中国水稻科学 ›› 2018, Vol. 32 ›› Issue (5): 485-492.DOI: 10.16819/j.1001-7216.2018.7123
陈苏1, 谢建坤1, 黄文新2, 陈登云3, 彭晓剑4, 付学琴1,*()
收稿日期:
2017-10-10
修回日期:
2017-12-15
出版日期:
2018-09-10
发布日期:
2018-09-10
通讯作者:
付学琴
基金资助:
Su CHEN1, Jiankun XIE1, Wenxin HUANG2, Dengyun CHEN3, Xiaojian PENG4, Xueqin FU1,*()
Received:
2017-10-10
Revised:
2017-12-15
Online:
2018-09-10
Published:
2018-09-10
Contact:
Xueqin FU
摘要:
【目的】本研究旨在探究植物根际促生菌蜡状芽孢杆菌F06菌株对不同干旱胁迫下水稻汕优63生理特性的影响。【方法】在盆栽试验条件下,以水稻汕优63为种植材料,研究了轻度(LD)、中度(MD)、重度(SD)3个干旱强度下接种蜡样芽孢杆菌(Bacillus cereus)F06对水稻生理特征的影响。【结果】与正常水分管理相比,干旱胁迫(DS)下水稻叶片光合速率(Pn)和气孔导度(gs)逐渐降低;而干旱胁迫下接种F06可显著减缓Pn和gs下降,与不接种(NP)处理相比,Pn和gs分别增加7.67%、12.97%、18.14%和11.51%、16.63%、17.07%,且呈现出随着干旱胁迫程度的提高,增幅增大的趋势。干旱胁迫下水稻叶片初始荧光(Fo)、非荧光淬灭系数(NPQ)显著上升,最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)显著下降;而干旱胁迫下接种F06可显著抑制Fo、NPQ升高和Fv/Fm、qP降低,明显改善水稻叶片光能转换效率。干旱胁迫下接种F06虽然不能改变叶片水势、相对含水量和相对电导率的变化趋势,但可以有效降低其变幅。正常水分处理下接种F06虽然没有增加光合色素含量,但干旱环境下显著抑制了光合色素的分解或降低。干旱显著降低了水稻叶片和根系细胞分裂素(CTK)含量,增加了叶片中脱落酸(ABA)的含量;在干旱胁迫下,接种F06可显著提高叶片和根系中CTK的含量。【结论】由此可见,干旱生境下接种F06,可调节植物体内的激素含量,减少干旱胁迫下光合色素的分解或流失,提高光合速率,增强水稻在干旱环境中的适应能力。
中图分类号:
陈苏, 谢建坤, 黄文新, 陈登云, 彭晓剑, 付学琴. 根际促生细菌对干旱胁迫下水稻生理特性的影响[J]. 中国水稻科学, 2018, 32(5): 485-492.
Su CHEN, Jiankun XIE, Wenxin HUANG, Dengyun CHEN, Xiaojian PENG, Xueqin FU. Effects of Plant Growth-promoting Rhizobacteria(PGPR) on Physiological Characteristics of Rice Under Drought Stress[J]. Chinese Journal OF Rice Science, 2018, 32(5): 485-492.
干旱处理 Drought stress | 光合速率 Photosynthetic rate/(µmol·m-2s-1) | 气孔导度 Stomatal conductance/(mmol·m-2s-1) | 胞间CO2浓度 Intercellular CO2 concentration/(µmol·mol-1) | |||||
---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | |||
CK | 27.25±1.26 a | 28.71±2.84 a | 256.69±11.54 a | 283.32±12.67 a | 227.18±29.89 bc | 229.12±14.20 b | ||
LD | 25.94±2.02 ab | 27.93±1.16 a | 234.35±18.90 a | 261.33±10.18 a | 191.78±16.34 c | 216.05±11.32 b | ||
MD | 23.06±1.37 b | 26.05±3.12 ab | 195.17±15.27 b | 227.62±23.14 b | 235.22±10.71 b | 209.38±18.17 c | ||
SD | 18.91±1.18 c | 22.34±2.41 b | 165.28±20.77 c | 193.49±15.63 c | 268.53±21.44 a | 252.68±8.95 a |
表1 不同处理对水稻叶片光合参数的影响
Table 1 Effects of different treatments on photosynthetic parameters of rice leaves.
干旱处理 Drought stress | 光合速率 Photosynthetic rate/(µmol·m-2s-1) | 气孔导度 Stomatal conductance/(mmol·m-2s-1) | 胞间CO2浓度 Intercellular CO2 concentration/(µmol·mol-1) | |||||
---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | |||
CK | 27.25±1.26 a | 28.71±2.84 a | 256.69±11.54 a | 283.32±12.67 a | 227.18±29.89 bc | 229.12±14.20 b | ||
LD | 25.94±2.02 ab | 27.93±1.16 a | 234.35±18.90 a | 261.33±10.18 a | 191.78±16.34 c | 216.05±11.32 b | ||
MD | 23.06±1.37 b | 26.05±3.12 ab | 195.17±15.27 b | 227.62±23.14 b | 235.22±10.71 b | 209.38±18.17 c | ||
SD | 18.91±1.18 c | 22.34±2.41 b | 165.28±20.77 c | 193.49±15.63 c | 268.53±21.44 a | 252.68±8.95 a |
干旱处理 Drought stress | 初始荧光 PSⅡ original fluorescence(Fo) | 最大光化学效率 Maximum photochemical efficiency(Fv/Fm) | 光化学猝灭系数 Photochemical quenching Coefficient(qP) | 非光化学猝灭系数 Non-photochemical quenching Coefficient(NPQ) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | NP | F06 | ||||
CK | 149.06±9.78 d | 150.18±12.62 c | 0.89±0.04 a | 0.90±0.03 a | 0.75±0.04 a | 0.75±0.02 a | 1.70±0.04 c | 1.70±0.06 c | |||
LD | 162.19±12.78 c | 154.44±19.41 bc | 0.80±0.01 ab | 0.86±0.02 ab | 0.64±0.02 ab | 0.63±0.02 b | 1.77±0.05 b | 1.76±0.05 c | |||
MD | 178.34±14.21 b | 167.06±10.89 b | 0.73±0.02 b | 0.79±0.01 b | 0.60±0.02 b | 0.52±0.03 c | 1.80±0.03 b | 1.98±0.03 b | |||
SD | 192.18±16.74 a | 178.03±11.36 a | 0.52±0.01 c | 0.61±0.02 c | 0.51±0.01 c | 0.38±0.00 d | 2.06±0.07 a | 2.24±0.06 a |
表2 不同处理对水稻叶片叶绿素荧光参数的影响
Table 2 Effect of different treatments on chlorophyll fluorescence parameters of rice leaves.
干旱处理 Drought stress | 初始荧光 PSⅡ original fluorescence(Fo) | 最大光化学效率 Maximum photochemical efficiency(Fv/Fm) | 光化学猝灭系数 Photochemical quenching Coefficient(qP) | 非光化学猝灭系数 Non-photochemical quenching Coefficient(NPQ) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | NP | F06 | ||||
CK | 149.06±9.78 d | 150.18±12.62 c | 0.89±0.04 a | 0.90±0.03 a | 0.75±0.04 a | 0.75±0.02 a | 1.70±0.04 c | 1.70±0.06 c | |||
LD | 162.19±12.78 c | 154.44±19.41 bc | 0.80±0.01 ab | 0.86±0.02 ab | 0.64±0.02 ab | 0.63±0.02 b | 1.77±0.05 b | 1.76±0.05 c | |||
MD | 178.34±14.21 b | 167.06±10.89 b | 0.73±0.02 b | 0.79±0.01 b | 0.60±0.02 b | 0.52±0.03 c | 1.80±0.03 b | 1.98±0.03 b | |||
SD | 192.18±16.74 a | 178.03±11.36 a | 0.52±0.01 c | 0.61±0.02 c | 0.51±0.01 c | 0.38±0.00 d | 2.06±0.07 a | 2.24±0.06 a |
干旱处理 Drought stress | 水势 Water potential/MPa | 相对含水量 Relative water content/% | 相对电导率 Relative electrolyte leakage/% | |||||
---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | |||
CK | –0.91±0.03 a | –0.91±0.02 a | 84.16±3.25 a | 84.52±6.27 a | 6.83±0.55 c | 6.81±0.34 c | ||
LD | –1.02±0.06 b | –0.93±0.05 a | 79.52±5.29 b | 82.80±4.22 a | 7.14±0.35 c | 6.92±0.41 c | ||
MD | –1.15±0.06 c | –1.07±0.04 b | 70.87±8.09 c | 76.33±6.30 b | 8.31±0.27 b | 7.52±0.17 b | ||
SD | –1.27±0.05 d | –1.16±0.04 c | 61.82±5.77 d | 67.27±7.06 c | 9.45±0.67 a | 8.48±0.19 a |
表3 不同处理对水稻叶片水势、相对含水量和相对电导率的影响
Table 3 Effect of different treatments on water potential, relative water content and relative electrolyte leakage of rice leaves.
干旱处理 Drought stress | 水势 Water potential/MPa | 相对含水量 Relative water content/% | 相对电导率 Relative electrolyte leakage/% | |||||
---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | |||
CK | –0.91±0.03 a | –0.91±0.02 a | 84.16±3.25 a | 84.52±6.27 a | 6.83±0.55 c | 6.81±0.34 c | ||
LD | –1.02±0.06 b | –0.93±0.05 a | 79.52±5.29 b | 82.80±4.22 a | 7.14±0.35 c | 6.92±0.41 c | ||
MD | –1.15±0.06 c | –1.07±0.04 b | 70.87±8.09 c | 76.33±6.30 b | 8.31±0.27 b | 7.52±0.17 b | ||
SD | –1.27±0.05 d | –1.16±0.04 c | 61.82±5.77 d | 67.27±7.06 c | 9.45±0.67 a | 8.48±0.19 a |
干旱处理 Drought stress | 叶绿素a含量 Chlorophyll a content/(mg·g-1) | 叶绿素b含量 Chlorophyll b content/(mg·g-1) | 类胡萝卜素含量 Carotenoid content/(mg·g-1) | |||||
---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | |||
CK | 3.65±0.04 a | 3.66±0.14 a | 0.86±0.00 a | 0.87±0.02 a | 1.22±0.02 a | 1.21±0.03 a | ||
LD | 3.61±0.05 a | 3.52±0.06 a | 0.85±0.03 a | 0.86±0.03 a | 1.17±0.01 a | 1.24±0.02 a | ||
MD | 3.55±0.01 a | 3.48±0.06 a | 0.84±0.01 a | 0.84±0.01 a | 0.91±0.01 b | 1.19±0.02 a | ||
SD | 3.08±0.06 b | 3.39±0.05 a | 0.78±0.01 b | 0.82±0.01 a | 0.73±0.02 c | 0.97±0.01 b |
表4 不同处理对水稻叶片光合色素含量的影响
Table 4 Effect of different treatments on photosynthetic pigment contents of rice leaves.
干旱处理 Drought stress | 叶绿素a含量 Chlorophyll a content/(mg·g-1) | 叶绿素b含量 Chlorophyll b content/(mg·g-1) | 类胡萝卜素含量 Carotenoid content/(mg·g-1) | |||||
---|---|---|---|---|---|---|---|---|
NP | F06 | NP | F06 | NP | F06 | |||
CK | 3.65±0.04 a | 3.66±0.14 a | 0.86±0.00 a | 0.87±0.02 a | 1.22±0.02 a | 1.21±0.03 a | ||
LD | 3.61±0.05 a | 3.52±0.06 a | 0.85±0.03 a | 0.86±0.03 a | 1.17±0.01 a | 1.24±0.02 a | ||
MD | 3.55±0.01 a | 3.48±0.06 a | 0.84±0.01 a | 0.84±0.01 a | 0.91±0.01 b | 1.19±0.02 a | ||
SD | 3.08±0.06 b | 3.39±0.05 a | 0.78±0.01 b | 0.82±0.01 a | 0.73±0.02 c | 0.97±0.01 b |
干旱处理 Drought stress | 细胞分裂素含量 Cytokinin content/(ng·g-1) | 脱落酸含量 Abscisic acid content/(ng·g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
叶片 Leaf | 根系 Root | 叶片 Leaf | 根系 Root | ||||||||
NP | F06 | NP | F06 | NP | F06 | NP | F06 | ||||
CK | 180.32±24.50 a | 266.36±13.56 a | 31.34±2.12 a | 43.14±2.74 a | 423.56±65.56 c | 432.49±43.11 c | 448.34±32.16 a | 568.33±35.17 a | |||
LD | 159.02±19.63 b | 245.45±12.28 ab | 29.93±3.84 ab | 42.70±2.91 a | 438.05±22.49 c | 444.64±38.63 c | 440.99±22.98 a | 502.33±34.65 ab | |||
MD | 123.70±16.32 c | 153.92±18.58 b | 25.33±1.47 b | 36.06±3.09 b | 472.24±35.63 b | 498.86±51.26 b | 443.32±45.23 a | 491.03±26.54 b | |||
SD | 93.83±10.61 d | 118.35±16.07 c | 20.76±3.61 c | 29.15±1.58 c | 526.15±1.58 a | 567.27±37.82 a | 436.40±31.63 a | 423.01±24.29 c |
表5 不同处理对水稻细胞分裂素和脱落酸含量的影响
Table 5 Effect of different treatments on cytokinins and abscisic acid concentrations of rice.
干旱处理 Drought stress | 细胞分裂素含量 Cytokinin content/(ng·g-1) | 脱落酸含量 Abscisic acid content/(ng·g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
叶片 Leaf | 根系 Root | 叶片 Leaf | 根系 Root | ||||||||
NP | F06 | NP | F06 | NP | F06 | NP | F06 | ||||
CK | 180.32±24.50 a | 266.36±13.56 a | 31.34±2.12 a | 43.14±2.74 a | 423.56±65.56 c | 432.49±43.11 c | 448.34±32.16 a | 568.33±35.17 a | |||
LD | 159.02±19.63 b | 245.45±12.28 ab | 29.93±3.84 ab | 42.70±2.91 a | 438.05±22.49 c | 444.64±38.63 c | 440.99±22.98 a | 502.33±34.65 ab | |||
MD | 123.70±16.32 c | 153.92±18.58 b | 25.33±1.47 b | 36.06±3.09 b | 472.24±35.63 b | 498.86±51.26 b | 443.32±45.23 a | 491.03±26.54 b | |||
SD | 93.83±10.61 d | 118.35±16.07 c | 20.76±3.61 c | 29.15±1.58 c | 526.15±1.58 a | 567.27±37.82 a | 436.40±31.63 a | 423.01±24.29 c |
[1] | 丁雷, 李英瑞, 李勇, 沈其荣, 郭世伟.梯度干旱胁迫对水稻叶片光合和水分状况的影响. 中国水稻科学, 2014, 28(1): 65-70. |
Ding L, Li Y R, Li Y, Shen Q R, Guo S W.Effects of drought stress on photosynthesis and water status of rice leaves.Chin J Rice Sci, 2014, 28(1): 65-70.(in Chinese with English abstract) | |
[2] | 胡继杰, 朱练峰, 钟楚, 林育炯, 张均华, 曹小闯, 禹盛苗, James A B, 金千瑜. 增氧模式对水稻光合特性及产量的影响. 中国水稻科学, 2017, 31(3): 278-287. |
Hu J J, Zhu L F, Zhong C, Lin Y J, Zhang J H, Cao X C, Yu S M. Allen B J, Jin Q Y.Effects of aeration methods on photosynthetic characteristics and yield of rice.Chin J Rice Sci, 2017, 31(3): 278-287.(in Chinese with English abstract) | |
[3] | 康贻军, 程洁, 梅丽娟, 胡健, 朴哲, 殷士. 植物根际促生菌作用机制研究进展. 应用生态学报, 2010, 21( 1): 232-238. |
Kang Y J, Cheng J, Mei L J, Hu J, Piao Z, Yin S.Action mechanisms of plant growth promoting rhizobacterial (PGPR).Chin J Appl Ecol, 2010, 21(1): 232-238. (in Chinese with English abstract) | |
[4] | Abbasi M K, Sharif S, Kazmi M, Sultan T, Aslam M.Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants.Plant Biosys, 2011, 145(1): 159-168. |
[5] | Carvalhais L C, Dennis P G, Fedoseyenko D, Hajirezaei M R, Borriss R, von Wirén N V. Root exudation of sugars, amino acids and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency.J Plant Nut Soil Sci, 2011, 174(1): 3-11. |
[6] | Kasim W A, Osman M E, Omar M N, El-Daim I A A, Be jais, Meijer J. Control of drought stress in wheat using plant-growth-promoting bacteria.J Plant Growth Reg, 2013, 32(1): 122-130. |
[7] | 刘方春, 马海林, 马丙尧, 杜振宇, 井大炜, 邢尚军. 干旱环境下接种根际促生细菌对核桃苗光合特性的影响. 林业科学, 2015, 51(7): 84-90. |
Liu F C, Ma H L, Ma B Y, Du Z Y, Jing D W, Xing S G.Effect of plant growth-promoting rhizobacteria on photosynthetic characteristics in walnut seedlings under drought stress.Sci Sil Sin, 2015, 51(7): 84-90. (in Chinese with English abstract) | |
[8] | 郭贵华, 刘海艳, 李刚华, 刘明, 李岩, 王绍华, 刘正辉, 唐设, 丁艳锋. ABA 缓解水稻孕穗期干旱胁迫生理特性的分析. 中国农业科学, 2014, 47(22): 4380-4391. |
Guo G H, Liu H Y, Li G H, Liu M, Li Y, Wang S H, Liu Z H, Tang S, Ding Y F.Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress.Sci Agric Sin, 2014, 47(22): 4380-4391. (in Chinese with English abstract) | |
[9] | Arkhipova T N, Prinsen E, Veselov S U, Martinenko E V, Melentiev A I.Cytokinin producing bacteria enhance plant growth in drying soil.Plant Soil, 2007, 292: 305-315. |
[10] | Kasim W A, Osman M E, Omar M N, El-Daim I A A, Bejai S, Meijer J. Control of drought stress in wheat using plant-growth-promoting bacteria.J Plant Growth Reg, 2013, 32(1): 122-130. |
[11] | Huang M, Guo Z.Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity.Biol Plant, 2005, 49(1): 81-84. |
[12] | 欧立军, 陈波, 邹学校. 干旱对辣椒光合作用及相关生理特性的影响. 生态学报, 2012, 32(8): 2612-2619. |
Ou L J, Chen B, Zou X X.Effects of drought stress on photosynthesis and associated physiological characters of pepper. Acta Ecol Sin, 2012, 32(8): 2612-2619. (in Chinese with English abstract) | |
[13] | Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M.Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hort, 2009, 119(3): 257-263. |
[14] | Johnson J D, Tognetti R, Paris P.Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.Physiol Plant, 2002, 115(1): 93-100. |
[15] | 邵在胜, 赵轶鹏, 宋琪玲, 贾一磊, 王云霞, 杨连新, 王余龙. 大气CO2和O3浓度升高对水稻汕优63叶片光合作用的影响. 中国生态农业学报, 2014, 22(4): 422-429. |
Shao Z S, Zhao Y P, Song Q L, Jia Y L, Wang Y X, Yang L X, Wang Y L.Impact of elevated atmospheric carbon dioxide and ozone concentrations on leaf photosynthesis of ‘Shanyou 63’ hybrid rice. Chin J Eco-Agric, 2014, 22(4): 422-429. (in Chinese with English abstract) | |
[16] | Lichtenthaler H K.Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.Methods Enzymol, 1987, 148: 349-382. |
[17] | 刘方春, 马海林, 杜振宇, 马丙尧, 井大炜, 邢尚军. 金银花容器苗对干旱胁迫下接种根际促生细菌的生理响应. 生态学报, 2015, 35(21): 7003-7010. |
Liu F C, Ma H L, Du Z Y, Ma B Y, Jing D W, Xing S G.Physiological responses of Lonicera japonica container seedlings to plant growth-promoting rhizobacteria inoculation under drought stress.Acta Ecol Sin, 2015, 35(21): 7003-7010. (in Chinese with English abstract) | |
[18] | 刘海艳, 杨丽洁, 丁艳锋, 李刚华, 王绍华, 刘正辉, 唐设, 刘仁梅, 蒋卫红. NO 对水稻孕穗期干旱胁迫下叶片光合及产量的影响. 南京农业大学学报, 2017, 40(2): 195-202. |
Liu H Y, Yang L J, Ding Y F, Li G G, Wang S H, Liu Z H, Tang S, Liu R M, Jiang W H.Effects of nitric oxide on photosynthesis and yield of rice under drought stress at booting stage. J Nanjing Agric Univ, 2017, 40(2): 195-202. (in Chinese with English abstract) | |
[19] | Bartošková H, Komenda J, Nauš J.Functional changes of photosystemⅡ in the mossRhizomnium punctatum(Hedw.) induced by different rates of dark desiccation. J Plant Physiol, 1999, 154(5) : 597-604. |
[20] | 张金政, 张起源, 孙国峰, 何卿, 李晓东, 刘洪章. 干旱胁迫及复水对玉簪生长和光合作用的影响. 草业学报, 2014, 23(1): 167-176. |
Zhang J Z, Zhang Q V, Sun G F, He Q, Li X D, Liu H Z.Effects of drought stress and re-watering on growth and photosynthesis of Hosta. Acta Pratacul Sin, 2014, 23(1): 167-176. (in Chinese with English abstract) | |
[21] | 赵琴, 潘静, 曹兵, 宋丽华. 气温升高与干旱胁迫对宁夏枸杞光合作用的影响. 生态学报, 2015, 35(18): 6016-6022. |
Zhao Q, Pan J, Cao B, Song L H.Effects of elevated temperature and drought stress on photosynthesis of Lycium barbarum. Acta Ecol Sin, 2015, 35(18): 6016-6022. (in Chinese with English abstract) | |
[22] | Brugiere N, Jiao S, Hantke S.Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress.Plant Physio1, 2003, 132: 1228-1240. |
[23] | 李长宁, Manoj K S, 农倩, 李杨瑞. 水分胁迫下外源 ABA 提高甘蔗抗旱性的作用机制. 作物学报, 2010, 36(5): 863-870. |
Li C N, Manoj K S, Nong Q, Li Y R.Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress. Acta Agron Sin, 2010, 36(5): 863-870. (in Chinese with English abstract) | |
[24] | Kwak K S, Lijima M, Yamauchi A.Changes with aging of endogenous abscisic acid and zeatin riboside in the root system of rice.Jpn J Crop Sci, 1996, 65: 686-692. |
[25] | Dodd I C, Davies W J.The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone.J Exp Bot, 1996, 45: 1471-1478. |
[26] | 王玮, 张枫, 李德全,. 外源ABA 对渗透胁迫下玉米幼苗根系渗透调节的影响. 作物学报, 2002, 28(1): 121-126. |
Wang W, Zhang F, Li D Q.The effects of exogenous ABA on osmotic adjustment in maize roots under osmotic stress.Acta Agron Sin, 2002, 28(1): 121-126. (in Chinese with English abstract) | |
[27] | 阮英慧, 董守坤, 刘丽君, 孙聪姝, 王立彬, 郭茜茜, 盖志佳. 干旱胁迫下外源脱落酸对大豆花期生理特性的影响. 大豆科学, 2012, 31(3): 385-389. |
Ruan Y H, Dong S K, Liu L J, Sun C S, Wang L B, Guo Q Q, Gai Z J.Effects of exogenous abscisic acid on physiological characteristics in soybean flowering under drought stress. Soyb Sci, 2012, 31(3): 385-389. (in Chinese with English abstract) | |
[28] | Heckenberger U, Schurr U, Schulze E D.Stomatal response to ABA fed into the xylem of intactHeliarthus annuus(L) Plant. J Exp Bot, 1996, 47: 1405-1412. |
[29] | Liang J, Zhang J, Wong M H.How do roots control xylem sap ABA concentration in response to soil drying?Plant Cell Physiol, 1997, 38: 10-16. |
[30] | 周宇飞, 王德权, 陆樟镳, 王娜, 王艺陶, 李丰先, 许文娟, 黄瑞冬. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK 含量的影响. 中国农业科学, 2014, 47(4): 655-663. |
Zhou Y F, Wang D Q, Lu Z B, Wang N, Wang Y T, Li F X, Xu W J, Huang R D.Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum.Sci Agric Sin, 2014, 47(4): 655-663. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||