(2): 7-10. |
Cai K Z, Wu X Z, Luo S M, Wang W. Effects of water stress at different growth stages on root activity, leaf water potential and protective enzymes activity in rice[J]. Journal of South China Agricultural University, 2008, 29(2): 7-10. (in Chinese with English abstract) | |
[29] | Chen Q C, Hu T, Li X H, Song C P, Zhu J K, Chen L Q, Zhao Y. Phosphorylation of SWEET sucrose transporters regulates plant root-shoot ratio under drought[J]. Nature Plants, 2022, 8(1): 68-77. |
[30] | Xu W, Cui K H, X A H, Nie L X, Huang J L, Peng S B. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings[J]. Acta Physiologiae Plantarum, 2015, 37(2): 1-11. |
[31] | Poorter H, Niklas K J, Reich P B, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50. |
[32] | 胡继超, 姜东, 曹卫星, 罗卫红. 短期干旱对水稻叶水势、光合作用及干物质分配的影响[J]. 应用生态学报, 2004, 15(1): 63-67. |
Hu J C, Jiang D, Cao W X, Luo W H. Effect of short-term drought on leaf water potential‚ photosynthesis and dry matter partitioning in paddy rice[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 63-67. (in Chinese with English abstract) | |
[33] | 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J]. 农业工程学报, 2015, 31(10): 132-141. |
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132-141. (in Chinese with English abstract) | |
[34] | 姚庆群, 谢贵水. 干旱胁迫下光合作用的气孔与非气孔限制[J]. 热带农业科学, 2005, 25(4): 84-89. |
Yao Q Q, Xie G S. The photosynthetic stomatal and nonstomatal limitation under drought stress[J]. Chinese Journal of Tropical Agriculture, 2005, 25(4): 84-89. (in Chinese with English abstract) | |
[35] | 郭慧, 马均, 李树杏, 李敏, 朱萍, 陈宇. 孕穗期水分胁迫对水稻部分生理特性与产量补偿效应的研究[J]. 南方农业学报, 2013, 44(9): 1448-1454. |
Guo H, Ma J, Li S X, Li M, Zhu P, Chen Y. Effects of water stress on partial physiological characteristics and yield compensation in rice at booting stage[J]. Journal of Southern Agriculture, 2013, 44(9): 1448-1454. (in Chinese with English abstract) | |
[36] | Panda D, Mishra S S, Behera P K. Drought tolerance in rice: focus on recent mechanisms and approaches[J]. Rice Science, 2021, 28(2): 119-132. |
[37] | Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research[J]. Photosynthetica, 2003, 41(3): 321-330. |
[38] | 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力[J]. 作物学报, 2012, 38(2): 285-292. |
Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress[J]. Acta Agronomica Sinica, 2012, 38(2): 285-292. (in Chinese with English abstract) | |
[39] | 史正军, 樊小林. 干旱胁迫对不同基因型水稻光合特性的影响[J]. 干旱地区农业研究, 2003, 21(3): 123-126. |
Shi Z J, Fan X L. Effects of drought stress on photosynthetic characteristics of different rice genotypes[J]. Agricultural Research in the Arid Areas, 2003, 21(3): 123-126. (in Chinese with English abstract) | |
[40] | Li J Z, Chen Y P, Teng K Q, Qin L Z, Du Y X, Zhang J, Zhao Q Z. Rice leaf heterogeneity in chlorophyll fluorescence parameters under short-term osmotic stress[J]. Biologia Plantarum, 2015, 59(1): 187-192. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[3] | 高郡茹, 权弘羽, 袁刘珍, 李钦颖, 乔磊, 李文强. 水稻D1基因新等位突变体的鉴定与功能分析[J]. 中国水稻科学, 2024, 38(2): 140-149. |
[4] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
[5] | 董立强, 杨铁鑫, 李睿, 商文奇, 马亮, 李跃东, 隋国民. 株行距配置对超高产田水稻产量及根系形态生理特性的影响[J]. 中国水稻科学, 2023, 37(4): 392-404. |
[6] | 王颖姮, 陈丽娟, 崔丽丽, 詹生威, 宋煜, 陈世安, 解振兴, 姜照伟, 吴方喜, 卓传营, 蔡秋华, 谢华安, 张建福. 施氮量对优质稻“福香占”光合特性、产量及品质的影响[J]. 中国水稻科学, 2023, 37(1): 89-101. |
[7] | 魏晓东, 张亚东, 宋雪梅, 陈涛, 朱镇, 赵庆勇, 赵凌, 路凯, 梁文化, 赫磊, 黄胜东, 谢寅峰, 王才林. 高产粳稻品种南粳晶谷的光合生理特性研究[J]. 中国水稻科学, 2022, 36(6): 611-622. |
[8] | 陈云, 刘昆, 李婷婷, 李思宇, 李国明, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响[J]. 中国水稻科学, 2022, 36(3): 269-277. |
[9] | 褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响[J]. 中国水稻科学, 2021, 35(6): 586-594. |
[10] | 杨晓龙, 程建平, 汪本福, 李阳, 张枝盛, 李进兰, 李萍. 灌浆期干旱胁迫对水稻生理性状和产量的影响[J]. 中国水稻科学, 2021, 35(1): 38-46. |
[11] | 李睿, 董立强, 商文奇, 马亮, 王先俱, 王铮, 李跃东. 育秧基质和喷水间隔处理对机插秧苗素质及产量的影响[J]. 中国水稻科学, 2021, 35(1): 59-68. |
[12] | 晏军, 吴启侠, 朱建强, 张露萍. 适雨灌溉下氮肥运筹对水稻光合特性、氮素吸收及产量形成的影响[J]. 中国水稻科学, 2019, 33(4): 347-356. |
[13] | 陈苏, 谢建坤, 黄文新, 陈登云, 彭晓剑, 付学琴. 根际促生细菌对干旱胁迫下水稻生理特性的影响[J]. 中国水稻科学, 2018, 32(5): 485-492. |
[14] | 胡继杰, 朱练峰, 钟楚, 林育炯, 张均华, 曹小闯, 禹盛苗, Allen Bohr JAMES, 金千瑜. 增氧模式对水稻光合特性及产量的影响[J]. 中国水稻科学, 2017, 31(3): 278-287. |
[15] | 裴鹏刚, 张均华, 朱练峰, 胡志华, 金千瑜. 秸秆还田耦合施氮水平对水稻光合特性、氮素吸收及产量形成的影响[J]. 中国水稻科学, 2015, 29(3): 282-290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||