中国水稻科学 ›› 2023, Vol. 37 ›› Issue (5): 497-506.DOI: 10.16819/j.1001-7216.2023.221201
徐欢1,#, 周涛2,#, 孙悦1, 王木妹3, 杨亚春2, 马卉2, 李浩2, 徐大伟1, 周海3, 杨剑波2, 倪金龙2,*()
收稿日期:
2022-12-05
修回日期:
2023-01-31
出版日期:
2023-09-10
发布日期:
2023-09-13
通讯作者:
*email: 作者简介:
第一联系人:#共同第一作者
基金资助:
XU Huan1,#, ZHOU Tao2,#, SUN Yue1, WANG Mumei3, YANG Yachun2, MA Hui2, LI Hao2, XU Dawei1, ZHOU Hai3, YANG Jianbo2, NI Jinlong2,*()
Received:
2022-12-05
Revised:
2023-01-31
Online:
2023-09-10
Published:
2023-09-13
Contact:
*email: About author:
First author contact:#These authors contributed equally to this work
摘要:
【目的】 鉴定水稻颖壳类病斑突变体,并进行基因定位,为基因克隆及其分子机制研究奠定基础。【方法】 对野生型材料LR005和经EMS诱变得到的颖壳类病斑突变体glmm1(glume lesion mimics mutant 1)进行农艺性状分析、扫描电镜分析、DAB染色和全硅含量测定。glmm1与广亲和材料L422杂交获得的F2群体用于遗传分析,利用图位克隆和BSA-seq方法进行基因定位。【结果】 突变体glmm1在抽穗10 d后颖壳和叶片逐渐出现褐色斑点,成熟后颖壳完全呈现褐色。与野生型相比,突变体的株高、穗长、每穗总粒数、结实率和千粒重等都极显著降低。DAB染色表明glmm1颖壳和叶片的活性氧含量增多;扫描电镜显示突变体颖壳和叶片表面硅质细胞皱缩。遗传分析结果表明,突变体glmm1的颖壳类病斑表型受到一对隐性基因控制。利用glmm1与L422的F2分离群体,通过图位克隆和BSA-seq等策略将glmm1定位在水稻第2染色体上68 kb的区间内。该区间内有10个候选基因。序列分析发现该区间仅有一个SNP位点,位于基因Lsi1(LOC_Os02g51110)的第5个外显子上,导致第238位氨基酸由异亮氨酸变为苏氨酸。对颖壳和叶片全硅含量的测定表明,glmm1突变体中硅的积累减少,说明GLMM1可能是Lsi1的等位突变。【结论】 GLMM1是Lsi1新的等位突变基因,该突变造成植株硅含量的降低和活性氧的积累,致使颖壳和叶片产生褐色类病斑。
徐欢, 周涛, 孙悦, 王木妹, 杨亚春, 马卉, 李浩, 徐大伟, 周海, 杨剑波, 倪金龙. 水稻颖壳类病斑突变体glmm1的鉴定与基因定位[J]. 中国水稻科学, 2023, 37(5): 497-506.
XU Huan, ZHOU Tao, SUN Yue, WANG Mumei, YANG Yachun, MA Hui, LI Hao, XU Dawei, ZHOU Hai, YANG Jianbo, NI Jinlong. Characterization and Gene Mapping of a Glume Lesion Mimic Mutant glmm1 in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(5): 497-506.
引物名称 Primer name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
X1 | ACAACTGACCTACTCACCTAC | CAATGCAGGTGACATATTTTCAA |
X2 | TGCCTCATACAAATGAGAGAC | ATAAAAGTAGGACGGCTCTTC |
X3 | ACAGGTCACGAAGTACTGAA | GGGCTATTTATGTGTGCCTT |
X4 | CCTTATCTTGGTTTGGTCTTTT | CATCTGCCATCCTACCTGAA |
X5 | TTTTGACCGAGGGAGTACG | TCAGGTGACCCCACGACT |
X6 | AGAGGTGGCTTCGCTATTG | TTTGGGACGGAGGGAGTA |
Y1 | GGGCCGTCTGTCTCTAAA | CACGAAAAACCTTGACCA |
Y2 | AGGCCCAAGTCATTCAAC | CGCAAAGCATGAGACAAT |
Y3 | CCTACGTAAGAAGCCATCG | TCGGTTTAGAGGGGATTG |
Y4 | AGGCTCCATCAAACCAAC | ATTTCACATGCCCCTCAT |
Y5 | CGCTCACACAAGTTAATTGGA | GCGTTAAAACGTATGGACAG |
Y6 | GTAACTGGGAGTACAGTGGTAA | AAATTAAAGCGACAGAGATTTCC |
表1 InDel标记引物信息
Table 1. Primer sequences of InDel markers for fine mapping of GLMM1.
引物名称 Primer name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
X1 | ACAACTGACCTACTCACCTAC | CAATGCAGGTGACATATTTTCAA |
X2 | TGCCTCATACAAATGAGAGAC | ATAAAAGTAGGACGGCTCTTC |
X3 | ACAGGTCACGAAGTACTGAA | GGGCTATTTATGTGTGCCTT |
X4 | CCTTATCTTGGTTTGGTCTTTT | CATCTGCCATCCTACCTGAA |
X5 | TTTTGACCGAGGGAGTACG | TCAGGTGACCCCACGACT |
X6 | AGAGGTGGCTTCGCTATTG | TTTGGGACGGAGGGAGTA |
Y1 | GGGCCGTCTGTCTCTAAA | CACGAAAAACCTTGACCA |
Y2 | AGGCCCAAGTCATTCAAC | CGCAAAGCATGAGACAAT |
Y3 | CCTACGTAAGAAGCCATCG | TCGGTTTAGAGGGGATTG |
Y4 | AGGCTCCATCAAACCAAC | ATTTCACATGCCCCTCAT |
Y5 | CGCTCACACAAGTTAATTGGA | GCGTTAAAACGTATGGACAG |
Y6 | GTAACTGGGAGTACAGTGGTAA | AAATTAAAGCGACAGAGATTTCC |
图1 野生型和突变体glmm1的表型比较 A, B−苗期和成熟期的野生型(WT)和glmm1的表型;C, D, E−WT和glmm1的籽粒;F, I−抽穗初期;G, J−抽穗中期;H, K−成熟期。标尺分别为15 cm(A, B), 1 cm(C, D, E)和4 cm(F, G, H, I, J, K)。
Fig. 1. Phenotypic comparison of WT and mutant glmm1. A and B, Phenotype of WT and glmm1 at seedling stage and maturity stage; C, D and E, Seeds of WT and glmm1; F and I, Early heading stage; G and J, Middle heading stage; H and K, Maturity stage. Bars, 15 cm (A, B), 1 cm (C, D, E), 4 cm (F, G, H, I, J, K), respectively.
材料 Material | 株高 Plant height / cm | 穗长 Panicle length/cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate / % | 千粒重 1000-grain weight / g |
---|---|---|---|---|---|---|
野生型WT | 92.06±4.24 | 20.59±1.43 | 5.6±2.2 | 535.8±62.9 | 42.07±8.41 | 20.23±0.14 |
glmm1 | 85.45±3.02** | 18.86±1.41** | 5.2±1.2 | 408.2±72.4** | 29.21±9.50** | 16.84±0.27** |
表2 野生型与突变体glmm1的主要农艺性状比较
Table 2. Agronomic traits of the wild type (WT) and glmm1.
材料 Material | 株高 Plant height / cm | 穗长 Panicle length/cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate / % | 千粒重 1000-grain weight / g |
---|---|---|---|---|---|---|
野生型WT | 92.06±4.24 | 20.59±1.43 | 5.6±2.2 | 535.8±62.9 | 42.07±8.41 | 20.23±0.14 |
glmm1 | 85.45±3.02** | 18.86±1.41** | 5.2±1.2 | 408.2±72.4** | 29.21±9.50** | 16.84±0.27** |
杂交组合 Cross | 野生型 Wild type | 突变体 Mutant | 分离比 Segregation ratio | χ23:1 |
---|---|---|---|---|
glmm1/L422 | 1499 | 501 | 2.99:1 | 0.003 |
表3 glmm1颖壳类病斑性状的遗传分析
Table 3. Genetic analysis of the lesion mimic trait on glumes of glmm1.
杂交组合 Cross | 野生型 Wild type | 突变体 Mutant | 分离比 Segregation ratio | χ23:1 |
---|---|---|---|---|
glmm1/L422 | 1499 | 501 | 2.99:1 | 0.003 |
基因注释号 | 功能注释 | 基因符号 |
---|---|---|
基因注释号 Gene annotation | 功能注释 Function note | 基因名称 Gene name |
LOC_Os02g51100 | 砷泵驱动ATP酶 Arsenical pump-driving ATPase | |
LOC_Os02g51110 | 水通道蛋白 Aquaporin protein | Lsi1 |
LOC_Os02g51119 | 表达蛋白 Expressed protein | |
LOC_Os02g51130 | 含有糖基转移酶8结构域的蛋白质 Glycosyl transferase 8 domain containing protein | |
LOC_Os02g51140 | 富氮蛋白 N-rich protein | |
LOC_Os02g51150 | 鞘脂C4-羟化酶SUR2 Sphingolipid C4-hydroxylase SUR2 | |
LOC_Os02g51160 | 水解酶,作用于C-N Hydrolase, acting on carbon-nitrogen | |
LOC_Os02g51164 | 表达蛋白Expressed protein | |
LOC_Os02g51170 | 表达蛋白Expressed protein | |
LOC_Os02g51180 | Cullin蛋白 Cullin protein | OsCUL3a |
表4 候选区间基因注释
Table 4. Gene annotation of candidate region
基因注释号 | 功能注释 | 基因符号 |
---|---|---|
基因注释号 Gene annotation | 功能注释 Function note | 基因名称 Gene name |
LOC_Os02g51100 | 砷泵驱动ATP酶 Arsenical pump-driving ATPase | |
LOC_Os02g51110 | 水通道蛋白 Aquaporin protein | Lsi1 |
LOC_Os02g51119 | 表达蛋白 Expressed protein | |
LOC_Os02g51130 | 含有糖基转移酶8结构域的蛋白质 Glycosyl transferase 8 domain containing protein | |
LOC_Os02g51140 | 富氮蛋白 N-rich protein | |
LOC_Os02g51150 | 鞘脂C4-羟化酶SUR2 Sphingolipid C4-hydroxylase SUR2 | |
LOC_Os02g51160 | 水解酶,作用于C-N Hydrolase, acting on carbon-nitrogen | |
LOC_Os02g51164 | 表达蛋白Expressed protein | |
LOC_Os02g51170 | 表达蛋白Expressed protein | |
LOC_Os02g51180 | Cullin蛋白 Cullin protein | OsCUL3a |
图4 水稻颖壳和叶片的扫描电镜观察 A, C, I, K−抽穗初期野生型(WT)和glmm1的穗和叶片的表型特征;B, D, J, L−抽穗初期WT和glmm1的穗和叶片的扫描电镜观察;E, G, M, O−成熟期WT和glmm1的穗和叶片的表型特征;F, H, N, P−成熟期WT和glmm1的穗和叶片的扫描电镜观察。标尺为4 cm(A, C, E, G, I, K, M, O),40 μm(B, D, F, H, J, L, N, P)。红色箭头指向植硅石和二氧化硅细胞。
Fig. 4. Scanning electron microscopy observation of rice glumes and leaves. A, C, I and K, Phenotypic characteristics of panicles and leaves of WT and glmm1 at the early heading stage; B, D, J and L, SEM of panicles and leaves of WT and glmm1 at the early heading stage; E, G, M and O, Phenotypic characteristics of panicles and leaves of WT and glmm1 at the ripening stage, respectively;F, H, N and P, SEM of panicles and leaves of WT and glmm1 at the ripening stage. Bars: 4 cm (A, C, E, G, I, K, M, O),40 μm (B, D, F, H, J, L, N, P). The red arrow indicates phytolith and silica cells.
图5 野生型和突变体glmm1的全硅含量测定 A−颖壳;B−叶片。**代表野生型与突变体间的差异达0.01显著水平(n=3)。
Fig. 5. Determination of total silicon content of the wild type (WT) and its mutant glmm1. A, Glume; B, Leaf. ** mean difference between WT and glmm1 is significant at 0.01 level (t-test, n=3).
[1] | 孙志广, 代慧敏, 陈庭木, 李景芳, 迟铭, 周振玲, 刘艳, 刘金波, 徐波, 邢运高, 杨波, 李健, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻类病斑突变体lmm7的鉴定与基因定位[J]. 中国水稻科学, 2022, 36(4): 357-366. |
Sun Z G, Dai H M, Chen T M, Li J F, Chi M, Zhou Z L, Liu Y, Liu J B, Xu B, Xing Y G, Yang B, Li J, Lu B G, Fang Z W, Wang B X, Xu D Y. Phenotypic identification and gene mapping of a lesion mimic mutant lmm7 in rice[J]. Chinese Journal of Rice Science, 2022, 36(4): 357-366. (in Chinese with English abstract) | |
[2] | Kelly D, Vatsa A, Mayham W, Kazic T. Extracting complex lesion phenotypes in Zea mays [J]. Machine Vision and Applications, 2016, 27(1): 145-156. |
[3] | Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomics, 2008, 279(6): 605-619. |
[4] | Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J]. PLoS Pathogens, 2015, 11(2): e1004629. |
[5] | Shen X, Liu H, Yuan B, Li X, Xu C, Wang S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis[J]. Plant, Cell & Environment, 2011, 34(2): 179-191. |
[6] | Zeng L, Yin Z, Chen J, Leung H, Wang G L. Fine genetic mapping and physical delimitation of the lesion mimic gene Spl11 to a 160-kb DNA segment of the rice genome[J]. Molecular Genet Genomics, 2002, 268(2): 253-261. |
[7] | Hong Y, Zhang Y, Sinumporn S, Yu N, Zhan X, Shen X, Chen D, Yu P, Wu W, Liu Q, Cao Z, Zhao C, Cheng S, Cao L. Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice[J]. The Plant Journal, 2018, 95(5): 877-891. |
[8] | 焦然, 徐娜, 胡娟, 宋周琳, 胡佳青, 饶玉春, 王跃星. 水稻类病变突变体性状及分子机理研究进展[J]. 中国水稻科学, 2018, 32(3): 285-295. |
Jiao R, Xu N, Hu J, Song Z L, Hu J Q, Rao Y C, Wang Y X. Advances in traits of lesion mimic mutants and its molecular mechanisms in rice[J]. Chinese Journal of Rice Science, 2018, 32(3): 285-295. (in Chinese with English abstract) | |
[9] | Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal, 2011, 66(6): 996-1007. |
[10] | Cui Y, Peng Y, Zhang Q, Xia S, Ruan B, Xu Q, Yu X, Zhou T, Liu H, Zeng D, Zhang G, Gao Z, Hu J, Zhu L, Shen L, Guo L, Qian Q, Ren D. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice[J]. The Plant Journal, 2021, 105(4): 942-956. |
[11] | Wei Q, Yan Z, Xiong Y, Fang Z. Altered expression of OsAAP3 influences rice lesion mimic and leaf senescence by regulating arginine transport and nitric oxide pathway[J]. International Journal of Molecular Sciences, 2021, 22(4): 2181. |
[12] | Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, Li C. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice[J]. PloS ONE, 2012, 7(11): e50089. |
[13] | Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake G J, Chu C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology, 2011, 158(1): 451-464. |
[14] | Ingestad T. Mineral Nutrition of Plants: Principles and Perspectives[J]. Forest Science, 1973, 19(2): 156. |
[15] | Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Science and Plant Nutrition, 2004, 50(1): 11-18. |
[16] | Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691. |
[17] | Azeem S, Li Z, Zheng H, Lin W, Arafat Y, Zhang Z, Lin X, Lin W,. Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance[J]. Plant Growth Regulation, 2016, 78(3): 307-323. |
[18] | Ma J F, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-212. |
[19] | Yamaji N, Ma J F. A transporter at the node responsible for intervascular transfer of silicon in rice[J]. The Plant Cell, 2009, 21(9): 2878-2883. |
[20] | Yamaji N, Mitatni N, Ma J F. A transporter regulating silicon distribution in rice shoots[J]. The Plant Cell, 2008, 20(5): 1381-1389. |
[21] | Mitani N, Ma J F, Iwashita T. Identification of the silicon form in xylem sap of rice (Oryza sativa L.)[J]. Plant Cell Physiology, 2005, 46(2): 279-283. |
[22] | Huang S, Yamaji N, Sakurai G, Mitani-Ueno N, Konishi N, Ma J F. A pericycle-localized silicon transporter for efficient xylem loading in rice[J]. New Phytology, 2022, 234(1): 197-208. |
[23] | Currie H A, Perry C C. Silica in plants: Biological, biochemical and chemical studies[J]. Annals of Botany, 2007, 100(7): 1383-1389. |
[24] | 崔鹏, 苑世领, 徐桂英. 玉米植株中的植硅石及其纳米SiO2的制备[J]. 无机材料学报, 2009, 24(3): 512-516. |
Cui P, Wan S L, Xu G Y. Phytoliths in mealies corns and preparation of SiO2 nano-materials[J]. Journal of Inorganic Materials, 2009, 24(3): 512-516. (in Chinese with English abstract) | |
[25] | 沈旺鑫, 史小品, 杜海波, 冯志明, 陈宗祥, 胡珂鸣, 范江波, 左示敏. 水稻类病斑突变体基因克隆及发生机制研究进展[J]. 江苏农业学报, 2022, 38(03): 837-48. |
Sen W X, Shi X P, Du H B, Feng Z M, Chen Z X, Hu K M, Fan H B, Zuo S M. Research advances in gene cloning and occurrence mechanism of rice lesion mimic mutants[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 837-848. (in Chinese with English abstract) | |
[26] | Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues[J]. Plant Molecular Biology, 1985, 5(2): 69-76. |
[27] | 华海霞, 于慧国, 刘德君. 硅钼蓝比色法测定植株中的硅[J]. 现代农业科技, 2013(24): 173-4. |
Bi H X, Xu H G, Liu D J. Determination of silicon concentration in the plants by colorimetric molybdenum blue method[J]. Modern Agricultural Science and Technology, 2013(24): 173-174. (in Chinese with English abstract) | |
[28] | Liu Q, Ning Y, Zhang Y, Yu N, Zhao C, Zhan X, Wu W, Chen D, Wei X, Wang G L, Cheng S, Cao L. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. The Plant Cell, 2017, 29(2): 345-359. |
[29] | 奉保华, 杨杨, 施勇烽, 林璐, 陈洁, 黄奇娜, 魏彦林, Leung H, 吴建利. 水稻淡褐斑叶突变体lbsl1的遗传分析与基因定位[J]. 中国水稻科学, 2012, 26(3): 297-301. |
Feng B H, Yang Y, Shi Y F, Lin L Chen J, Huang Q N, Wei Y L, Leung H, Wu J L. Genetic analysis and gene mapping of a light brown spotted leaf mutant(lbsl1) in rice[J]. Chinese Journal of Rice Science, 2012, 26(3): 297-301. (in Chinese with English abstract) | |
[30] | Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y, He Z. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J]. The Plant Journal, 2012, 71(5): 763-775. |
[31] | Chen X, Hao L, Pan J, Zheng X, Jiang G, Jin Y, Gu Z, Qian Q, Zhai W, Ma B. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding, 2012, 30(2): 939-949. |
[32] | Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice Pti1a negatively regulates RAR1-dependent defense responses[J]. The Plant Cell, 2007, 19(9): 2940-2951. |
[33] | 王建军, 朱旭东, 王林友, 张利华, 薛庆中, 何祖华. 水稻类病斑突变体的生理与遗传分析[J]. 植物生理与分子生物学学报, 2004(3): 331-338. |
Wang J J, Zhu X D, Wang L Y, Zhang L H, Xue Q Z, He Z H. Physiological and genetic analysis of the disease-like mutant of rice[J]. Physiology and Molecular Biology of Plants, 2004(3): 331-338. (in Chinese with English abstract) | |
[34] | Yoshimura A, Ideta O, Iwata N. Linkage map of phenotype and RFLP markers in rice[J]. Plant Molecular Biology, 1997, 35(1-2): 49-60. |
[35] | 钱婧雅, 刘芬, 屈成, 王悦. 水稻类病斑突变基因的克隆及其机制研究进展[J]. 分子植物育种, 2021, 19(10): 3274-3280. |
Qian J Y, Liu F, Qu C, Wang Y. Research progress on cloning and mechanism of rice lesion mimic genes[J]. Molecular Plant Breeding, 2021, 19(10): 3274-3280. (in Chinese with English abstract) | |
[36] | 陈萍萍, 叶胜海, 赵宁春, 陆艳婷, 刘合芹, 杨玲, 金庆生, 张小明. 浙粳22类病斑突变体spl(t)特征及其基因定位[J]. 核农学报, 2010, 24(1): 1-6. |
Chen P P, Ye H S, Zhao N C, Lu Y T, Liu H Q, Yang L, Jin Q S, Zhang X M. Characteristics and genetic mapping of a lesion mimic mutant spl(t) in japonica rice variety Zhejing 22[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(1): 1-6. (in Chinese with English abstract) | |
[37] | Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Chu C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology, 2012, 158(1): 451-464. |
[38] | Fang C, Li L, Zhang P, Wang D, Yang L, Reza B M, Lin W. Lsi1 modulates the antioxidant capacity of rice and protects against ultraviolet-B radiation[J]. Plant Science, 2019, 278: 96-106. |
[39] | 曾仁杰. 硅肥对水稻产量、品质及抗倒伏特性的影响[J]. 中国农学通报, 2021, 37(22): 1-4. |
Zeng R J. Effect of silicon fertilizer on rice yield, grain quality and lodging resistance[J]. Chinese Agricultural Science Bulletin, 2021, 37(22): 1-4. (in Chinese with English abstract) | |
[40] | 张文绪. 稻属植物叶背亚显微结构的观察研究[J]. 中国水稻科学, 1995(2): 71-76. |
Zhang W X. The observation of submicrostructure on leaves-back in Oryza[J]. Chinese Journal of Rice Science, 1995(2): 71-76. (in Chinese with English abstract) | |
[41] | 张文绪, 裴鑫德. 水稻稃面双峰乳突的研究[J]. 作物学报, 1998(6): 691-697. |
Zhang W X, Pei X D. Study of double-peaked papillae on the lemma side of rice[J]. Acta Agronomica Sinica, 1998(6): 691-697. (in Chinese with English abstract) | |
[42] | 张良平, 陈良碧, 沈晓勤. 水稻叶片表面结构电镜观察[J]. 电子显微学报, 1990(3): 43. |
Zhang L P, Chen L B, Shen X Q. Electron microscopic observation of the surface structure of rice leaves[J]. Journal of Chinese Electron Microscopy Society, 1990(3): 43. (in Chinese with English abstract) | |
[43] | 周少凡, 黎根, 彭紫登, 杨文广, 邹志云, 杨秉耀, 何波仔, 黄琫. 水稻施硅之抗虫机制的研究[J]. 电子显微学报, 1993(3): 247-250. |
Zhou S F, Li G, Peng Z D, Yang W G, Zou Z Y, Yang B Y, He B Z, Huang B. Studies on insect-resistance mechanism after silicon applied in rice[J]. Journal of Chinese Electron Microscopy Society, 1993(3): 247-250. (in Chinese with English abstract) | |
[44] | 水茂兴, 陈德富, 秦遂初, 蒋式洪. 水稻新嫩组织的硅质化及其与稻瘟病抗性的关系[J]. 植物营养与肥料学报, 1999(4): 352-358. |
Shui M X, Chen D F, Qin S C, Jiang S H. The silicification of young tissues of rice and relationship with its resistance to blast of rice[J]. Journal of Plant Nutrition and Fertilizers, 1999(4): 352-358. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||