中国水稻科学 ›› 2023, Vol. 37 ›› Issue (5): 543-552.DOI: 10.16819/j.1001-7216.2023.230201
• 研究报告 • 上一篇
夏杨1, 李传明2, 刘琴1,2, 韩光杰1, 徐彬1, 黄立鑫1, 祁建杭2, 陆玉荣1, 徐健1,*()
收稿日期:
2023-02-01
修回日期:
2023-05-11
出版日期:
2023-09-10
发布日期:
2023-09-13
通讯作者:
*email: 基金资助:
XIA Yang1, LI Chuanming2, LIU Qin1,2, HAN Guangjie1, XU Bin1, HUANG Lixin1, QI Jianhang2, LU Yurong1, XU Jian1,*()
Received:
2023-02-01
Revised:
2023-05-11
Online:
2023-09-10
Published:
2023-09-13
Contact:
*email: 摘要:
【目的】 探究印度梨形孢(Piriformospora indica)PI-020对盐胁迫下水稻幼苗生长、抗氧化相关酶活性及基因表达水平的影响。【方法】 以不同浓度的PI-020菌丝体悬液接种南粳9108水培苗,显微镜观察及qPCR技术分析PI-020在水稻秧苗根系的定殖能力,并测定水稻叶片丙二醛(MDA)含量,分析水稻秧苗的表型参数、光合色素含量、抗氧化相关酶活性及基因表达的变化。【结果】 与对照相比,盐胁迫条件下(100 mmol/L NaCl),PI-020定殖后,水稻叶片MDA含量显著降低。200倍菌丝体稀释液处理的效果最好,MDA含量减少了67.2%。PI-020定殖后,水稻株高、根长、叶面积、鲜质量和干质量分别增加了34.67%、23.62%、58.04%、59.53%和67.25%,与对照相比均差异显著;同时PI-020定殖还显著提高了叶片光合色素含量,抗氧化酶CAT、APX、POD活性及抗氧化相关基因OsCAT、OsAPX2、OsSOD的表达水平。【结论】 印度梨形孢PI-020通过提高水稻幼苗抗氧化能力减少盐胁迫引起的氧化损伤,从而降低MDA含量,同时缓解光合色素的降解,保护了水稻光合系统,进而提高水稻耐盐性。
夏杨, 李传明, 刘琴, 韩光杰, 徐彬, 黄立鑫, 祁建杭, 陆玉荣, 徐健. 印度梨形孢对盐胁迫下水稻幼苗生长及抗氧化系统的影响[J]. 中国水稻科学, 2023, 37(5): 543-552.
XIA Yang, LI Chuanming, LIU Qin, HAN Guangjie, XU Bin, HUANG Lixin, QI Jianhang, LU Yurong, XU Jian. Effects of Piriformospora indica on the Growth and Antioxidant System of Rice Seedlings Under Salt Stress[J]. Chinese Journal OF Rice Science, 2023, 37(5): 543-552.
基因名称 Gene name | 正向引物序列 Forward primer sequence (5'-3') | 反向引物序列 Reverse primer sequence (5'-3') |
---|---|---|
OsUBQ5 | ACCACTTCGACCGCCACTACT | ACGCCTAAGCCTGCTGGTT |
OsCAT | ATCATCGTGCCGGGGATCTA | AAGCCGTCGTAGTGGTTGTT |
OsAPX2 | CTTCGGCACCATGAAGAACC | CTGGTAGAAGTCGGCGTAGG |
OsSOD | CCGTGTGACGGGACTTACTC | GGTTGCCTCAGCTACACCTT |
OsGR2 | ATTGAAGGGGCAGGCAGTTT | TCCGCCACCAAGGATTACAG |
表1 qRT-PCR所用引物序列
Table 1. Primer sequences for qRT-PCR.
基因名称 Gene name | 正向引物序列 Forward primer sequence (5'-3') | 反向引物序列 Reverse primer sequence (5'-3') |
---|---|---|
OsUBQ5 | ACCACTTCGACCGCCACTACT | ACGCCTAAGCCTGCTGGTT |
OsCAT | ATCATCGTGCCGGGGATCTA | AAGCCGTCGTAGTGGTTGTT |
OsAPX2 | CTTCGGCACCATGAAGAACC | CTGGTAGAAGTCGGCGTAGG |
OsSOD | CCGTGTGACGGGACTTACTC | GGTTGCCTCAGCTACACCTT |
OsGR2 | ATTGAAGGGGCAGGCAGTTT | TCCGCCACCAAGGATTACAG |
图1 PI-020在水稻苗根系的定殖情况 A-显微镜观察;B-定殖量测定。PI-020为接种处理;CK为未接种处理。
Fig. 1. Colonization of PI-020 in rice roots. A, Microscopic observation; B, Determination of PI-020 colonization. PI-020, Inoculation with PI-020 treatment; CK, Uninoculation treatment.
图2 PI-020定殖对水稻盐胁迫耐受能力的影响 A-水稻盐胁迫7 d后的表型,标尺为3 cm;B-水稻盐胁迫7 d后叶片丙二醛含量。CK为对照;N为盐胁迫;P1N为50倍梨形孢稀释液+盐胁迫;P2N为100倍梨形孢稀释液+盐胁迫;P3N为200倍梨形孢稀释液+盐胁迫;P4N为400倍梨形孢稀释液+盐胁迫;P5N为800倍梨形孢稀释液+盐胁迫。不同小写字母表示处理之间差异达0.05显著水平。下同。
Fig. 2. Effects of PI-020 colonization on salt tolerance of rice. A, Phenotypes of rice seedlings after 7 days of salt stress, Bar=3 cm; B, MDA contents in rice leaves after 7 days of salt stress. N, NaCl; P1N, P1+NaCl; P2N, P2+NaCl; P3N, P3+NaCl; P4N, P4+NaCl; P5N, P5+NaCl. Different lowercase letters indicate significant differences (P < 0.05). The same below.
[1] | Fang S, Tu W, Mu L, Sun Z, Yang Y. Saline alkali water desalination project in Southern Xinjiang of China: A review of desalination planning, desalination schemes and economic analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109268. |
[2] | Hossain M S. Present scenario of global salt affected soils, its management and importance of salinity research[J]. International Journal of Biological Sciences, 2019, 1(1): 1-3. |
[3] | Liu C, Mao B, Yuan D, Chu C, Duan M. Salt tolerance in rice: Physiological responses and molecular mechanisms[J]. Crop Journal, 2021, 10(1): 13-25. |
[4] | Qin H, Li Y, Huang R. Advances and challenges in the breeding of salt-tolerant rice[J]. International Journal of Molecular Sciences, 2020, 21(21): 8385. |
[5] | 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展[J]. 中国水稻科学, 2022, 36(6): 551-561. |
Wu M M, Zeng W, Zhai R R, Ye J, Zhu G F, Yu F M, Zhang X M, Ye S H. Research progress in molecular mechanism and breeding status of salt tolerance in rice[J]. Chinese Journal of Rice Science, 2022, 36(6): 551-561. (in Chinese with English abstract) | |
[6] | Verma S, Varma A, Rexer K H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus[J]. Mycologia, 1998, 90(5): 896-903. |
[7] | Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K H. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley[J]. Proceedings of the National Academy of Sciences, 2006, 103(49): 18450-18457. |
[8] | 李亮, 郭楠楠, 郝瑞颖, 常乐乐. 印度梨形孢(Piriformospora indica)增强植物抗逆境胁迫能力的研究进展[J]. 微生物学通报, 2022, 49(7): 2862-2874. |
Li L, Guo N N, Hao R Y, Chang L L. Research progress of Piriformospora indica in enhancing stress resistance of plant[J]. Microbiology China, 2022, 49(7): 2862-2874. (in Chinese with English abstract) | |
[9] | Abdelaziz M E, Abdelsattar M, Abdeldaym E A, Atia M A, Mahmoud A W M, Saad M M, Hirt H. Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress[J]. Scientia Horticulturae, 2019, 256: 108532. |
[10] | Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Wettstein D V, Franken P, Kogel K H. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield[J]. Proceedings of the National Academy of Sciences, 2005, 102(38): 13386-13391. |
[11] | Yun P, Xu L, Wang S S, Shabala L, Shabala S, Zhang W Y. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot[J]. Plant growth regulation, 2018, 86(2): 323-331. |
[12] | Chen W, Lin F, Lin K H, Chen C, Xia C, Liao Q, Chen S P, Kuo Y W. Growth promotion and salt-tolerance improvement of Gerbera jamesonii by root colonization of Piriformospora indica[J]. Journal of Plant Growth Regulation, 2022, 41(3): 1219-1228. |
[13] | 吴金丹, 陈乾, 刘晓曦, 林福呈, 高其康, 楼兵干. 印度梨形孢对水稻的促生作用及其机理的初探[J]. 中国水稻科学, 2015, 29(2): 200-207. |
Wu J D, Wu J D, Chen G, Liu X X, Lin F C, Gao Q K, Lou B G. Preliminary study on mechanisms of growth promotion in rice colonized by Piriformospora indica[J]. Chinese Journal of Rice Science, 2015, 29(2): 200-207. (in Chinese with English abstract) | |
[14] | 吴金丹. 印度梨形孢诱导水稻促生、抗逆、抗病作用及其机理的初步研究[D]. 杭州: 浙江大学, 2014. |
Wu J D. Growth promotion, stress tolerance and disease resistance in rice conferred by Piriformospora indica and the preliminary study of mechanisms[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract) | |
[15] | 刘雪琳, 朱志炎, 何勇, 叶开温, 田志宏. 内生真菌印度梨形孢对水稻苗期耐盐性的影响[J]. 南方农业学报, 2019, 50(4): 719-725. |
Liu X L, Zhu Z Y, He Y, Ye K W, Tian Z H. Effects of endophytic fungus Piriformospora indica on salt stress tolerance of rice seedling[J]. Journal of Southern Agriculture, 2019, 50(4): 719-725. (in Chinese with English abstract) | |
[16] | 徐彬, 刘琴, 李传明, 刘雪梅, 韩光杰, 夏杨, 黄立鑫, 陆玉荣, 祁建杭, 徐健. 油菜根际内生真菌PI-020的分离鉴定和定殖促生作用[J]. 扬州大学学报: 农业与生命科学版, 2022, 43(5): 129-135. |
Xu B, Liu Q, Li C M, Liu X M, Han G J, Xia Y, Huang L X, Lu Y R, Qi J H, Xu J. Isolation and identification of endophytic fungus PI-020 from root of rape and its promoting and colonization effect[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2022, 43(5): 129-135. (in Chinese with English abstract) | |
[17] | Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory manual for physiological studies of rice[M]. Manila: International Rice Research Institute, 1976: 61-66. |
[18] | 王建飞, 陈宏友, 杨庆利, 姚明哲, 周国安, 张红生. 盐胁迫浓度和胁迫时的温度对水稻耐盐性的影响[J]. 中国水稻科学, 2004(5): 75-80. |
Wang J F, Chen H Y, Yang Q L, Yao M Z, Zhou G A, Zhang H S. Effects of salt concentration and temperature on the screening of salt-tolerance in rice[J]. Chinese Journal of Rice Science, 2004(5): 75-80. (in Chinese with English abstract) | |
[19] | 武美燕, 蒿若超, 张文英. 印度梨形孢真菌对干旱胁迫下紫花苜蓿生长及抗旱性的影响[J]. 草业学报, 2016, 25(5): 78-86. |
Wu M Y, Hao R C, Zhang W Y. Effects of Piriformospora indica fungus on growth and drought resistance in alfalfa under water deficit stress[J]. Acta Prataculturae Sinica, 2016, 25(5): 78-86. (in Chinese with English abstract) | |
[20] | 夏杨, 徐彬, 李传明, 刘琴, 韩光杰, 黄立鑫, 祁建杭, 陆玉荣, 徐健. 印度梨形孢的荧光定量PCR检测及其在水稻根系的定殖测定[J]. 江苏农业科学, 2023, 51(2): 231-235. |
Xia Y, Xu B, Li C M, Liu Q, Han G J, Huang L X, Qi J H, Lu Y R, Xu J. Quantitative real-time PCR detection and rice-root colonization of Piriformospora indica[J]. Jiangsu Agricultural Sciences, 2023, 51(2): 231-235. (in Chinese with English abstract) | |
[21] | 王学奎, 黄见良. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2015. |
Wang X K, Huang J L. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2015. (in Chinese) | |
[22] | 吴强盛. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2018. |
Wu Q S. Experimental Guidelines in Plant Physiology[M]. Beijing: China Agriculture Press, 2018. (in Chinese) | |
[23] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. |
[24] | Schulz B, Römmert A K, Dammann U, Aust H J, Strack D. The endophyte-host interaction: A balanced antagonism?[J]. Mycological Research, 1999, 103(10): 1275-1283 |
[25] | Eaton C J, Cox M P, Scott B. What triggers grass endophytes to switch from mutualism to pathogenism[J]. Plant Science, 2011, 180(2): 190-195. |
[26] | 李悦, 陈忠林, 王杰, 徐苏南, 侯伟. 盐胁迫对翅碱蓬生长和渗透调节物质浓度的影响[J]. 生态学杂志, 2011, 30(1): 72-76. |
Li Y, Chen Z L, Wang J, Xu S N, Hou W. Effects of salt stress on Suaeda heteroptera Kitagawa growth and osmosis-regulating substance concentration[J]. Chinese Journal of Ecology, 2011, 30(1): 72-76. (in Chinese with English abstract) | |
[27] | Cruz C, Martins-Loução M A, Varma A. The influence of plant co-culture of tomato plants with Piriformospora indica on biomass accumulation and stress tolerance[J]. Acta Horticulturae, 2010, 868: 123-128. |
[28] | Abdelaziz M E, Kim D, Ali S, Fedoroffa N V, Al-Babilia S. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions[J]. Plant Science, 2017, 263: 107-115. |
[29] | Ghorbani A, Razavi S M, Ghasemi Omran V O, Pirdashti H. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.)[J]. Plant Biology, 2018, 20(4): 729-736 |
[30] | 李格, 孟小庆, 蔡敬, 董婷婷, 李宗芸, 朱明库. 活性氧在植物非生物胁迫响应中功能的研究进展[J]. 植物生理学报, 2018, 54(6): 951-959. |
Li G, Meng X Q, Cai J, Dong T T, Li Z Y, Zhu M K. Advances in the function of reactive oxygen species in plant responses to abiotic stresses[J]. Plant Physiology Journal, 2018, 54(6): 951-959. (in Chinese with English abstract) | |
[31] | 李亮, 陈希, 王奋, 王晓阳, 齐树亭. 印度梨形孢通过激活抗氧化物酶活性及诱导P5CS基因表达提高紫花苜蓿耐盐性[J]. 河北工业大学学报, 2016, 45(4): 29-36. |
Li L, Chen X, Wang F, Wang X Y, Qi S T. Piriformospora indica confers salt tolerance in Medicago sativa by stimulating antioxidant enzymes activities and the expression of P5CS genes[J]. Journal of Hebei University of Technology, 2016, 45(4): 29-36. (in Chinese with English abstract) | |
[32] | Scandalios J G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38: 995-1014. |
[33] | Li Z, Han X, Song X, Zhang Y, Jiang J, Han Q, Liu M, Qiao G, Zhuo R. Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1010. |
[34] | Yan H, Li Q, Park S C, Wang X, Liu Y J, Zhang Y G, Tang W, Kou M, Ma D F. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato[J]. Plant Physiology and Biochemistry, 2016, 109: 20-27. |
[35] | 阮孟斌, 彭明. 植物响应非生物胁迫相关基因的研究进展[J]. 热带生物学报, 2011, 2(4): 364-372. |
Ruan M B, Peng M. Progresses of the study on plant abiotic stress response genes[J]. Journal of Tropical Biology, 2011, 2(4): 364-372. (in Chinese with English abstract) | |
[36] | Guan Q J, Liao X, He M L, Li X F, Wang Z Y, Ma H Y, Yu S, Liu S K. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress[J]. PLoS One, 2017, 12(10): e0186052. |
[37] | 刘家林, 欧阳林娟, 曾嘉丽, 傅军如, 贺浩华, 朱昌兰, 彭小松, 贺晓鹏, 陈小荣, 边建民, 徐杰, 孙晓棠, 周大虎, 胡丽芳. 水稻SOD基因家族的全基因组分析及逆境胁迫下表达研究[J]. 分子植物育种, 2018, 16(9): 2753-2760. |
Liu J L, Ouyang L J, Zeng J L, Fu J R, He H H, Zhu C L, Peng X S, He X P, Chen X R, Bian J M, Xu J, Sun X T, Zhou D H, Hu L F. Genome-wide analysis of rice SOD gene family and expression research under stress[J]. Molecular Plant Breeding, 2018, 16(9): 2753-2760. (in Chinese with English abstract) | |
[38] | Xu L X, Han L B, Huang B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255. |
[39] | 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的响应及耐盐机理研究进展[J]. 中国水稻科学, 2022, 36(2): 105-117. |
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Rice response to salt stress and research progress in salt tolerance mechanism[J]. Chinese Journal of Rice Science, 2022, 36(2): 105-117. (in Chinese with English abstract) | |
[40] | Rai M, Varma A. Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees[J]. Electronic Journal of Biotechnology, 2005, 8(1): 1-6. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||